searching the database
Your data matches 11 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001455
St001455: Plane partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> 0
[[1],[1]]
=> 1
[[2]]
=> 0
[[1,1]]
=> 1
[[1],[1],[1]]
=> 1
[[2],[1]]
=> 0
[[1,1],[1]]
=> 1
[[3]]
=> 0
[[2,1]]
=> 0
[[1,1,1]]
=> 1
[[1],[1],[1],[1]]
=> 1
[[2],[1],[1]]
=> 1
[[2],[2]]
=> 2
[[1,1],[1],[1]]
=> 1
[[1,1],[1,1]]
=> 1
[[3],[1]]
=> 0
[[2,1],[1]]
=> 1
[[1,1,1],[1]]
=> 1
[[4]]
=> 0
[[3,1]]
=> 0
[[2,2]]
=> 2
[[2,1,1]]
=> 1
[[1,1,1,1]]
=> 1
[[1],[1],[1],[1],[1]]
=> 1
[[2],[1],[1],[1]]
=> 1
[[2],[2],[1]]
=> 2
[[1,1],[1],[1],[1]]
=> 1
[[1,1],[1,1],[1]]
=> 1
[[3],[1],[1]]
=> 1
[[3],[2]]
=> 0
[[2,1],[1],[1]]
=> 1
[[2,1],[2]]
=> 2
[[2,1],[1,1]]
=> 1
[[1,1,1],[1],[1]]
=> 1
[[1,1,1],[1,1]]
=> 1
[[4],[1]]
=> 0
[[3,1],[1]]
=> 1
[[2,2],[1]]
=> 2
[[2,1,1],[1]]
=> 1
[[1,1,1,1],[1]]
=> 1
[[5]]
=> 0
[[4,1]]
=> 0
[[3,2]]
=> 0
[[3,1,1]]
=> 1
[[2,2,1]]
=> 2
[[2,1,1,1]]
=> 1
[[1,1,1,1,1]]
=> 1
[[1],[1],[1],[1],[1],[1]]
=> 1
[[2],[1],[1],[1],[1]]
=> 1
[[2],[2],[1],[1]]
=> 2
Description
Largest repeated part of a plane partition, and zero if no part is repeated.
Matching statistic: St000143
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000143: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00044: Integer partitions —conjugate⟶ Integer partitions
St000143: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1]
=> [1]
=> 0
[[1],[1]]
=> [1,1]
=> [2]
=> 0
[[2]]
=> [2]
=> [1,1]
=> 1
[[1,1]]
=> [2]
=> [1,1]
=> 1
[[1],[1],[1]]
=> [1,1,1]
=> [3]
=> 0
[[2],[1]]
=> [2,1]
=> [2,1]
=> 0
[[1,1],[1]]
=> [2,1]
=> [2,1]
=> 0
[[3]]
=> [3]
=> [1,1,1]
=> 1
[[2,1]]
=> [3]
=> [1,1,1]
=> 1
[[1,1,1]]
=> [3]
=> [1,1,1]
=> 1
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [4]
=> 0
[[2],[1],[1]]
=> [2,1,1]
=> [3,1]
=> 0
[[2],[2]]
=> [2,2]
=> [2,2]
=> 2
[[1,1],[1],[1]]
=> [2,1,1]
=> [3,1]
=> 0
[[1,1],[1,1]]
=> [2,2]
=> [2,2]
=> 2
[[3],[1]]
=> [3,1]
=> [2,1,1]
=> 1
[[2,1],[1]]
=> [3,1]
=> [2,1,1]
=> 1
[[1,1,1],[1]]
=> [3,1]
=> [2,1,1]
=> 1
[[4]]
=> [4]
=> [1,1,1,1]
=> 1
[[3,1]]
=> [4]
=> [1,1,1,1]
=> 1
[[2,2]]
=> [4]
=> [1,1,1,1]
=> 1
[[2,1,1]]
=> [4]
=> [1,1,1,1]
=> 1
[[1,1,1,1]]
=> [4]
=> [1,1,1,1]
=> 1
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [5]
=> 0
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [4,1]
=> 0
[[2],[2],[1]]
=> [2,2,1]
=> [3,2]
=> 0
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [4,1]
=> 0
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [3,2]
=> 0
[[3],[1],[1]]
=> [3,1,1]
=> [3,1,1]
=> 1
[[3],[2]]
=> [3,2]
=> [2,2,1]
=> 2
[[2,1],[1],[1]]
=> [3,1,1]
=> [3,1,1]
=> 1
[[2,1],[2]]
=> [3,2]
=> [2,2,1]
=> 2
[[2,1],[1,1]]
=> [3,2]
=> [2,2,1]
=> 2
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [3,1,1]
=> 1
[[1,1,1],[1,1]]
=> [3,2]
=> [2,2,1]
=> 2
[[4],[1]]
=> [4,1]
=> [2,1,1,1]
=> 1
[[3,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> 1
[[2,2],[1]]
=> [4,1]
=> [2,1,1,1]
=> 1
[[2,1,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> 1
[[1,1,1,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> 1
[[5]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[4,1]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[3,2]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[3,1,1]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[2,2,1]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[2,1,1,1]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[1,1,1,1,1]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [6]
=> 0
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [5,1]
=> 0
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [4,2]
=> 0
Description
The largest repeated part of a partition.
If the parts of the partition are all distinct, the value of the statistic is defined to be zero.
Matching statistic: St001587
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00313: Integer partitions —Glaisher-Franklin inverse⟶ Integer partitions
St001587: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00044: Integer partitions —conjugate⟶ Integer partitions
Mp00313: Integer partitions —Glaisher-Franklin inverse⟶ Integer partitions
St001587: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1]
=> [1]
=> [1]
=> 0
[[1],[1]]
=> [1,1]
=> [2]
=> [1,1]
=> 0
[[2]]
=> [2]
=> [1,1]
=> [2]
=> 1
[[1,1]]
=> [2]
=> [1,1]
=> [2]
=> 1
[[1],[1],[1]]
=> [1,1,1]
=> [3]
=> [3]
=> 0
[[2],[1]]
=> [2,1]
=> [2,1]
=> [1,1,1]
=> 0
[[1,1],[1]]
=> [2,1]
=> [2,1]
=> [1,1,1]
=> 0
[[3]]
=> [3]
=> [1,1,1]
=> [2,1]
=> 1
[[2,1]]
=> [3]
=> [1,1,1]
=> [2,1]
=> 1
[[1,1,1]]
=> [3]
=> [1,1,1]
=> [2,1]
=> 1
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [4]
=> [1,1,1,1]
=> 0
[[2],[1],[1]]
=> [2,1,1]
=> [3,1]
=> [3,1]
=> 0
[[2],[2]]
=> [2,2]
=> [2,2]
=> [4]
=> 2
[[1,1],[1],[1]]
=> [2,1,1]
=> [3,1]
=> [3,1]
=> 0
[[1,1],[1,1]]
=> [2,2]
=> [2,2]
=> [4]
=> 2
[[3],[1]]
=> [3,1]
=> [2,1,1]
=> [2,1,1]
=> 1
[[2,1],[1]]
=> [3,1]
=> [2,1,1]
=> [2,1,1]
=> 1
[[1,1,1],[1]]
=> [3,1]
=> [2,1,1]
=> [2,1,1]
=> 1
[[4]]
=> [4]
=> [1,1,1,1]
=> [2,2]
=> 1
[[3,1]]
=> [4]
=> [1,1,1,1]
=> [2,2]
=> 1
[[2,2]]
=> [4]
=> [1,1,1,1]
=> [2,2]
=> 1
[[2,1,1]]
=> [4]
=> [1,1,1,1]
=> [2,2]
=> 1
[[1,1,1,1]]
=> [4]
=> [1,1,1,1]
=> [2,2]
=> 1
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [5]
=> [5]
=> 0
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [4,1]
=> [1,1,1,1,1]
=> 0
[[2],[2],[1]]
=> [2,2,1]
=> [3,2]
=> [3,1,1]
=> 0
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [4,1]
=> [1,1,1,1,1]
=> 0
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [3,2]
=> [3,1,1]
=> 0
[[3],[1],[1]]
=> [3,1,1]
=> [3,1,1]
=> [3,2]
=> 1
[[3],[2]]
=> [3,2]
=> [2,2,1]
=> [4,1]
=> 2
[[2,1],[1],[1]]
=> [3,1,1]
=> [3,1,1]
=> [3,2]
=> 1
[[2,1],[2]]
=> [3,2]
=> [2,2,1]
=> [4,1]
=> 2
[[2,1],[1,1]]
=> [3,2]
=> [2,2,1]
=> [4,1]
=> 2
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [3,1,1]
=> [3,2]
=> 1
[[1,1,1],[1,1]]
=> [3,2]
=> [2,2,1]
=> [4,1]
=> 2
[[4],[1]]
=> [4,1]
=> [2,1,1,1]
=> [2,1,1,1]
=> 1
[[3,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> [2,1,1,1]
=> 1
[[2,2],[1]]
=> [4,1]
=> [2,1,1,1]
=> [2,1,1,1]
=> 1
[[2,1,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> [2,1,1,1]
=> 1
[[1,1,1,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> [2,1,1,1]
=> 1
[[5]]
=> [5]
=> [1,1,1,1,1]
=> [2,2,1]
=> 1
[[4,1]]
=> [5]
=> [1,1,1,1,1]
=> [2,2,1]
=> 1
[[3,2]]
=> [5]
=> [1,1,1,1,1]
=> [2,2,1]
=> 1
[[3,1,1]]
=> [5]
=> [1,1,1,1,1]
=> [2,2,1]
=> 1
[[2,2,1]]
=> [5]
=> [1,1,1,1,1]
=> [2,2,1]
=> 1
[[2,1,1,1]]
=> [5]
=> [1,1,1,1,1]
=> [2,2,1]
=> 1
[[1,1,1,1,1]]
=> [5]
=> [1,1,1,1,1]
=> [2,2,1]
=> 1
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [6]
=> [3,3]
=> 0
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [5,1]
=> [5,1]
=> 0
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [4,2]
=> [1,1,1,1,1,1]
=> 0
Description
Half of the largest even part of an integer partition.
The largest even part is recorded by [[St000995]].
Matching statistic: St000208
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000208: Integer partitions ⟶ ℤResult quality: 57% ●values known / values provided: 57%●distinct values known / distinct values provided: 67%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000208: Integer partitions ⟶ ℤResult quality: 57% ●values known / values provided: 57%●distinct values known / distinct values provided: 67%
Values
[[1]]
=> [1]
=> []
=> ?
=> ? = 0
[[1],[1]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1}
[[2]]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1}
[[1,1]]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1}
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[[2],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1}
[[1,1],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1}
[[3]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1}
[[2,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1}
[[1,1,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1}
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[[2],[2]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1],[1,1]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[3],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[2,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[1,1,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[4]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[3,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[2,2]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[2,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[1,1,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[3],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[2,1],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[4],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[3,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,2],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[5]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[4,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[3,2]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[3,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,2,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[3],[3]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[2,1],[2,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[1,1,1],[1,1,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[4],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[4],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[3,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[3,1],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[3,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,2],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[2,2],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,2],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,1,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[2,1,1],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,1,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[1,1,1,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1,1,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[5],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[4,1],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[3,2],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[3,1,1],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[3],[3],[1]]
=> [3,3,1]
=> [3,1]
=> [1]
=> 1
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[2,1],[2,1],[1]]
=> [3,3,1]
=> [3,1]
=> [1]
=> 1
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
Description
Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight.
Given $\lambda$ count how many ''integer partitions'' $w$ (weight) there are, such that
$P_{\lambda,w}$ is integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has only integer lattice points as vertices.
See also [[St000205]], [[St000206]] and [[St000207]].
Matching statistic: St000755
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000755: Integer partitions ⟶ ℤResult quality: 33% ●values known / values provided: 57%●distinct values known / distinct values provided: 33%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000755: Integer partitions ⟶ ℤResult quality: 33% ●values known / values provided: 57%●distinct values known / distinct values provided: 33%
Values
[[1]]
=> [1]
=> []
=> ?
=> ? = 0
[[1],[1]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1}
[[2]]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1}
[[1,1]]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1}
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[[2],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1}
[[1,1],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1}
[[3]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1}
[[2,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1}
[[1,1,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1}
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[[2],[2]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1],[1,1]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[3],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[2,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[1,1,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[4]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[3,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[2,2]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[2,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[1,1,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[3],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[2,1],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[4],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[3,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,2],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[5]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[4,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[3,2]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[3,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,2,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[3],[3]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[2,1],[2,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[1,1,1],[1,1,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[4],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[4],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[3,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[3,1],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[3,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,2],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[2,2],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,2],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,1,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[2,1,1],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,1,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[1,1,1,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1,1,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[5],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[4,1],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[3,2],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[3,1,1],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[3],[3],[1]]
=> [3,3,1]
=> [3,1]
=> [1]
=> 1
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[2,1],[2,1],[1]]
=> [3,3,1]
=> [3,1]
=> [1]
=> 1
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
Description
The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition.
Consider the recurrence $$f(n)=\sum_{p\in\lambda} f(n-p).$$ This statistic returns the number of distinct real roots of the associated characteristic polynomial.
For example, the partition $(2,1)$ corresponds to the recurrence $f(n)=f(n-1)+f(n-2)$ with associated characteristic polynomial $x^2-x-1$, which has two real roots.
Matching statistic: St001389
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001389: Integer partitions ⟶ ℤResult quality: 57% ●values known / values provided: 57%●distinct values known / distinct values provided: 67%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001389: Integer partitions ⟶ ℤResult quality: 57% ●values known / values provided: 57%●distinct values known / distinct values provided: 67%
Values
[[1]]
=> [1]
=> []
=> ?
=> ? = 0
[[1],[1]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1}
[[2]]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1}
[[1,1]]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1}
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[[2],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1}
[[1,1],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1}
[[3]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1}
[[2,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1}
[[1,1,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1}
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[[2],[2]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1],[1,1]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[3],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[2,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[1,1,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[4]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[3,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[2,2]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[2,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[1,1,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[3],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[2,1],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[4],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[3,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,2],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[5]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[4,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[3,2]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[3,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,2,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[3],[3]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[2,1],[2,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[1,1,1],[1,1,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[4],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[4],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[3,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[3,1],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[3,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,2],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[2,2],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,2],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,1,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[2,1,1],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,1,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[1,1,1,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1,1,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[5],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[4,1],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[3,2],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[3,1,1],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[3],[3],[1]]
=> [3,3,1]
=> [3,1]
=> [1]
=> 1
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[2,1],[2,1],[1]]
=> [3,3,1]
=> [3,1]
=> [1]
=> 1
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
Description
The number of partitions of the same length below the given integer partition.
For a partition $\lambda_1 \geq \dots \lambda_k > 0$, this number is
$$ \det\left( \binom{\lambda_{k+1-i}}{j-i+1} \right)_{1 \le i,j \le k}.$$
Matching statistic: St001491
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St001491: Binary words ⟶ ℤResult quality: 47% ●values known / values provided: 47%●distinct values known / distinct values provided: 50%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00095: Integer partitions —to binary word⟶ Binary words
St001491: Binary words ⟶ ℤResult quality: 47% ●values known / values provided: 47%●distinct values known / distinct values provided: 50%
Values
[[1]]
=> [1]
=> []
=> => ? = 0
[[1],[1]]
=> [1,1]
=> [1]
=> 10 => 1
[[2]]
=> [2]
=> []
=> => ? ∊ {0,1}
[[1,1]]
=> [2]
=> []
=> => ? ∊ {0,1}
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> 110 => 1
[[2],[1]]
=> [2,1]
=> [1]
=> 10 => 1
[[1,1],[1]]
=> [2,1]
=> [1]
=> 10 => 1
[[3]]
=> [3]
=> []
=> => ? ∊ {0,0,0}
[[2,1]]
=> [3]
=> []
=> => ? ∊ {0,0,0}
[[1,1,1]]
=> [3]
=> []
=> => ? ∊ {0,0,0}
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 2
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> 110 => 1
[[2],[2]]
=> [2,2]
=> [2]
=> 100 => 1
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> 110 => 1
[[1,1],[1,1]]
=> [2,2]
=> [2]
=> 100 => 1
[[3],[1]]
=> [3,1]
=> [1]
=> 10 => 1
[[2,1],[1]]
=> [3,1]
=> [1]
=> 10 => 1
[[1,1,1],[1]]
=> [3,1]
=> [1]
=> 10 => 1
[[4]]
=> [4]
=> []
=> => ? ∊ {0,0,0,1,2}
[[3,1]]
=> [4]
=> []
=> => ? ∊ {0,0,0,1,2}
[[2,2]]
=> [4]
=> []
=> => ? ∊ {0,0,0,1,2}
[[2,1,1]]
=> [4]
=> []
=> => ? ∊ {0,0,0,1,2}
[[1,1,1,1]]
=> [4]
=> []
=> => ? ∊ {0,0,0,1,2}
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 11110 => ? ∊ {0,0,0,1,1,1,2,2}
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> 1110 => 2
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> 1010 => 0
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> 1110 => 2
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> 1010 => 0
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> 110 => 1
[[3],[2]]
=> [3,2]
=> [2]
=> 100 => 1
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> 110 => 1
[[2,1],[2]]
=> [3,2]
=> [2]
=> 100 => 1
[[2,1],[1,1]]
=> [3,2]
=> [2]
=> 100 => 1
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> 110 => 1
[[1,1,1],[1,1]]
=> [3,2]
=> [2]
=> 100 => 1
[[4],[1]]
=> [4,1]
=> [1]
=> 10 => 1
[[3,1],[1]]
=> [4,1]
=> [1]
=> 10 => 1
[[2,2],[1]]
=> [4,1]
=> [1]
=> 10 => 1
[[2,1,1],[1]]
=> [4,1]
=> [1]
=> 10 => 1
[[1,1,1,1],[1]]
=> [4,1]
=> [1]
=> 10 => 1
[[5]]
=> [5]
=> []
=> => ? ∊ {0,0,0,1,1,1,2,2}
[[4,1]]
=> [5]
=> []
=> => ? ∊ {0,0,0,1,1,1,2,2}
[[3,2]]
=> [5]
=> []
=> => ? ∊ {0,0,0,1,1,1,2,2}
[[3,1,1]]
=> [5]
=> []
=> => ? ∊ {0,0,0,1,1,1,2,2}
[[2,2,1]]
=> [5]
=> []
=> => ? ∊ {0,0,0,1,1,1,2,2}
[[2,1,1,1]]
=> [5]
=> []
=> => ? ∊ {0,0,0,1,1,1,2,2}
[[1,1,1,1,1]]
=> [5]
=> []
=> => ? ∊ {0,0,0,1,1,1,2,2}
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 111110 => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 11110 => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> 10110 => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> 1100 => 1
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 11110 => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> 10110 => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> 1100 => 1
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> 1110 => 2
[[3],[2],[1]]
=> [3,2,1]
=> [2,1]
=> 1010 => 0
[[3],[3]]
=> [3,3]
=> [3]
=> 1000 => 1
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> 1110 => 2
[[2,1],[2],[1]]
=> [3,2,1]
=> [2,1]
=> 1010 => 0
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> 1010 => 0
[[2,1],[2,1]]
=> [3,3]
=> [3]
=> 1000 => 1
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> 1110 => 2
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> 1010 => 0
[[1,1,1],[1,1,1]]
=> [3,3]
=> [3]
=> 1000 => 1
[[4],[1],[1]]
=> [4,1,1]
=> [1,1]
=> 110 => 1
[[4],[2]]
=> [4,2]
=> [2]
=> 100 => 1
[[3,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> 110 => 1
[[3,1],[2]]
=> [4,2]
=> [2]
=> 100 => 1
[[3,1],[1,1]]
=> [4,2]
=> [2]
=> 100 => 1
[[2,2],[1],[1]]
=> [4,1,1]
=> [1,1]
=> 110 => 1
[[2,2],[2]]
=> [4,2]
=> [2]
=> 100 => 1
[[2,2],[1,1]]
=> [4,2]
=> [2]
=> 100 => 1
[[2,1,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> 110 => 1
[[2,1,1],[2]]
=> [4,2]
=> [2]
=> 100 => 1
[[6]]
=> [6]
=> []
=> => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[5,1]]
=> [6]
=> []
=> => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[4,2]]
=> [6]
=> []
=> => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[4,1,1]]
=> [6]
=> []
=> => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[3,3]]
=> [6]
=> []
=> => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[3,2,1]]
=> [6]
=> []
=> => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[3,1,1,1]]
=> [6]
=> []
=> => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[2,2,2]]
=> [6]
=> []
=> => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[2,2,1,1]]
=> [6]
=> []
=> => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[2,1,1,1,1]]
=> [6]
=> []
=> => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[1,1,1,1,1,1]]
=> [6]
=> []
=> => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 1111110 => ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 111110 => ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> 101110 => ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> 11010 => ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 111110 => ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> 101110 => ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> 11010 => ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 11110 => ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> 10110 => ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[[3],[3],[1]]
=> [3,3,1]
=> [3,1]
=> 10010 => ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 11110 => ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> 10110 => ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> 10110 => ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[[2,1],[2,1],[1]]
=> [3,3,1]
=> [3,1]
=> 10010 => ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 11110 => ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
Description
The number of indecomposable projective-injective modules in the algebra corresponding to a subset.
Let $A_n=K[x]/(x^n)$.
We associate to a nonempty subset S of an (n-1)-set the module $M_S$, which is the direct sum of $A_n$-modules with indecomposable non-projective direct summands of dimension $i$ when $i$ is in $S$ (note that such modules have vector space dimension at most n-1). Then the corresponding algebra associated to S is the stable endomorphism ring of $M_S$. We decode the subset as a binary word so that for example the subset $S=\{1,3 \} $ of $\{1,2,3 \}$ is decoded as 101.
Matching statistic: St000668
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000668: Integer partitions ⟶ ℤResult quality: 39% ●values known / values provided: 39%●distinct values known / distinct values provided: 50%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000668: Integer partitions ⟶ ℤResult quality: 39% ●values known / values provided: 39%●distinct values known / distinct values provided: 50%
Values
[[1]]
=> [1]
=> []
=> ?
=> ? = 0
[[1],[1]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1}
[[2]]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1}
[[1,1]]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1}
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,1,1,1}
[[2],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1}
[[1,1],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1}
[[3]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1}
[[2,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1}
[[1,1,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1}
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[2],[2]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[1,1],[1,1]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[3],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[2,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[1,1,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[4]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[3,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[2,2]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[2,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[1,1,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,2],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[5]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3,2]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,2,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[3],[3]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,1],[2,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[1,1,1],[1,1,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[4],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 2
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[[1,1],[1,1],[1,1],[1,1]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 2
[[3],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[3],[2],[1],[1],[1]]
=> [3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[2],[1]]
=> [3,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[3],[1],[1]]
=> [3,3,1,1]
=> [3,1,1]
=> [1,1]
=> 1
Description
The least common multiple of the parts of the partition.
Matching statistic: St000698
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000698: Integer partitions ⟶ ℤResult quality: 39% ●values known / values provided: 39%●distinct values known / distinct values provided: 83%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000698: Integer partitions ⟶ ℤResult quality: 39% ●values known / values provided: 39%●distinct values known / distinct values provided: 83%
Values
[[1]]
=> [1]
=> []
=> ?
=> ? = 0
[[1],[1]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1}
[[2]]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1}
[[1,1]]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1}
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,1,1,1}
[[2],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1}
[[1,1],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1}
[[3]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1}
[[2,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1}
[[1,1,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1}
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[2],[2]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[1,1],[1,1]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[3],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[2,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[1,1,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[4]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[3,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[2,2]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[2,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[1,1,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,2],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[5]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3,2]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,2,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 2
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3}
[[3],[3]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3}
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3}
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3}
[[2,1],[2,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3}
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3}
[[1,1,1],[1,1,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3}
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 2
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 2
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 0
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 2
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 0
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[4],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 3
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 2
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 2
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 2
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 2
[[1,1],[1,1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 2
[[1,1],[1,1],[1,1],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[[1,1],[1,1],[1,1],[1,1]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 2
[[3],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 2
[[3],[2],[1],[1],[1]]
=> [3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[2],[1]]
=> [3,2,2,1]
=> [2,2,1]
=> [2,1]
=> 0
[[3],[3],[1],[1]]
=> [3,3,1,1]
=> [3,1,1]
=> [1,1]
=> 1
Description
The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core.
For any positive integer $k$, one associates a $k$-core to a partition by repeatedly removing all rim hooks of size $k$.
This statistic counts the $2$-rim hooks that are removed in this process to obtain a $2$-core.
Matching statistic: St001128
Mp00311: Plane partitions —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001128: Integer partitions ⟶ ℤResult quality: 39% ●values known / values provided: 39%●distinct values known / distinct values provided: 50%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001128: Integer partitions ⟶ ℤResult quality: 39% ●values known / values provided: 39%●distinct values known / distinct values provided: 50%
Values
[[1]]
=> [1]
=> []
=> ?
=> ? = 0
[[1],[1]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1}
[[2]]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1}
[[1,1]]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1}
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,1,1,1}
[[2],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1}
[[1,1],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1}
[[3]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1}
[[2,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1}
[[1,1,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1}
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[2],[2]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[1,1],[1,1]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[3],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[2,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[1,1,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[4]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[3,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[2,2]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[2,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[1,1,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,2],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[5]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3,2]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,2,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3}
[[3],[3]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3}
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3}
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3}
[[2,1],[2,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3}
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3}
[[1,1,1],[1,1,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3}
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[4],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 1
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[[1,1],[1,1],[1,1],[1,1]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 1
[[3],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[3],[2],[1],[1],[1]]
=> [3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[2],[1]]
=> [3,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[3],[1],[1]]
=> [3,3,1,1]
=> [3,1,1]
=> [1,1]
=> 1
Description
The exponens consonantiae of a partition.
This is the quotient of the least common multiple and the greatest common divior of the parts of the partiton. See [1, Caput sextum, §19-§22].
The following 1 statistic also match your data. Click on any of them to see the details.
St001568The smallest positive integer that does not appear twice in the partition.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!