Your data matches 37 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001469
Mp00252: Permutations restrictionPermutations
St001469: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2] => [1] => 0
[2,1] => [1] => 0
[1,2,3] => [1,2] => 0
[1,3,2] => [1,2] => 0
[2,1,3] => [2,1] => 0
[2,3,1] => [2,1] => 0
[3,1,2] => [1,2] => 0
[3,2,1] => [2,1] => 0
[1,2,3,4] => [1,2,3] => 0
[1,2,4,3] => [1,2,3] => 0
[1,3,2,4] => [1,3,2] => 1
[1,3,4,2] => [1,3,2] => 1
[1,4,2,3] => [1,2,3] => 0
[1,4,3,2] => [1,3,2] => 1
[2,1,3,4] => [2,1,3] => 1
[2,1,4,3] => [2,1,3] => 1
[2,3,1,4] => [2,3,1] => 1
[2,3,4,1] => [2,3,1] => 1
[2,4,1,3] => [2,1,3] => 1
[2,4,3,1] => [2,3,1] => 1
[3,1,2,4] => [3,1,2] => 1
[3,1,4,2] => [3,1,2] => 1
[3,2,1,4] => [3,2,1] => 0
[3,2,4,1] => [3,2,1] => 0
[3,4,1,2] => [3,1,2] => 1
[3,4,2,1] => [3,2,1] => 0
[4,1,2,3] => [1,2,3] => 0
[4,1,3,2] => [1,3,2] => 1
[4,2,1,3] => [2,1,3] => 1
[4,2,3,1] => [2,3,1] => 1
[4,3,1,2] => [3,1,2] => 1
[4,3,2,1] => [3,2,1] => 0
[1,2,3,4,5] => [1,2,3,4] => 0
[1,2,3,5,4] => [1,2,3,4] => 0
[1,2,4,3,5] => [1,2,4,3] => 1
[1,2,4,5,3] => [1,2,4,3] => 1
[1,2,5,3,4] => [1,2,3,4] => 0
[1,2,5,4,3] => [1,2,4,3] => 1
[1,3,2,4,5] => [1,3,2,4] => 1
[1,3,2,5,4] => [1,3,2,4] => 1
[1,3,4,2,5] => [1,3,4,2] => 1
[1,3,4,5,2] => [1,3,4,2] => 1
[1,3,5,2,4] => [1,3,2,4] => 1
[1,3,5,4,2] => [1,3,4,2] => 1
[1,4,2,3,5] => [1,4,2,3] => 1
[1,4,2,5,3] => [1,4,2,3] => 1
[1,4,3,2,5] => [1,4,3,2] => 1
[1,4,3,5,2] => [1,4,3,2] => 1
[1,4,5,2,3] => [1,4,2,3] => 1
[1,4,5,3,2] => [1,4,3,2] => 1
Description
The holeyness of a permutation. For $S\subset [n]:=\{1,2,\dots,n\}$ let $\delta(S)$ be the number of elements $m\in S$ such that $m+1\notin S$. For a permutation $\pi$ of $[n]$ the holeyness of $\pi$ is $$\max_{S\subset [n]} (\delta(\pi(S))-\delta(S)).$$
Matching statistic: St001199
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001199: Dyck paths ⟶ ℤResult quality: 54% values known / values provided: 54%distinct values known / distinct values provided: 67%
Values
[1,2] => [1,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0}
[2,1] => [2]
=> []
=> []
=> ? ∊ {0,0}
[1,2,3] => [1,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0}
[1,3,2] => [2,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0}
[2,1,3] => [2,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0}
[2,3,1] => [3]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0}
[3,1,2] => [3]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0}
[3,2,1] => [2,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,2] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,4,3] => [2,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,3,1,4] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,4,1] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,1,3] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,3,1] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,2,4] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,4,2] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,4,1] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[3,4,1,2] => [2,2]
=> [2]
=> [1,0,1,0]
=> 1
[3,4,2,1] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[4,1,2,3] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[4,1,3,2] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,1,3] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,1,2] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,2,1] => [2,2]
=> [2]
=> [1,0,1,0]
=> 1
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,5,2] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,5,2,4] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,5,3] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[1,4,5,3,2] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,2,3,4] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,5,4,2,3] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[2,1,4,5,3] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,1,5,3,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[2,3,1,4,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,1,5,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,3,4,1,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,4,5,1] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,5,1,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,5,4,1] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,1,3,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,1,5,3] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,5,1,3] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[2,5,4,3,1] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[3,1,2,5,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[3,4,1,2,5] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[3,4,1,5,2] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[3,4,5,2,1] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[3,5,1,2,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[3,5,1,4,2] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[3,5,4,1,2] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[4,1,5,2,3] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[4,2,3,1,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[4,2,5,1,3] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[4,3,2,1,5] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[4,3,2,5,1] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[4,3,5,1,2] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[4,5,1,3,2] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[4,5,2,1,3] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[4,5,3,1,2] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[5,1,4,3,2] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[5,2,3,4,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[5,2,4,3,1] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[5,3,2,1,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[5,3,2,4,1] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[5,3,4,2,1] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[5,4,1,2,3] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[5,4,2,3,1] => [3,2]
=> [2]
=> [1,0,1,0]
=> 1
[5,4,3,2,1] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
Description
The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Mp00068: Permutations Simion-Schmidt mapPermutations
Mp00204: Permutations LLPSInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001603: Integer partitions ⟶ ℤResult quality: 28% values known / values provided: 28%distinct values known / distinct values provided: 33%
Values
[1,2] => [1,2] => [1,1]
=> [1]
=> ? ∊ {0,0}
[2,1] => [2,1] => [2]
=> []
=> ? ∊ {0,0}
[1,2,3] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[1,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[2,1,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[2,3,1] => [2,3,1] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[3,1,2] => [3,1,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[3,2,1] => [3,2,1] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0}
[1,2,3,4] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,4,3] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,4] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,2] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,2] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,3,4] => [2,1,4,3] => [2,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,1,4] => [2,4,1,3] => [2,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,4,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,1,3] => [2,4,1,3] => [2,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,3,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,2,4] => [3,1,4,2] => [2,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,4,2] => [3,1,4,2] => [2,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,1,4] => [3,2,1,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,4,1] => [3,2,4,1] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,4,1,2] => [3,4,1,2] => [2,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,4,2,1] => [3,4,2,1] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,1,2,3] => [4,1,3,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,1,3,2] => [4,1,3,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,1,3] => [4,2,1,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,3,1] => [4,2,3,1] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,1,2] => [4,3,1,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,2,1] => [4,3,2,1] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,3,4,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,3,5,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,4,3,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,4,5,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,5,3,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,5,4,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,4,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,5,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,2,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,5,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,5,2,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,5,4,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,5,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,2,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,5,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,5,2,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,5,3,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,1,4,5,6] => [3,2,1,6,5,4] => [3,3]
=> [3]
=> 1
[3,2,1,4,6,5] => [3,2,1,6,5,4] => [3,3]
=> [3]
=> 1
[3,2,1,5,4,6] => [3,2,1,6,5,4] => [3,3]
=> [3]
=> 1
[3,2,1,5,6,4] => [3,2,1,6,5,4] => [3,3]
=> [3]
=> 1
[3,2,1,6,4,5] => [3,2,1,6,5,4] => [3,3]
=> [3]
=> 1
[3,2,1,6,5,4] => [3,2,1,6,5,4] => [3,3]
=> [3]
=> 1
[3,2,4,1,5,6] => [3,2,6,1,5,4] => [3,2,1]
=> [2,1]
=> 1
[3,2,4,1,6,5] => [3,2,6,1,5,4] => [3,2,1]
=> [2,1]
=> 1
[3,2,4,5,1,6] => [3,2,6,5,1,4] => [3,2,1]
=> [2,1]
=> 1
[3,2,4,6,1,5] => [3,2,6,5,1,4] => [3,2,1]
=> [2,1]
=> 1
[3,2,5,1,4,6] => [3,2,6,1,5,4] => [3,2,1]
=> [2,1]
=> 1
[3,2,5,1,6,4] => [3,2,6,1,5,4] => [3,2,1]
=> [2,1]
=> 1
[3,2,5,4,1,6] => [3,2,6,5,1,4] => [3,2,1]
=> [2,1]
=> 1
[3,2,5,6,1,4] => [3,2,6,5,1,4] => [3,2,1]
=> [2,1]
=> 1
[3,2,6,1,4,5] => [3,2,6,1,5,4] => [3,2,1]
=> [2,1]
=> 1
[3,2,6,1,5,4] => [3,2,6,1,5,4] => [3,2,1]
=> [2,1]
=> 1
[3,2,6,4,1,5] => [3,2,6,5,1,4] => [3,2,1]
=> [2,1]
=> 1
[3,2,6,5,1,4] => [3,2,6,5,1,4] => [3,2,1]
=> [2,1]
=> 1
[3,4,2,1,5,6] => [3,6,2,1,5,4] => [3,2,1]
=> [2,1]
=> 1
[3,4,2,1,6,5] => [3,6,2,1,5,4] => [3,2,1]
=> [2,1]
=> 1
[3,4,2,5,1,6] => [3,6,2,5,1,4] => [3,1,1,1]
=> [1,1,1]
=> 1
[3,4,2,6,1,5] => [3,6,2,5,1,4] => [3,1,1,1]
=> [1,1,1]
=> 1
[3,5,2,1,4,6] => [3,6,2,1,5,4] => [3,2,1]
=> [2,1]
=> 1
[3,5,2,1,6,4] => [3,6,2,1,5,4] => [3,2,1]
=> [2,1]
=> 1
[3,5,2,4,1,6] => [3,6,2,5,1,4] => [3,1,1,1]
=> [1,1,1]
=> 1
[3,5,2,6,1,4] => [3,6,2,5,1,4] => [3,1,1,1]
=> [1,1,1]
=> 1
[3,6,2,1,4,5] => [3,6,2,1,5,4] => [3,2,1]
=> [2,1]
=> 1
[3,6,2,1,5,4] => [3,6,2,1,5,4] => [3,2,1]
=> [2,1]
=> 1
[3,6,2,4,1,5] => [3,6,2,5,1,4] => [3,1,1,1]
=> [1,1,1]
=> 1
[3,6,2,5,1,4] => [3,6,2,5,1,4] => [3,1,1,1]
=> [1,1,1]
=> 1
[4,2,1,3,5,6] => [4,2,1,6,5,3] => [3,3]
=> [3]
=> 1
[4,2,1,3,6,5] => [4,2,1,6,5,3] => [3,3]
=> [3]
=> 1
[4,2,1,5,3,6] => [4,2,1,6,5,3] => [3,3]
=> [3]
=> 1
[4,2,1,5,6,3] => [4,2,1,6,5,3] => [3,3]
=> [3]
=> 1
[4,2,1,6,3,5] => [4,2,1,6,5,3] => [3,3]
=> [3]
=> 1
[4,2,1,6,5,3] => [4,2,1,6,5,3] => [3,3]
=> [3]
=> 1
[4,2,3,1,5,6] => [4,2,6,1,5,3] => [3,2,1]
=> [2,1]
=> 1
[4,2,3,1,6,5] => [4,2,6,1,5,3] => [3,2,1]
=> [2,1]
=> 1
[4,2,3,5,1,6] => [4,2,6,5,1,3] => [3,2,1]
=> [2,1]
=> 1
[4,2,3,6,1,5] => [4,2,6,5,1,3] => [3,2,1]
=> [2,1]
=> 1
[4,2,5,1,3,6] => [4,2,6,1,5,3] => [3,2,1]
=> [2,1]
=> 1
[4,2,5,1,6,3] => [4,2,6,1,5,3] => [3,2,1]
=> [2,1]
=> 1
[4,2,5,3,1,6] => [4,2,6,5,1,3] => [3,2,1]
=> [2,1]
=> 1
[4,2,5,6,1,3] => [4,2,6,5,1,3] => [3,2,1]
=> [2,1]
=> 1
[4,2,6,1,3,5] => [4,2,6,1,5,3] => [3,2,1]
=> [2,1]
=> 1
[4,2,6,1,5,3] => [4,2,6,1,5,3] => [3,2,1]
=> [2,1]
=> 1
[4,2,6,3,1,5] => [4,2,6,5,1,3] => [3,2,1]
=> [2,1]
=> 1
[4,2,6,5,1,3] => [4,2,6,5,1,3] => [3,2,1]
=> [2,1]
=> 1
[4,3,1,2,5,6] => [4,3,1,6,5,2] => [3,3]
=> [3]
=> 1
[4,3,1,2,6,5] => [4,3,1,6,5,2] => [3,3]
=> [3]
=> 1
Description
The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. Two colourings are considered equal, if they are obtained by an action of the dihedral group. This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Mp00068: Permutations Simion-Schmidt mapPermutations
Mp00204: Permutations LLPSInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001605: Integer partitions ⟶ ℤResult quality: 28% values known / values provided: 28%distinct values known / distinct values provided: 67%
Values
[1,2] => [1,2] => [1,1]
=> [1]
=> ? ∊ {0,0}
[2,1] => [2,1] => [2]
=> []
=> ? ∊ {0,0}
[1,2,3] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[1,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[2,1,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[2,3,1] => [2,3,1] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[3,1,2] => [3,1,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[3,2,1] => [3,2,1] => [3]
=> []
=> ? ∊ {0,0,0,0,0,0}
[1,2,3,4] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,4,3] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,4] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,2] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,2] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,3,4] => [2,1,4,3] => [2,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,1,4] => [2,4,1,3] => [2,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,4,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,1,3] => [2,4,1,3] => [2,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,3,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,2,4] => [3,1,4,2] => [2,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,4,2] => [3,1,4,2] => [2,2]
=> [2]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,1,4] => [3,2,1,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,4,1] => [3,2,4,1] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,4,1,2] => [3,4,1,2] => [2,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,4,2,1] => [3,4,2,1] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,1,2,3] => [4,1,3,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,1,3,2] => [4,1,3,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,1,3] => [4,2,1,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,3,1] => [4,2,3,1] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,1,2] => [4,3,1,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,2,1] => [4,3,2,1] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,3,4,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,3,5,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,4,3,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,4,5,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,5,3,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,5,4,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,4,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,5,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,2,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,5,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,5,2,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,5,4,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,5,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,2,5] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,5,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,5,2,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,5,3,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,1,4,5,6] => [3,2,1,6,5,4] => [3,3]
=> [3]
=> 1
[3,2,1,4,6,5] => [3,2,1,6,5,4] => [3,3]
=> [3]
=> 1
[3,2,1,5,4,6] => [3,2,1,6,5,4] => [3,3]
=> [3]
=> 1
[3,2,1,5,6,4] => [3,2,1,6,5,4] => [3,3]
=> [3]
=> 1
[3,2,1,6,4,5] => [3,2,1,6,5,4] => [3,3]
=> [3]
=> 1
[3,2,1,6,5,4] => [3,2,1,6,5,4] => [3,3]
=> [3]
=> 1
[3,2,4,1,5,6] => [3,2,6,1,5,4] => [3,2,1]
=> [2,1]
=> 1
[3,2,4,1,6,5] => [3,2,6,1,5,4] => [3,2,1]
=> [2,1]
=> 1
[3,2,4,5,1,6] => [3,2,6,5,1,4] => [3,2,1]
=> [2,1]
=> 1
[3,2,4,6,1,5] => [3,2,6,5,1,4] => [3,2,1]
=> [2,1]
=> 1
[3,2,5,1,4,6] => [3,2,6,1,5,4] => [3,2,1]
=> [2,1]
=> 1
[3,2,5,1,6,4] => [3,2,6,1,5,4] => [3,2,1]
=> [2,1]
=> 1
[3,2,5,4,1,6] => [3,2,6,5,1,4] => [3,2,1]
=> [2,1]
=> 1
[3,2,5,6,1,4] => [3,2,6,5,1,4] => [3,2,1]
=> [2,1]
=> 1
[3,2,6,1,4,5] => [3,2,6,1,5,4] => [3,2,1]
=> [2,1]
=> 1
[3,2,6,1,5,4] => [3,2,6,1,5,4] => [3,2,1]
=> [2,1]
=> 1
[3,2,6,4,1,5] => [3,2,6,5,1,4] => [3,2,1]
=> [2,1]
=> 1
[3,2,6,5,1,4] => [3,2,6,5,1,4] => [3,2,1]
=> [2,1]
=> 1
[3,4,2,1,5,6] => [3,6,2,1,5,4] => [3,2,1]
=> [2,1]
=> 1
[3,4,2,1,6,5] => [3,6,2,1,5,4] => [3,2,1]
=> [2,1]
=> 1
[3,4,2,5,1,6] => [3,6,2,5,1,4] => [3,1,1,1]
=> [1,1,1]
=> 2
[3,4,2,6,1,5] => [3,6,2,5,1,4] => [3,1,1,1]
=> [1,1,1]
=> 2
[3,5,2,1,4,6] => [3,6,2,1,5,4] => [3,2,1]
=> [2,1]
=> 1
[3,5,2,1,6,4] => [3,6,2,1,5,4] => [3,2,1]
=> [2,1]
=> 1
[3,5,2,4,1,6] => [3,6,2,5,1,4] => [3,1,1,1]
=> [1,1,1]
=> 2
[3,5,2,6,1,4] => [3,6,2,5,1,4] => [3,1,1,1]
=> [1,1,1]
=> 2
[3,6,2,1,4,5] => [3,6,2,1,5,4] => [3,2,1]
=> [2,1]
=> 1
[3,6,2,1,5,4] => [3,6,2,1,5,4] => [3,2,1]
=> [2,1]
=> 1
[3,6,2,4,1,5] => [3,6,2,5,1,4] => [3,1,1,1]
=> [1,1,1]
=> 2
[3,6,2,5,1,4] => [3,6,2,5,1,4] => [3,1,1,1]
=> [1,1,1]
=> 2
[4,2,1,3,5,6] => [4,2,1,6,5,3] => [3,3]
=> [3]
=> 1
[4,2,1,3,6,5] => [4,2,1,6,5,3] => [3,3]
=> [3]
=> 1
[4,2,1,5,3,6] => [4,2,1,6,5,3] => [3,3]
=> [3]
=> 1
[4,2,1,5,6,3] => [4,2,1,6,5,3] => [3,3]
=> [3]
=> 1
[4,2,1,6,3,5] => [4,2,1,6,5,3] => [3,3]
=> [3]
=> 1
[4,2,1,6,5,3] => [4,2,1,6,5,3] => [3,3]
=> [3]
=> 1
[4,2,3,1,5,6] => [4,2,6,1,5,3] => [3,2,1]
=> [2,1]
=> 1
[4,2,3,1,6,5] => [4,2,6,1,5,3] => [3,2,1]
=> [2,1]
=> 1
[4,2,3,5,1,6] => [4,2,6,5,1,3] => [3,2,1]
=> [2,1]
=> 1
[4,2,3,6,1,5] => [4,2,6,5,1,3] => [3,2,1]
=> [2,1]
=> 1
[4,2,5,1,3,6] => [4,2,6,1,5,3] => [3,2,1]
=> [2,1]
=> 1
[4,2,5,1,6,3] => [4,2,6,1,5,3] => [3,2,1]
=> [2,1]
=> 1
[4,2,5,3,1,6] => [4,2,6,5,1,3] => [3,2,1]
=> [2,1]
=> 1
[4,2,5,6,1,3] => [4,2,6,5,1,3] => [3,2,1]
=> [2,1]
=> 1
[4,2,6,1,3,5] => [4,2,6,1,5,3] => [3,2,1]
=> [2,1]
=> 1
[4,2,6,1,5,3] => [4,2,6,1,5,3] => [3,2,1]
=> [2,1]
=> 1
[4,2,6,3,1,5] => [4,2,6,5,1,3] => [3,2,1]
=> [2,1]
=> 1
[4,2,6,5,1,3] => [4,2,6,5,1,3] => [3,2,1]
=> [2,1]
=> 1
[4,3,1,2,5,6] => [4,3,1,6,5,2] => [3,3]
=> [3]
=> 1
[4,3,1,2,6,5] => [4,3,1,6,5,2] => [3,3]
=> [3]
=> 1
Description
The number of colourings of a cycle such that the multiplicities of colours are given by a partition. Two colourings are considered equal, if they are obtained by an action of the cyclic group. This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Matching statistic: St000668
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000668: Integer partitions ⟶ ℤResult quality: 21% values known / values provided: 21%distinct values known / distinct values provided: 67%
Values
[1,2] => [1,1]
=> [1]
=> []
=> ? ∊ {0,0}
[2,1] => [2]
=> []
=> ?
=> ? ∊ {0,0}
[1,2,3] => [1,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[1,3,2] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0}
[2,1,3] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0}
[2,3,1] => [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0}
[3,1,2] => [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0}
[3,2,1] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,2] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,1,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,4,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,1,3] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,3,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,4,2] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,4,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,4,1,2] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,4,2,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,1,2,3] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,1,3,2] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,1,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,1,2] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,2,1] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,5,2,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,5,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,5,3,2] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,4,2,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[4,2,3,1,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[5,2,3,4,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,2,3,4,6,5] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,4,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,6,4] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,3,6,4,5] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,3,6,5,4] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,6,5] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,2,4,5,3,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,6,5,3] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,5,3,4,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,5,4,3,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,5,4,6,3] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,5,6,3,4] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,2,6,3,5,4] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,6,4,3,5] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,6,4,5,3] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,6,5,4,3] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,3,2,4,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,3,2,4,6,5] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,3,2,5,4,6] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,3,2,6,5,4] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,3,4,2,5,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,5,4,2,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,6,4,5,2] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,2,3,5,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,2,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,4,3,2,6,5] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,4,3,5,2,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,6,5,2] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,5,2,3,6] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,4,6,2,5,3] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,5,2,4,3,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,3,2,4,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,3,4,2,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,5,3,4,6,2] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,3,6,2,4] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,5,4,3,2,6] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
Description
The least common multiple of the parts of the partition.
Matching statistic: St000704
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000704: Integer partitions ⟶ ℤResult quality: 21% values known / values provided: 21%distinct values known / distinct values provided: 67%
Values
[1,2] => [1,1]
=> [1]
=> []
=> ? ∊ {0,0}
[2,1] => [2]
=> []
=> ?
=> ? ∊ {0,0}
[1,2,3] => [1,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[1,3,2] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0}
[2,1,3] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0}
[2,3,1] => [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0}
[3,1,2] => [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0}
[3,2,1] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,2] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,1,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,4,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,1,3] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,3,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,4,2] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,4,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,4,1,2] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,4,2,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,1,2,3] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,1,3,2] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,1,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,1,2] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,2,1] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,5,2,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,5,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,5,3,2] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,4,2,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[4,2,3,1,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[5,2,3,4,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,2,3,4,6,5] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,4,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,6,4] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,3,6,4,5] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,3,6,5,4] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,6,5] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,2,4,5,3,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,6,5,3] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,5,3,4,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,5,4,3,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,5,4,6,3] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,5,6,3,4] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,2,6,3,5,4] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,6,4,3,5] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,6,4,5,3] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,6,5,4,3] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,3,2,4,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,3,2,4,6,5] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,3,2,5,4,6] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,3,2,6,5,4] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,3,4,2,5,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,5,4,2,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,6,4,5,2] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,2,3,5,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,2,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,4,3,2,6,5] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,4,3,5,2,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,6,5,2] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,5,2,3,6] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,4,6,2,5,3] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,5,2,4,3,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,3,2,4,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,3,4,2,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,5,3,4,6,2] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,3,6,2,4] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,5,4,3,2,6] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
Description
The number of semistandard tableaux on a given integer partition with minimal maximal entry. This is, for an integer partition $\lambda = (\lambda_1 > \cdots > \lambda_k > 0)$, the number of [[SemistandardTableaux|semistandard tableaux]] of shape $\lambda$ with maximal entry $k$. Equivalently, this is the evaluation $s_\lambda(1,\ldots,1)$ of the Schur function $s_\lambda$ in $k$ variables, or, explicitly, $$ \prod_{(i,j) \in L} \frac{k + j - i}{ \operatorname{hook}(i,j) }$$ where the product is over all cells $(i,j) \in L$ and $\operatorname{hook}(i,j)$ is the hook length of a cell. See [Theorem 6.3, 1] for details.
Matching statistic: St000707
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000707: Integer partitions ⟶ ℤResult quality: 21% values known / values provided: 21%distinct values known / distinct values provided: 67%
Values
[1,2] => [1,1]
=> [1]
=> []
=> ? ∊ {0,0}
[2,1] => [2]
=> []
=> ?
=> ? ∊ {0,0}
[1,2,3] => [1,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[1,3,2] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0}
[2,1,3] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0}
[2,3,1] => [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0}
[3,1,2] => [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0}
[3,2,1] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,2] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,1,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,4,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,1,3] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,3,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,4,2] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,4,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,4,1,2] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,4,2,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,1,2,3] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,1,3,2] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,1,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,1,2] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,2,1] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,5,2,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,5,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,5,3,2] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,4,2,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[4,2,3,1,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[5,2,3,4,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,2,3,4,6,5] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,4,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,6,4] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,3,6,4,5] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,3,6,5,4] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,6,5] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,2,4,5,3,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,6,5,3] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,5,3,4,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,5,4,3,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,5,4,6,3] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,5,6,3,4] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,2,6,3,5,4] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,6,4,3,5] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,6,4,5,3] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,6,5,4,3] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,3,2,4,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,3,2,4,6,5] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,3,2,5,4,6] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,3,2,6,5,4] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,3,4,2,5,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,5,4,2,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,6,4,5,2] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,2,3,5,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,2,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,4,3,2,6,5] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,4,3,5,2,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,6,5,2] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,5,2,3,6] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,4,6,2,5,3] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,5,2,4,3,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,3,2,4,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,3,4,2,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,5,3,4,6,2] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,3,6,2,4] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,5,4,3,2,6] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
Description
The product of the factorials of the parts.
Matching statistic: St000708
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000708: Integer partitions ⟶ ℤResult quality: 21% values known / values provided: 21%distinct values known / distinct values provided: 67%
Values
[1,2] => [1,1]
=> [1]
=> []
=> ? ∊ {0,0}
[2,1] => [2]
=> []
=> ?
=> ? ∊ {0,0}
[1,2,3] => [1,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[1,3,2] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0}
[2,1,3] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0}
[2,3,1] => [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0}
[3,1,2] => [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0}
[3,2,1] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,2] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,1,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,4,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,1,3] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,3,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,4,2] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,4,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,4,1,2] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,4,2,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,1,2,3] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,1,3,2] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,1,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,1,2] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,2,1] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,5,2,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,5,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,5,3,2] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,4,2,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[4,2,3,1,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[5,2,3,4,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,2,3,4,6,5] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,4,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,6,4] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,3,6,4,5] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,3,6,5,4] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,6,5] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,2,4,5,3,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,6,5,3] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,5,3,4,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,5,4,3,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,5,4,6,3] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,5,6,3,4] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,2,6,3,5,4] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,6,4,3,5] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,6,4,5,3] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,6,5,4,3] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,3,2,4,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,3,2,4,6,5] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,3,2,5,4,6] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,3,2,6,5,4] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,3,4,2,5,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,5,4,2,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,6,4,5,2] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,2,3,5,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,2,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,4,3,2,6,5] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,4,3,5,2,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,6,5,2] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,5,2,3,6] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,4,6,2,5,3] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,5,2,4,3,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,3,2,4,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,3,4,2,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,5,3,4,6,2] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,3,6,2,4] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,5,4,3,2,6] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
Description
The product of the parts of an integer partition.
Matching statistic: St000933
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000933: Integer partitions ⟶ ℤResult quality: 21% values known / values provided: 21%distinct values known / distinct values provided: 67%
Values
[1,2] => [1,1]
=> [1]
=> []
=> ? ∊ {0,0}
[2,1] => [2]
=> []
=> ?
=> ? ∊ {0,0}
[1,2,3] => [1,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[1,3,2] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0}
[2,1,3] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0}
[2,3,1] => [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0}
[3,1,2] => [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0}
[3,2,1] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,2] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,1,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,4,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,1,3] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,3,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,4,2] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,4,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,4,1,2] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,4,2,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,1,2,3] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,1,3,2] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,1,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,1,2] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,2,1] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,5,2,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,5,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,5,3,2] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,4,2,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[4,2,3,1,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[5,2,3,4,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,2,3,4,6,5] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,4,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,6,4] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,3,6,4,5] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,3,6,5,4] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,6,5] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,2,4,5,3,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,6,5,3] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,5,3,4,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,5,4,3,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,5,4,6,3] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,5,6,3,4] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,2,6,3,5,4] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,6,4,3,5] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,6,4,5,3] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,6,5,4,3] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,3,2,4,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,3,2,4,6,5] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,3,2,5,4,6] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,3,2,6,5,4] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,3,4,2,5,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,5,4,2,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,6,4,5,2] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,2,3,5,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,2,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,4,3,2,6,5] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,4,3,5,2,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,6,5,2] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,5,2,3,6] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,4,6,2,5,3] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,5,2,4,3,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,3,2,4,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,3,4,2,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,5,3,4,6,2] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,3,6,2,4] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,5,4,3,2,6] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
Description
The number of multipartitions of sizes given by an integer partition. This is, for $\lambda = (\lambda_1,\ldots,\lambda_n)$, this is the number of $n$-tuples $(\lambda^{(1)},\ldots,\lambda^{(n)})$ of partitions $\lambda^{(i)}$ such that $\lambda^{(i)} \vdash \lambda_i$.
Matching statistic: St001128
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001128: Integer partitions ⟶ ℤResult quality: 21% values known / values provided: 21%distinct values known / distinct values provided: 67%
Values
[1,2] => [1,1]
=> [1]
=> []
=> ? ∊ {0,0}
[2,1] => [2]
=> []
=> ?
=> ? ∊ {0,0}
[1,2,3] => [1,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0}
[1,3,2] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0}
[2,1,3] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0}
[2,3,1] => [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0}
[3,1,2] => [3]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0}
[3,2,1] => [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,2] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,1,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,3,4,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,1,3] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,4,3,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,1,4,2] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,4,1] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,4,1,2] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,4,2,1] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,1,2,3] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,1,3,2] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,1,3] => [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,1,2] => [4]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[4,3,2,1] => [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,5,2,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,2,5,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,4,5,3,2] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,4,2,3] => [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[4,2,3,1,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[5,2,3,4,1] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,2,3,4,6,5] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,4,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,6,4] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,3,6,4,5] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,3,6,5,4] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,6,5] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,2,4,5,3,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,6,5,3] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,5,3,4,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,5,4,3,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,5,4,6,3] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,5,6,3,4] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,2,6,3,5,4] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,6,4,3,5] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,6,4,5,3] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,6,5,4,3] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,3,2,4,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,3,2,4,6,5] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,3,2,5,4,6] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,3,2,6,5,4] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,3,4,2,5,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,5,4,2,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,6,4,5,2] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,2,3,5,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,2,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,4,3,2,6,5] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,4,3,5,2,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,6,5,2] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,5,2,3,6] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,4,6,2,5,3] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,5,2,4,3,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,3,2,4,6] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,3,4,2,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,5,3,4,6,2] => [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,3,6,2,4] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,5,4,3,2,6] => [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
Description
The exponens consonantiae of a partition. This is the quotient of the least common multiple and the greatest common divior of the parts of the partiton. See [1, Caput sextum, §19-§22].
The following 27 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000260The radius of a connected graph. St000454The largest eigenvalue of a graph if it is integral. St001470The cyclic holeyness of a permutation. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000455The second largest eigenvalue of a graph if it is integral. St000298The order dimension or Dushnik-Miller dimension of a poset. St000640The rank of the largest boolean interval in a poset. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000850The number of 1/2-balanced pairs in a poset. St001866The nesting alignments of a signed permutation. St001095The number of non-isomorphic posets with precisely one further covering relation. St001942The number of loops of the quiver corresponding to the reduced incidence algebra of a poset. St001776The degree of the minimal polynomial of the largest Laplacian eigenvalue of a graph. St001868The number of alignments of type NE of a signed permutation. St000447The number of pairs of vertices of a graph with distance 3. St001575The minimal number of edges to add or remove to make a graph edge transitive. St001577The minimal number of edges to add or remove to make a graph a cograph. St001578The minimal number of edges to add or remove to make a graph a line graph. St001871The number of triconnected components of a graph. St000068The number of minimal elements in a poset. St001642The Prague dimension of a graph. St001624The breadth of a lattice.