Processing math: 100%

Your data matches 82 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001662: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => 1
[1,2] => 2
[2,1] => 1
[1,2,3] => 3
[1,3,2] => 1
[2,1,3] => 1
[2,3,1] => 2
[3,1,2] => 2
[3,2,1] => 1
[1,2,3,4] => 4
[1,2,4,3] => 2
[1,3,2,4] => 1
[1,3,4,2] => 2
[1,4,2,3] => 2
[1,4,3,2] => 1
[2,1,3,4] => 2
[2,1,4,3] => 1
[2,3,1,4] => 2
[2,3,4,1] => 3
[2,4,1,3] => 1
[2,4,3,1] => 1
[3,1,2,4] => 2
[3,1,4,2] => 1
[3,2,1,4] => 1
[3,2,4,1] => 1
[3,4,1,2] => 2
[3,4,2,1] => 2
[4,1,2,3] => 3
[4,1,3,2] => 1
[4,2,1,3] => 1
[4,2,3,1] => 2
[4,3,1,2] => 2
[4,3,2,1] => 1
[1,2,3,4,5] => 5
[1,2,3,5,4] => 3
[1,2,4,3,5] => 2
[1,2,4,5,3] => 2
[1,2,5,3,4] => 2
[1,2,5,4,3] => 2
[1,3,2,4,5] => 2
[1,3,2,5,4] => 1
[1,3,4,2,5] => 2
[1,3,4,5,2] => 3
[1,3,5,2,4] => 1
[1,3,5,4,2] => 1
[1,4,2,3,5] => 2
[1,4,2,5,3] => 1
[1,4,3,2,5] => 1
[1,4,3,5,2] => 1
[1,4,5,2,3] => 2
Description
The length of the longest factor of consecutive numbers in a permutation.
Matching statistic: St000318
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000318: Integer partitions ⟶ ℤResult quality: 33% values known / values provided: 82%distinct values known / distinct values provided: 33%
Values
[1] => [1]
=> []
=> ?
=> ? = 1
[1,2] => [1,1]
=> [1]
=> []
=> 1
[2,1] => [2]
=> []
=> ?
=> ? = 2
[1,2,3] => [1,1,1]
=> [1,1]
=> [1]
=> 2
[1,3,2] => [2,1]
=> [1]
=> []
=> 1
[2,1,3] => [2,1]
=> [1]
=> []
=> 1
[2,3,1] => [3]
=> []
=> ?
=> ? ∊ {2,3}
[3,1,2] => [3]
=> []
=> ?
=> ? ∊ {2,3}
[3,2,1] => [2,1]
=> [1]
=> []
=> 1
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1]
=> 2
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1]
=> 2
[1,3,4,2] => [3,1]
=> [1]
=> []
=> 1
[1,4,2,3] => [3,1]
=> [1]
=> []
=> 1
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 2
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1]
=> 2
[2,1,4,3] => [2,2]
=> [2]
=> []
=> 1
[2,3,1,4] => [3,1]
=> [1]
=> []
=> 1
[2,3,4,1] => [4]
=> []
=> ?
=> ? ∊ {2,2,2,3,3,4}
[2,4,1,3] => [4]
=> []
=> ?
=> ? ∊ {2,2,2,3,3,4}
[2,4,3,1] => [3,1]
=> [1]
=> []
=> 1
[3,1,2,4] => [3,1]
=> [1]
=> []
=> 1
[3,1,4,2] => [4]
=> []
=> ?
=> ? ∊ {2,2,2,3,3,4}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> 2
[3,2,4,1] => [3,1]
=> [1]
=> []
=> 1
[3,4,1,2] => [2,2]
=> [2]
=> []
=> 1
[3,4,2,1] => [4]
=> []
=> ?
=> ? ∊ {2,2,2,3,3,4}
[4,1,2,3] => [4]
=> []
=> ?
=> ? ∊ {2,2,2,3,3,4}
[4,1,3,2] => [3,1]
=> [1]
=> []
=> 1
[4,2,1,3] => [3,1]
=> [1]
=> []
=> 1
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 2
[4,3,1,2] => [4]
=> []
=> ?
=> ? ∊ {2,2,2,3,3,4}
[4,3,2,1] => [2,2]
=> [2]
=> []
=> 1
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1]
=> 2
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1]
=> 2
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 2
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 2
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> 1
[1,3,5,2,4] => [4,1]
=> [1]
=> []
=> 1
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 2
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 2
[1,4,2,5,3] => [4,1]
=> [1]
=> []
=> 1
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 2
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1]
=> 2
[1,4,5,3,2] => [4,1]
=> [1]
=> []
=> 1
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> 1
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 2
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> 2
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,5,4,2,3] => [4,1]
=> [1]
=> []
=> 1
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> 2
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 2
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1]
=> 2
[2,3,4,5,1] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,3,5,1,4] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,4,1,5,3] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,4,5,3,1] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,5,1,3,4] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,5,4,1,3] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,1,4,5,2] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,1,5,2,4] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,4,2,5,1] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,4,5,1,2] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,5,2,1,4] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,5,4,2,1] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,1,2,5,3] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,1,5,3,2] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,3,1,5,2] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,3,5,2,1] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,5,1,2,3] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,5,2,3,1] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,1,2,3,4] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,1,4,2,3] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,3,1,2,4] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,3,4,1,2] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,4,1,3,2] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,4,2,1,3] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,3,4,5,6,1] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,4,6,1,5] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,5,1,6,4] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,5,6,4,1] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,6,1,4,5] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,6,5,1,4] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,1,5,6,3] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,1,6,3,5] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,5,3,6,1] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,5,6,1,3] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,6,3,1,5] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,6,5,3,1] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,1,3,6,4] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,1,6,4,3] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,4,1,6,3] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,4,6,3,1] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
Description
The number of addable cells of the Ferrers diagram of an integer partition.
Matching statistic: St000443
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St000443: Dyck paths ⟶ ℤResult quality: 50% values known / values provided: 82%distinct values known / distinct values provided: 50%
Values
[1] => [1]
=> []
=> []
=> ? = 1
[1,2] => [1,1]
=> [1]
=> [1,0]
=> 1
[2,1] => [2]
=> []
=> []
=> ? = 2
[1,2,3] => [1,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,3,2] => [2,1]
=> [1]
=> [1,0]
=> 1
[2,1,3] => [2,1]
=> [1]
=> [1,0]
=> 1
[2,3,1] => [3]
=> []
=> []
=> ? ∊ {2,3}
[3,1,2] => [3]
=> []
=> []
=> ? ∊ {2,3}
[3,2,1] => [2,1]
=> [1]
=> [1,0]
=> 1
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,3,4,2] => [3,1]
=> [1]
=> [1,0]
=> 1
[1,4,2,3] => [3,1]
=> [1]
=> [1,0]
=> 1
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[2,1,4,3] => [2,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,3,1,4] => [3,1]
=> [1]
=> [1,0]
=> 1
[2,3,4,1] => [4]
=> []
=> []
=> ? ∊ {2,2,2,3,3,4}
[2,4,1,3] => [4]
=> []
=> []
=> ? ∊ {2,2,2,3,3,4}
[2,4,3,1] => [3,1]
=> [1]
=> [1,0]
=> 1
[3,1,2,4] => [3,1]
=> [1]
=> [1,0]
=> 1
[3,1,4,2] => [4]
=> []
=> []
=> ? ∊ {2,2,2,3,3,4}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[3,2,4,1] => [3,1]
=> [1]
=> [1,0]
=> 1
[3,4,1,2] => [2,2]
=> [2]
=> [1,0,1,0]
=> 1
[3,4,2,1] => [4]
=> []
=> []
=> ? ∊ {2,2,2,3,3,4}
[4,1,2,3] => [4]
=> []
=> []
=> ? ∊ {2,2,2,3,3,4}
[4,1,3,2] => [3,1]
=> [1]
=> [1,0]
=> 1
[4,2,1,3] => [3,1]
=> [1]
=> [1,0]
=> 1
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[4,3,1,2] => [4]
=> []
=> []
=> ? ∊ {2,2,2,3,3,4}
[4,3,2,1] => [2,2]
=> [2]
=> [1,0,1,0]
=> 1
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,3,4,5,2] => [4,1]
=> [1]
=> [1,0]
=> 1
[1,3,5,2,4] => [4,1]
=> [1]
=> [1,0]
=> 1
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,4,2,5,3] => [4,1]
=> [1]
=> [1,0]
=> 1
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[1,4,5,3,2] => [4,1]
=> [1]
=> [1,0]
=> 1
[1,5,2,3,4] => [4,1]
=> [1]
=> [1,0]
=> 1
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,5,4,2,3] => [4,1]
=> [1]
=> [1,0]
=> 1
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[2,3,4,5,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,3,5,1,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,4,1,5,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,4,5,3,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,5,1,3,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,5,4,1,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,1,4,5,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,1,5,2,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,4,2,5,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,4,5,1,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,5,2,1,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,5,4,2,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,1,2,5,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,1,5,3,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,3,1,5,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,3,5,2,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,5,1,2,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,5,2,3,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,1,2,3,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,1,4,2,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,3,1,2,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,3,4,1,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,4,1,3,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,4,2,1,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,3,4,5,6,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,4,6,1,5] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,5,1,6,4] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,5,6,4,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,6,1,4,5] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,6,5,1,4] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,1,5,6,3] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,1,6,3,5] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,5,3,6,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,5,6,1,3] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,6,3,1,5] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,6,5,3,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,1,3,6,4] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,1,6,4,3] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,4,1,6,3] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,4,6,3,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
Description
The number of long tunnels of a Dyck path. A long tunnel of a Dyck path is a longest sequence of consecutive usual tunnels, i.e., a longest sequence of tunnels where the end point of one is the starting point of the next. See [1] for the definition of tunnels.
Matching statistic: St000759
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000759: Integer partitions ⟶ ℤResult quality: 33% values known / values provided: 82%distinct values known / distinct values provided: 33%
Values
[1] => [1]
=> []
=> ?
=> ? = 1
[1,2] => [1,1]
=> [1]
=> []
=> 1
[2,1] => [2]
=> []
=> ?
=> ? = 2
[1,2,3] => [1,1,1]
=> [1,1]
=> [1]
=> 2
[1,3,2] => [2,1]
=> [1]
=> []
=> 1
[2,1,3] => [2,1]
=> [1]
=> []
=> 1
[2,3,1] => [3]
=> []
=> ?
=> ? ∊ {2,3}
[3,1,2] => [3]
=> []
=> ?
=> ? ∊ {2,3}
[3,2,1] => [2,1]
=> [1]
=> []
=> 1
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1]
=> 2
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1]
=> 2
[1,3,4,2] => [3,1]
=> [1]
=> []
=> 1
[1,4,2,3] => [3,1]
=> [1]
=> []
=> 1
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 2
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1]
=> 2
[2,1,4,3] => [2,2]
=> [2]
=> []
=> 1
[2,3,1,4] => [3,1]
=> [1]
=> []
=> 1
[2,3,4,1] => [4]
=> []
=> ?
=> ? ∊ {2,2,2,3,3,4}
[2,4,1,3] => [4]
=> []
=> ?
=> ? ∊ {2,2,2,3,3,4}
[2,4,3,1] => [3,1]
=> [1]
=> []
=> 1
[3,1,2,4] => [3,1]
=> [1]
=> []
=> 1
[3,1,4,2] => [4]
=> []
=> ?
=> ? ∊ {2,2,2,3,3,4}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> 2
[3,2,4,1] => [3,1]
=> [1]
=> []
=> 1
[3,4,1,2] => [2,2]
=> [2]
=> []
=> 1
[3,4,2,1] => [4]
=> []
=> ?
=> ? ∊ {2,2,2,3,3,4}
[4,1,2,3] => [4]
=> []
=> ?
=> ? ∊ {2,2,2,3,3,4}
[4,1,3,2] => [3,1]
=> [1]
=> []
=> 1
[4,2,1,3] => [3,1]
=> [1]
=> []
=> 1
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 2
[4,3,1,2] => [4]
=> []
=> ?
=> ? ∊ {2,2,2,3,3,4}
[4,3,2,1] => [2,2]
=> [2]
=> []
=> 1
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1]
=> 2
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1]
=> 2
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 2
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 2
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> 1
[1,3,5,2,4] => [4,1]
=> [1]
=> []
=> 1
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 2
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 2
[1,4,2,5,3] => [4,1]
=> [1]
=> []
=> 1
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 2
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1]
=> 2
[1,4,5,3,2] => [4,1]
=> [1]
=> []
=> 1
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> 1
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 2
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> 2
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[1,5,4,2,3] => [4,1]
=> [1]
=> []
=> 1
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> 2
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 2
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 2
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1]
=> 2
[2,3,4,5,1] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,3,5,1,4] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,4,1,5,3] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,4,5,3,1] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,5,1,3,4] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,5,4,1,3] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,1,4,5,2] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,1,5,2,4] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,4,2,5,1] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,4,5,1,2] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,5,2,1,4] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,5,4,2,1] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,1,2,5,3] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,1,5,3,2] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,3,1,5,2] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,3,5,2,1] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,5,1,2,3] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,5,2,3,1] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,1,2,3,4] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,1,4,2,3] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,3,1,2,4] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,3,4,1,2] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,4,1,3,2] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,4,2,1,3] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,3,4,5,6,1] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,4,6,1,5] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,5,1,6,4] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,5,6,4,1] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,6,1,4,5] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,6,5,1,4] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,1,5,6,3] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,1,6,3,5] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,5,3,6,1] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,5,6,1,3] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,6,3,1,5] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,6,5,3,1] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,1,3,6,4] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,1,6,4,3] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,4,1,6,3] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,4,6,3,1] => [6]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
Description
The smallest missing part in an integer partition. In [3], this is referred to as the mex, the minimal excluded part of the partition. For compositions, this is studied in [sec.3.2., 1].
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St000955: Dyck paths ⟶ ℤResult quality: 33% values known / values provided: 82%distinct values known / distinct values provided: 33%
Values
[1] => [1]
=> []
=> []
=> ? = 1
[1,2] => [1,1]
=> [1]
=> [1,0,1,0]
=> 1
[2,1] => [2]
=> []
=> []
=> ? = 2
[1,2,3] => [1,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[1,3,2] => [2,1]
=> [1]
=> [1,0,1,0]
=> 1
[2,1,3] => [2,1]
=> [1]
=> [1,0,1,0]
=> 1
[2,3,1] => [3]
=> []
=> []
=> ? ∊ {2,3}
[3,1,2] => [3]
=> []
=> []
=> ? ∊ {2,3}
[3,2,1] => [2,1]
=> [1]
=> [1,0,1,0]
=> 1
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[1,3,4,2] => [3,1]
=> [1]
=> [1,0,1,0]
=> 1
[1,4,2,3] => [3,1]
=> [1]
=> [1,0,1,0]
=> 1
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[2,1,4,3] => [2,2]
=> [2]
=> [1,1,0,0,1,0]
=> 2
[2,3,1,4] => [3,1]
=> [1]
=> [1,0,1,0]
=> 1
[2,3,4,1] => [4]
=> []
=> []
=> ? ∊ {1,1,1,3,3,4}
[2,4,1,3] => [4]
=> []
=> []
=> ? ∊ {1,1,1,3,3,4}
[2,4,3,1] => [3,1]
=> [1]
=> [1,0,1,0]
=> 1
[3,1,2,4] => [3,1]
=> [1]
=> [1,0,1,0]
=> 1
[3,1,4,2] => [4]
=> []
=> []
=> ? ∊ {1,1,1,3,3,4}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[3,2,4,1] => [3,1]
=> [1]
=> [1,0,1,0]
=> 1
[3,4,1,2] => [2,2]
=> [2]
=> [1,1,0,0,1,0]
=> 2
[3,4,2,1] => [4]
=> []
=> []
=> ? ∊ {1,1,1,3,3,4}
[4,1,2,3] => [4]
=> []
=> []
=> ? ∊ {1,1,1,3,3,4}
[4,1,3,2] => [3,1]
=> [1]
=> [1,0,1,0]
=> 1
[4,2,1,3] => [3,1]
=> [1]
=> [1,0,1,0]
=> 1
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[4,3,1,2] => [4]
=> []
=> []
=> ? ∊ {1,1,1,3,3,4}
[4,3,2,1] => [2,2]
=> [2]
=> [1,1,0,0,1,0]
=> 2
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 1
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[1,3,4,5,2] => [4,1]
=> [1]
=> [1,0,1,0]
=> 1
[1,3,5,2,4] => [4,1]
=> [1]
=> [1,0,1,0]
=> 1
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[1,4,2,5,3] => [4,1]
=> [1]
=> [1,0,1,0]
=> 1
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 1
[1,4,5,3,2] => [4,1]
=> [1]
=> [1,0,1,0]
=> 1
[1,5,2,3,4] => [4,1]
=> [1]
=> [1,0,1,0]
=> 1
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1,0,1,1,0,0]
=> 2
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 2
[1,5,4,2,3] => [4,1]
=> [1]
=> [1,0,1,0]
=> 1
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 1
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 2
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 1
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1,0,1,0,1,0]
=> 1
[2,3,4,5,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,3,5,1,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,4,1,5,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,4,5,3,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,5,1,3,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,5,4,1,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,1,4,5,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,1,5,2,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,4,2,5,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,4,5,1,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,5,2,1,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,5,4,2,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,1,2,5,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,1,5,3,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,3,1,5,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,3,5,2,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,5,1,2,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,5,2,3,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,1,2,3,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,1,4,2,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,3,1,2,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,3,4,1,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,4,1,3,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,4,2,1,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,3,4,5,6,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,4,6,1,5] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,5,1,6,4] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,5,6,4,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,6,1,4,5] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,6,5,1,4] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,1,5,6,3] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,1,6,3,5] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,5,3,6,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,5,6,1,3] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,6,3,1,5] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,6,5,3,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,1,3,6,4] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,1,6,4,3] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,4,1,6,3] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,4,6,3,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
Description
Number of times one has Exti(D(A),A)>0 for i>0 for the corresponding LNakayama algebra.
Matching statistic: St001007
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001007: Dyck paths ⟶ ℤResult quality: 50% values known / values provided: 82%distinct values known / distinct values provided: 50%
Values
[1] => [1]
=> []
=> []
=> ? = 1
[1,2] => [1,1]
=> [1]
=> [1,0]
=> 1
[2,1] => [2]
=> []
=> []
=> ? = 2
[1,2,3] => [1,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,3,2] => [2,1]
=> [1]
=> [1,0]
=> 1
[2,1,3] => [2,1]
=> [1]
=> [1,0]
=> 1
[2,3,1] => [3]
=> []
=> []
=> ? ∊ {2,3}
[3,1,2] => [3]
=> []
=> []
=> ? ∊ {2,3}
[3,2,1] => [2,1]
=> [1]
=> [1,0]
=> 1
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,3,4,2] => [3,1]
=> [1]
=> [1,0]
=> 1
[1,4,2,3] => [3,1]
=> [1]
=> [1,0]
=> 1
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[2,1,4,3] => [2,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,3,1,4] => [3,1]
=> [1]
=> [1,0]
=> 1
[2,3,4,1] => [4]
=> []
=> []
=> ? ∊ {2,2,2,3,3,4}
[2,4,1,3] => [4]
=> []
=> []
=> ? ∊ {2,2,2,3,3,4}
[2,4,3,1] => [3,1]
=> [1]
=> [1,0]
=> 1
[3,1,2,4] => [3,1]
=> [1]
=> [1,0]
=> 1
[3,1,4,2] => [4]
=> []
=> []
=> ? ∊ {2,2,2,3,3,4}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[3,2,4,1] => [3,1]
=> [1]
=> [1,0]
=> 1
[3,4,1,2] => [2,2]
=> [2]
=> [1,0,1,0]
=> 1
[3,4,2,1] => [4]
=> []
=> []
=> ? ∊ {2,2,2,3,3,4}
[4,1,2,3] => [4]
=> []
=> []
=> ? ∊ {2,2,2,3,3,4}
[4,1,3,2] => [3,1]
=> [1]
=> [1,0]
=> 1
[4,2,1,3] => [3,1]
=> [1]
=> [1,0]
=> 1
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[4,3,1,2] => [4]
=> []
=> []
=> ? ∊ {2,2,2,3,3,4}
[4,3,2,1] => [2,2]
=> [2]
=> [1,0,1,0]
=> 1
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,3,4,5,2] => [4,1]
=> [1]
=> [1,0]
=> 1
[1,3,5,2,4] => [4,1]
=> [1]
=> [1,0]
=> 1
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,4,2,5,3] => [4,1]
=> [1]
=> [1,0]
=> 1
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[1,4,5,3,2] => [4,1]
=> [1]
=> [1,0]
=> 1
[1,5,2,3,4] => [4,1]
=> [1]
=> [1,0]
=> 1
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,5,4,2,3] => [4,1]
=> [1]
=> [1,0]
=> 1
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[2,3,4,5,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,3,5,1,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,4,1,5,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,4,5,3,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,5,1,3,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,5,4,1,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,1,4,5,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,1,5,2,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,4,2,5,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,4,5,1,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,5,2,1,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,5,4,2,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,1,2,5,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,1,5,3,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,3,1,5,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,3,5,2,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,5,1,2,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,5,2,3,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,1,2,3,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,1,4,2,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,3,1,2,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,3,4,1,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,4,1,3,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,4,2,1,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,3,4,5,6,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,4,6,1,5] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,5,1,6,4] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,5,6,4,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,6,1,4,5] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,6,5,1,4] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,1,5,6,3] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,1,6,3,5] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,5,3,6,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,5,6,1,3] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,6,3,1,5] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,6,5,3,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,1,3,6,4] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,1,6,4,3] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,4,1,6,3] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,4,6,3,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
Description
Number of simple modules with projective dimension 1 in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St001184
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001184: Dyck paths ⟶ ℤResult quality: 50% values known / values provided: 82%distinct values known / distinct values provided: 50%
Values
[1] => [1]
=> []
=> []
=> ? = 1
[1,2] => [1,1]
=> [1]
=> [1,0]
=> 1
[2,1] => [2]
=> []
=> []
=> ? = 2
[1,2,3] => [1,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,3,2] => [2,1]
=> [1]
=> [1,0]
=> 1
[2,1,3] => [2,1]
=> [1]
=> [1,0]
=> 1
[2,3,1] => [3]
=> []
=> []
=> ? ∊ {2,3}
[3,1,2] => [3]
=> []
=> []
=> ? ∊ {2,3}
[3,2,1] => [2,1]
=> [1]
=> [1,0]
=> 1
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,3,4,2] => [3,1]
=> [1]
=> [1,0]
=> 1
[1,4,2,3] => [3,1]
=> [1]
=> [1,0]
=> 1
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[2,1,4,3] => [2,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,3,1,4] => [3,1]
=> [1]
=> [1,0]
=> 1
[2,3,4,1] => [4]
=> []
=> []
=> ? ∊ {2,2,2,3,3,4}
[2,4,1,3] => [4]
=> []
=> []
=> ? ∊ {2,2,2,3,3,4}
[2,4,3,1] => [3,1]
=> [1]
=> [1,0]
=> 1
[3,1,2,4] => [3,1]
=> [1]
=> [1,0]
=> 1
[3,1,4,2] => [4]
=> []
=> []
=> ? ∊ {2,2,2,3,3,4}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[3,2,4,1] => [3,1]
=> [1]
=> [1,0]
=> 1
[3,4,1,2] => [2,2]
=> [2]
=> [1,0,1,0]
=> 1
[3,4,2,1] => [4]
=> []
=> []
=> ? ∊ {2,2,2,3,3,4}
[4,1,2,3] => [4]
=> []
=> []
=> ? ∊ {2,2,2,3,3,4}
[4,1,3,2] => [3,1]
=> [1]
=> [1,0]
=> 1
[4,2,1,3] => [3,1]
=> [1]
=> [1,0]
=> 1
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[4,3,1,2] => [4]
=> []
=> []
=> ? ∊ {2,2,2,3,3,4}
[4,3,2,1] => [2,2]
=> [2]
=> [1,0,1,0]
=> 1
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,3,4,5,2] => [4,1]
=> [1]
=> [1,0]
=> 1
[1,3,5,2,4] => [4,1]
=> [1]
=> [1,0]
=> 1
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,4,2,5,3] => [4,1]
=> [1]
=> [1,0]
=> 1
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[1,4,5,3,2] => [4,1]
=> [1]
=> [1,0]
=> 1
[1,5,2,3,4] => [4,1]
=> [1]
=> [1,0]
=> 1
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,5,4,2,3] => [4,1]
=> [1]
=> [1,0]
=> 1
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[2,3,4,5,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,3,5,1,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,4,1,5,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,4,5,3,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,5,1,3,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,5,4,1,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,1,4,5,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,1,5,2,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,4,2,5,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,4,5,1,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,5,2,1,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,5,4,2,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,1,2,5,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,1,5,3,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,3,1,5,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,3,5,2,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,5,1,2,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,5,2,3,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,1,2,3,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,1,4,2,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,3,1,2,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,3,4,1,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,4,1,3,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,4,2,1,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,3,4,5,6,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,4,6,1,5] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,5,1,6,4] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,5,6,4,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,6,1,4,5] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,6,5,1,4] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,1,5,6,3] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,1,6,3,5] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,5,3,6,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,5,6,1,3] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,6,3,1,5] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,6,5,3,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,1,3,6,4] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,1,6,4,3] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,4,1,6,3] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,4,6,3,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
Description
Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra.
Matching statistic: St001187
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001187: Dyck paths ⟶ ℤResult quality: 50% values known / values provided: 82%distinct values known / distinct values provided: 50%
Values
[1] => [1]
=> []
=> []
=> ? = 1
[1,2] => [1,1]
=> [1]
=> [1,0]
=> 1
[2,1] => [2]
=> []
=> []
=> ? = 2
[1,2,3] => [1,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,3,2] => [2,1]
=> [1]
=> [1,0]
=> 1
[2,1,3] => [2,1]
=> [1]
=> [1,0]
=> 1
[2,3,1] => [3]
=> []
=> []
=> ? ∊ {2,3}
[3,1,2] => [3]
=> []
=> []
=> ? ∊ {2,3}
[3,2,1] => [2,1]
=> [1]
=> [1,0]
=> 1
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,3,4,2] => [3,1]
=> [1]
=> [1,0]
=> 1
[1,4,2,3] => [3,1]
=> [1]
=> [1,0]
=> 1
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[2,1,4,3] => [2,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,3,1,4] => [3,1]
=> [1]
=> [1,0]
=> 1
[2,3,4,1] => [4]
=> []
=> []
=> ? ∊ {2,2,2,3,3,4}
[2,4,1,3] => [4]
=> []
=> []
=> ? ∊ {2,2,2,3,3,4}
[2,4,3,1] => [3,1]
=> [1]
=> [1,0]
=> 1
[3,1,2,4] => [3,1]
=> [1]
=> [1,0]
=> 1
[3,1,4,2] => [4]
=> []
=> []
=> ? ∊ {2,2,2,3,3,4}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[3,2,4,1] => [3,1]
=> [1]
=> [1,0]
=> 1
[3,4,1,2] => [2,2]
=> [2]
=> [1,0,1,0]
=> 1
[3,4,2,1] => [4]
=> []
=> []
=> ? ∊ {2,2,2,3,3,4}
[4,1,2,3] => [4]
=> []
=> []
=> ? ∊ {2,2,2,3,3,4}
[4,1,3,2] => [3,1]
=> [1]
=> [1,0]
=> 1
[4,2,1,3] => [3,1]
=> [1]
=> [1,0]
=> 1
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[4,3,1,2] => [4]
=> []
=> []
=> ? ∊ {2,2,2,3,3,4}
[4,3,2,1] => [2,2]
=> [2]
=> [1,0,1,0]
=> 1
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,3,4,5,2] => [4,1]
=> [1]
=> [1,0]
=> 1
[1,3,5,2,4] => [4,1]
=> [1]
=> [1,0]
=> 1
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,4,2,5,3] => [4,1]
=> [1]
=> [1,0]
=> 1
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[1,4,5,3,2] => [4,1]
=> [1]
=> [1,0]
=> 1
[1,5,2,3,4] => [4,1]
=> [1]
=> [1,0]
=> 1
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,5,4,2,3] => [4,1]
=> [1]
=> [1,0]
=> 1
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[2,3,4,5,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,3,5,1,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,4,1,5,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,4,5,3,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,5,1,3,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,5,4,1,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,1,4,5,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,1,5,2,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,4,2,5,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,4,5,1,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,5,2,1,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,5,4,2,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,1,2,5,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,1,5,3,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,3,1,5,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,3,5,2,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,5,1,2,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,5,2,3,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,1,2,3,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,1,4,2,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,3,1,2,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,3,4,1,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,4,1,3,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,4,2,1,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,3,4,5,6,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,4,6,1,5] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,5,1,6,4] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,5,6,4,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,6,1,4,5] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,6,5,1,4] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,1,5,6,3] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,1,6,3,5] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,5,3,6,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,5,6,1,3] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,6,3,1,5] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,6,5,3,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,1,3,6,4] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,1,6,4,3] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,4,1,6,3] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,4,6,3,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
Description
The number of simple modules with grade at least one in the corresponding Nakayama algebra.
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
Mp00043: Integer partitions to Dyck pathDyck paths
St001199: Dyck paths ⟶ ℤResult quality: 82% values known / values provided: 82%distinct values known / distinct values provided: 83%
Values
[1] => [1,0]
=> []
=> []
=> ? = 1
[1,2] => [1,0,1,0]
=> [1]
=> [1,0,1,0]
=> 1
[2,1] => [1,1,0,0]
=> []
=> []
=> ? = 2
[1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> 2
[1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
[2,1,3] => [1,1,0,0,1,0]
=> [2]
=> [1,1,0,0,1,0]
=> 1
[2,3,1] => [1,1,0,1,0,0]
=> [1]
=> [1,0,1,0]
=> 1
[3,1,2] => [1,1,1,0,0,0]
=> []
=> []
=> ? ∊ {2,3}
[3,2,1] => [1,1,1,0,0,0]
=> []
=> []
=> ? ∊ {2,3}
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,0,1,0,1,0]
=> 3
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,0,1,0,1,1,0,0]
=> 2
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,1,0,0,1,0]
=> 2
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,0,1,1,1,0,0,0]
=> 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,1,0,0,1,0,1,0]
=> 2
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,0,0,1,1,0,0]
=> 1
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,1,0,1,0,0,1,0]
=> 2
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,0,1,0]
=> 2
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,0,1,1,0,0]
=> 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> [1,1,1,0,0,0,1,0]
=> 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [2]
=> [1,1,0,0,1,0]
=> 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0,1,0]
=> 1
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0,1,0]
=> 1
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {2,2,2,2,3,4}
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {2,2,2,2,3,4}
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {2,2,2,2,3,4}
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {2,2,2,2,3,4}
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {2,2,2,2,3,4}
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {2,2,2,2,3,4}
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> 3
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,0,0,1,0]
=> 3
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 3
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> 2
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,0,0,1,0,1,0]
=> 3
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,0,1,1,0,0,1,1,0,0]
=> 2
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,1,0,1,0,0,1,0]
=> 3
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> 2
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> 2
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> 2
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,1,0,0,1,0,1,0,1,0]
=> 3
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,0,0,1,0,1,1,0,0]
=> 2
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,1,0,0,1,1,0,0,1,0]
=> 2
[5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5}
[5,1,2,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5}
[5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5}
[5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5}
[5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5}
[5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5}
[5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5}
[5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5}
[5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5}
[5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5}
[5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5}
[5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5}
[5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5}
[5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5}
[5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5}
[5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5}
[5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5}
[5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5}
[5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5}
[5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5}
[5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5}
[5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5}
[5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5}
[5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,4,5}
[6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,5,6}
[6,1,2,3,5,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,5,6}
[6,1,2,4,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,5,6}
[6,1,2,4,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,5,6}
[6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,5,6}
[6,1,2,5,4,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,5,6}
[6,1,3,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,5,6}
[6,1,3,2,5,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,5,6}
[6,1,3,4,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,5,6}
[6,1,3,4,5,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,5,6}
[6,1,3,5,2,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,5,6}
[6,1,3,5,4,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,5,6}
[6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,5,6}
[6,1,4,2,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,5,6}
[6,1,4,3,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,5,6}
[6,1,4,3,5,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,4,5,6}
Description
The dominant dimension of eAe for the corresponding Nakayama algebra A with minimal faithful projective-injective module eA.
Matching statistic: St001224
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001224: Dyck paths ⟶ ℤResult quality: 50% values known / values provided: 82%distinct values known / distinct values provided: 50%
Values
[1] => [1]
=> []
=> []
=> ? = 1
[1,2] => [1,1]
=> [1]
=> [1,0]
=> 1
[2,1] => [2]
=> []
=> []
=> ? = 2
[1,2,3] => [1,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,3,2] => [2,1]
=> [1]
=> [1,0]
=> 1
[2,1,3] => [2,1]
=> [1]
=> [1,0]
=> 1
[2,3,1] => [3]
=> []
=> []
=> ? ∊ {2,3}
[3,1,2] => [3]
=> []
=> []
=> ? ∊ {2,3}
[3,2,1] => [2,1]
=> [1]
=> [1,0]
=> 1
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,3,4,2] => [3,1]
=> [1]
=> [1,0]
=> 1
[1,4,2,3] => [3,1]
=> [1]
=> [1,0]
=> 1
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[2,1,4,3] => [2,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,3,1,4] => [3,1]
=> [1]
=> [1,0]
=> 1
[2,3,4,1] => [4]
=> []
=> []
=> ? ∊ {2,2,2,3,3,4}
[2,4,1,3] => [4]
=> []
=> []
=> ? ∊ {2,2,2,3,3,4}
[2,4,3,1] => [3,1]
=> [1]
=> [1,0]
=> 1
[3,1,2,4] => [3,1]
=> [1]
=> [1,0]
=> 1
[3,1,4,2] => [4]
=> []
=> []
=> ? ∊ {2,2,2,3,3,4}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[3,2,4,1] => [3,1]
=> [1]
=> [1,0]
=> 1
[3,4,1,2] => [2,2]
=> [2]
=> [1,0,1,0]
=> 1
[3,4,2,1] => [4]
=> []
=> []
=> ? ∊ {2,2,2,3,3,4}
[4,1,2,3] => [4]
=> []
=> []
=> ? ∊ {2,2,2,3,3,4}
[4,1,3,2] => [3,1]
=> [1]
=> [1,0]
=> 1
[4,2,1,3] => [3,1]
=> [1]
=> [1,0]
=> 1
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[4,3,1,2] => [4]
=> []
=> []
=> ? ∊ {2,2,2,3,3,4}
[4,3,2,1] => [2,2]
=> [2]
=> [1,0,1,0]
=> 1
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,3,4,5,2] => [4,1]
=> [1]
=> [1,0]
=> 1
[1,3,5,2,4] => [4,1]
=> [1]
=> [1,0]
=> 1
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,4,2,5,3] => [4,1]
=> [1]
=> [1,0]
=> 1
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[1,4,5,3,2] => [4,1]
=> [1]
=> [1,0]
=> 1
[1,5,2,3,4] => [4,1]
=> [1]
=> [1,0]
=> 1
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 2
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,5,4,2,3] => [4,1]
=> [1]
=> [1,0]
=> 1
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[2,3,4,5,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,3,5,1,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,4,1,5,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,4,5,3,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,5,1,3,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,5,4,1,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,1,4,5,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,1,5,2,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,4,2,5,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,4,5,1,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,5,2,1,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[3,5,4,2,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,1,2,5,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,1,5,3,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,3,1,5,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,3,5,2,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,5,1,2,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[4,5,2,3,1] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,1,2,3,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,1,4,2,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,3,1,2,4] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,3,4,1,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,4,1,3,2] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[5,4,2,1,3] => [5]
=> []
=> []
=> ? ∊ {1,1,1,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,4,4,5}
[2,3,4,5,6,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,4,6,1,5] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,5,1,6,4] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,5,6,4,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,6,1,4,5] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,3,6,5,1,4] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,1,5,6,3] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,1,6,3,5] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,5,3,6,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,5,6,1,3] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,6,3,1,5] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,4,6,5,3,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,1,3,6,4] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,1,6,4,3] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,4,1,6,3] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
[2,5,4,6,3,1] => [6]
=> []
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,5,5,6}
Description
Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. Then the statistic gives the vector space dimension of the first Ext-group between X and the regular module.
The following 72 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001732The number of peaks visible from the left. St001814The number of partitions interlacing the given partition. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St001568The smallest positive integer that does not appear twice in the partition. St001330The hat guessing number of a graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000668The least common multiple of the parts of the partition. St000708The product of the parts of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000993The multiplicity of the largest part of an integer partition. St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St001432The order dimension of the partition. St000707The product of the factorials of the parts. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St001128The exponens consonantiae of a partition. St000444The length of the maximal rise of a Dyck path. St000675The number of centered multitunnels of a Dyck path. St000678The number of up steps after the last double rise of a Dyck path. St001039The maximal height of a column in the parallelogram polyomino associated with a Dyck path. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000667The greatest common divisor of the parts of the partition. St001571The Cartan determinant of the integer partition. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001933The largest multiplicity of a part in an integer partition. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000260The radius of a connected graph. St000706The product of the factorials of the multiplicities of an integer partition. St000815The number of semistandard Young tableaux of partition weight of given shape. St001198The number of simple modules in the algebra eAe with projective dimension at most 1 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St001206The maximal dimension of an indecomposable projective eAe-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module eA. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000681The Grundy value of Chomp on Ferrers diagrams. St000460The hook length of the last cell along the main diagonal of an integer partition. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001360The number of covering relations in Young's lattice below a partition. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001527The cyclic permutation representation number of an integer partition. St000455The second largest eigenvalue of a graph if it is integral. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000781The number of proper colouring schemes of a Ferrers diagram. St001389The number of partitions of the same length below the given integer partition. St001780The order of promotion on the set of standard tableaux of given shape. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001924The number of cells in an integer partition whose arm and leg length coincide. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000456The monochromatic index of a connected graph. St000284The Plancherel distribution on integer partitions. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000770The major index of an integer partition when read from bottom to top. St000901The cube of the number of standard Young tableaux with shape given by the partition. St001060The distinguishing index of a graph. St001877Number of indecomposable injective modules with projective dimension 2. St000934The 2-degree of an integer partition. St001587Half of the largest even part of an integer partition. St001601The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on trees. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St000454The largest eigenvalue of a graph if it is integral. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000007The number of saliances of the permutation. St001875The number of simple modules with projective dimension at most 1. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St000765The number of weak records in an integer composition. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2.