Your data matches 11 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Matching statistic: St001455
St001455: Plane partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> 0
[[1],[1]]
=> 1
[[2]]
=> 0
[[1,1]]
=> 1
[[1],[1],[1]]
=> 1
[[2],[1]]
=> 0
[[1,1],[1]]
=> 1
[[3]]
=> 0
[[2,1]]
=> 0
[[1,1,1]]
=> 1
[[1],[1],[1],[1]]
=> 1
[[2],[1],[1]]
=> 1
[[2],[2]]
=> 2
[[1,1],[1],[1]]
=> 1
[[1,1],[1,1]]
=> 1
[[3],[1]]
=> 0
[[2,1],[1]]
=> 1
[[1,1,1],[1]]
=> 1
[[4]]
=> 0
[[3,1]]
=> 0
[[2,2]]
=> 2
[[2,1,1]]
=> 1
[[1,1,1,1]]
=> 1
[[1],[1],[1],[1],[1]]
=> 1
[[2],[1],[1],[1]]
=> 1
[[2],[2],[1]]
=> 2
[[1,1],[1],[1],[1]]
=> 1
[[1,1],[1,1],[1]]
=> 1
[[3],[1],[1]]
=> 1
[[3],[2]]
=> 0
[[2,1],[1],[1]]
=> 1
[[2,1],[2]]
=> 2
[[2,1],[1,1]]
=> 1
[[1,1,1],[1],[1]]
=> 1
[[1,1,1],[1,1]]
=> 1
[[4],[1]]
=> 0
[[3,1],[1]]
=> 1
[[2,2],[1]]
=> 2
[[2,1,1],[1]]
=> 1
[[1,1,1,1],[1]]
=> 1
[[5]]
=> 0
[[4,1]]
=> 0
[[3,2]]
=> 0
[[3,1,1]]
=> 1
[[2,2,1]]
=> 2
[[2,1,1,1]]
=> 1
[[1,1,1,1,1]]
=> 1
[[1],[1],[1],[1],[1],[1]]
=> 1
[[2],[1],[1],[1],[1]]
=> 1
[[2],[2],[1],[1]]
=> 2
Description
Largest repeated part of a plane partition, and zero if no part is repeated.
Matching statistic: St000143
Mp00311: Plane partitions to partitionInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
St000143: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1]
=> [1]
=> 0
[[1],[1]]
=> [1,1]
=> [2]
=> 0
[[2]]
=> [2]
=> [1,1]
=> 1
[[1,1]]
=> [2]
=> [1,1]
=> 1
[[1],[1],[1]]
=> [1,1,1]
=> [3]
=> 0
[[2],[1]]
=> [2,1]
=> [2,1]
=> 0
[[1,1],[1]]
=> [2,1]
=> [2,1]
=> 0
[[3]]
=> [3]
=> [1,1,1]
=> 1
[[2,1]]
=> [3]
=> [1,1,1]
=> 1
[[1,1,1]]
=> [3]
=> [1,1,1]
=> 1
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [4]
=> 0
[[2],[1],[1]]
=> [2,1,1]
=> [3,1]
=> 0
[[2],[2]]
=> [2,2]
=> [2,2]
=> 2
[[1,1],[1],[1]]
=> [2,1,1]
=> [3,1]
=> 0
[[1,1],[1,1]]
=> [2,2]
=> [2,2]
=> 2
[[3],[1]]
=> [3,1]
=> [2,1,1]
=> 1
[[2,1],[1]]
=> [3,1]
=> [2,1,1]
=> 1
[[1,1,1],[1]]
=> [3,1]
=> [2,1,1]
=> 1
[[4]]
=> [4]
=> [1,1,1,1]
=> 1
[[3,1]]
=> [4]
=> [1,1,1,1]
=> 1
[[2,2]]
=> [4]
=> [1,1,1,1]
=> 1
[[2,1,1]]
=> [4]
=> [1,1,1,1]
=> 1
[[1,1,1,1]]
=> [4]
=> [1,1,1,1]
=> 1
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [5]
=> 0
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [4,1]
=> 0
[[2],[2],[1]]
=> [2,2,1]
=> [3,2]
=> 0
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [4,1]
=> 0
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [3,2]
=> 0
[[3],[1],[1]]
=> [3,1,1]
=> [3,1,1]
=> 1
[[3],[2]]
=> [3,2]
=> [2,2,1]
=> 2
[[2,1],[1],[1]]
=> [3,1,1]
=> [3,1,1]
=> 1
[[2,1],[2]]
=> [3,2]
=> [2,2,1]
=> 2
[[2,1],[1,1]]
=> [3,2]
=> [2,2,1]
=> 2
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [3,1,1]
=> 1
[[1,1,1],[1,1]]
=> [3,2]
=> [2,2,1]
=> 2
[[4],[1]]
=> [4,1]
=> [2,1,1,1]
=> 1
[[3,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> 1
[[2,2],[1]]
=> [4,1]
=> [2,1,1,1]
=> 1
[[2,1,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> 1
[[1,1,1,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> 1
[[5]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[4,1]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[3,2]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[3,1,1]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[2,2,1]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[2,1,1,1]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[1,1,1,1,1]]
=> [5]
=> [1,1,1,1,1]
=> 1
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [6]
=> 0
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [5,1]
=> 0
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [4,2]
=> 0
Description
The largest repeated part of a partition. If the parts of the partition are all distinct, the value of the statistic is defined to be zero.
Matching statistic: St001587
Mp00311: Plane partitions to partitionInteger partitions
Mp00044: Integer partitions conjugateInteger partitions
Mp00313: Integer partitions Glaisher-Franklin inverseInteger partitions
St001587: Integer partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[[1]]
=> [1]
=> [1]
=> [1]
=> 0
[[1],[1]]
=> [1,1]
=> [2]
=> [1,1]
=> 0
[[2]]
=> [2]
=> [1,1]
=> [2]
=> 1
[[1,1]]
=> [2]
=> [1,1]
=> [2]
=> 1
[[1],[1],[1]]
=> [1,1,1]
=> [3]
=> [3]
=> 0
[[2],[1]]
=> [2,1]
=> [2,1]
=> [1,1,1]
=> 0
[[1,1],[1]]
=> [2,1]
=> [2,1]
=> [1,1,1]
=> 0
[[3]]
=> [3]
=> [1,1,1]
=> [2,1]
=> 1
[[2,1]]
=> [3]
=> [1,1,1]
=> [2,1]
=> 1
[[1,1,1]]
=> [3]
=> [1,1,1]
=> [2,1]
=> 1
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [4]
=> [1,1,1,1]
=> 0
[[2],[1],[1]]
=> [2,1,1]
=> [3,1]
=> [3,1]
=> 0
[[2],[2]]
=> [2,2]
=> [2,2]
=> [4]
=> 2
[[1,1],[1],[1]]
=> [2,1,1]
=> [3,1]
=> [3,1]
=> 0
[[1,1],[1,1]]
=> [2,2]
=> [2,2]
=> [4]
=> 2
[[3],[1]]
=> [3,1]
=> [2,1,1]
=> [2,1,1]
=> 1
[[2,1],[1]]
=> [3,1]
=> [2,1,1]
=> [2,1,1]
=> 1
[[1,1,1],[1]]
=> [3,1]
=> [2,1,1]
=> [2,1,1]
=> 1
[[4]]
=> [4]
=> [1,1,1,1]
=> [2,2]
=> 1
[[3,1]]
=> [4]
=> [1,1,1,1]
=> [2,2]
=> 1
[[2,2]]
=> [4]
=> [1,1,1,1]
=> [2,2]
=> 1
[[2,1,1]]
=> [4]
=> [1,1,1,1]
=> [2,2]
=> 1
[[1,1,1,1]]
=> [4]
=> [1,1,1,1]
=> [2,2]
=> 1
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [5]
=> [5]
=> 0
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [4,1]
=> [1,1,1,1,1]
=> 0
[[2],[2],[1]]
=> [2,2,1]
=> [3,2]
=> [3,1,1]
=> 0
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [4,1]
=> [1,1,1,1,1]
=> 0
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [3,2]
=> [3,1,1]
=> 0
[[3],[1],[1]]
=> [3,1,1]
=> [3,1,1]
=> [3,2]
=> 1
[[3],[2]]
=> [3,2]
=> [2,2,1]
=> [4,1]
=> 2
[[2,1],[1],[1]]
=> [3,1,1]
=> [3,1,1]
=> [3,2]
=> 1
[[2,1],[2]]
=> [3,2]
=> [2,2,1]
=> [4,1]
=> 2
[[2,1],[1,1]]
=> [3,2]
=> [2,2,1]
=> [4,1]
=> 2
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [3,1,1]
=> [3,2]
=> 1
[[1,1,1],[1,1]]
=> [3,2]
=> [2,2,1]
=> [4,1]
=> 2
[[4],[1]]
=> [4,1]
=> [2,1,1,1]
=> [2,1,1,1]
=> 1
[[3,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> [2,1,1,1]
=> 1
[[2,2],[1]]
=> [4,1]
=> [2,1,1,1]
=> [2,1,1,1]
=> 1
[[2,1,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> [2,1,1,1]
=> 1
[[1,1,1,1],[1]]
=> [4,1]
=> [2,1,1,1]
=> [2,1,1,1]
=> 1
[[5]]
=> [5]
=> [1,1,1,1,1]
=> [2,2,1]
=> 1
[[4,1]]
=> [5]
=> [1,1,1,1,1]
=> [2,2,1]
=> 1
[[3,2]]
=> [5]
=> [1,1,1,1,1]
=> [2,2,1]
=> 1
[[3,1,1]]
=> [5]
=> [1,1,1,1,1]
=> [2,2,1]
=> 1
[[2,2,1]]
=> [5]
=> [1,1,1,1,1]
=> [2,2,1]
=> 1
[[2,1,1,1]]
=> [5]
=> [1,1,1,1,1]
=> [2,2,1]
=> 1
[[1,1,1,1,1]]
=> [5]
=> [1,1,1,1,1]
=> [2,2,1]
=> 1
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [6]
=> [3,3]
=> 0
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [5,1]
=> [5,1]
=> 0
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [4,2]
=> [1,1,1,1,1,1]
=> 0
Description
Half of the largest even part of an integer partition. The largest even part is recorded by [[St000995]].
Matching statistic: St000208
Mp00311: Plane partitions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000208: Integer partitions ⟶ ℤResult quality: 57% values known / values provided: 57%distinct values known / distinct values provided: 67%
Values
[[1]]
=> [1]
=> []
=> ?
=> ? = 0
[[1],[1]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1}
[[2]]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1}
[[1,1]]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1}
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[[2],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1}
[[1,1],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1}
[[3]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1}
[[2,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1}
[[1,1,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1}
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[[2],[2]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1],[1,1]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[3],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[2,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[1,1,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[4]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[3,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[2,2]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[2,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[1,1,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[3],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[2,1],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[4],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[3,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,2],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[5]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[4,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[3,2]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[3,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,2,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[3],[3]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[2,1],[2,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[1,1,1],[1,1,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[4],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[4],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[3,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[3,1],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[3,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,2],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[2,2],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,2],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,1,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[2,1,1],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,1,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[1,1,1,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1,1,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[5],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[4,1],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[3,2],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[3,1,1],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[3],[3],[1]]
=> [3,3,1]
=> [3,1]
=> [1]
=> 1
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[2,1],[2,1],[1]]
=> [3,3,1]
=> [3,1]
=> [1]
=> 1
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
Description
Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. Given $\lambda$ count how many ''integer partitions'' $w$ (weight) there are, such that $P_{\lambda,w}$ is integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has only integer lattice points as vertices. See also [[St000205]], [[St000206]] and [[St000207]].
Matching statistic: St000755
Mp00311: Plane partitions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000755: Integer partitions ⟶ ℤResult quality: 33% values known / values provided: 57%distinct values known / distinct values provided: 33%
Values
[[1]]
=> [1]
=> []
=> ?
=> ? = 0
[[1],[1]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1}
[[2]]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1}
[[1,1]]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1}
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[[2],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1}
[[1,1],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1}
[[3]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1}
[[2,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1}
[[1,1,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1}
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[[2],[2]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1],[1,1]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[3],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[2,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[1,1,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[4]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[3,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[2,2]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[2,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[1,1,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[3],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[2,1],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[4],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[3,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,2],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[5]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[4,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[3,2]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[3,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,2,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[3],[3]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[2,1],[2,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[1,1,1],[1,1,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[4],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[4],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[3,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[3,1],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[3,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,2],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[2,2],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,2],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,1,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[2,1,1],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,1,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[1,1,1,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1,1,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[5],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[4,1],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[3,2],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[3,1,1],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[3],[3],[1]]
=> [3,3,1]
=> [3,1]
=> [1]
=> 1
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[2,1],[2,1],[1]]
=> [3,3,1]
=> [3,1]
=> [1]
=> 1
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
Description
The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. Consider the recurrence $$f(n)=\sum_{p\in\lambda} f(n-p).$$ This statistic returns the number of distinct real roots of the associated characteristic polynomial. For example, the partition $(2,1)$ corresponds to the recurrence $f(n)=f(n-1)+f(n-2)$ with associated characteristic polynomial $x^2-x-1$, which has two real roots.
Matching statistic: St001389
Mp00311: Plane partitions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001389: Integer partitions ⟶ ℤResult quality: 57% values known / values provided: 57%distinct values known / distinct values provided: 67%
Values
[[1]]
=> [1]
=> []
=> ?
=> ? = 0
[[1],[1]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1}
[[2]]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1}
[[1,1]]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1}
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> [1]
=> 1
[[2],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1}
[[1,1],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1}
[[3]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1}
[[2,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1}
[[1,1,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1}
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[[2],[2]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1],[1,1]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[3],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[2,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[1,1,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[4]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[3,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[2,2]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[2,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[1,1,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,2,2}
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> 1
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[3],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[2,1],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[4],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[3,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,2],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[5]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[4,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[3,2]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[3,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,2,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[2,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2}
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[3],[3]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[2,1],[2,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> 1
[[1,1,1],[1,1,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[4],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[4],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[3,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[3,1],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[3,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,2],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[2,2],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,2],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,1,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[2,1,1],[2]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,1,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[1,1,1,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> [1]
=> 1
[[1,1,1,1],[1,1]]
=> [4,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[5],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[4,1],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[3,2],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[3,1,1],[1]]
=> [5,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[3],[3],[1]]
=> [3,3,1]
=> [3,1]
=> [1]
=> 1
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[2,1],[2,1],[1]]
=> [3,3,1]
=> [3,1]
=> [1]
=> 1
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
Description
The number of partitions of the same length below the given integer partition. For a partition $\lambda_1 \geq \dots \lambda_k > 0$, this number is $$ \det\left( \binom{\lambda_{k+1-i}}{j-i+1} \right)_{1 \le i,j \le k}.$$
Matching statistic: St001491
Mp00311: Plane partitions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00095: Integer partitions to binary wordBinary words
St001491: Binary words ⟶ ℤResult quality: 47% values known / values provided: 47%distinct values known / distinct values provided: 50%
Values
[[1]]
=> [1]
=> []
=> => ? = 0
[[1],[1]]
=> [1,1]
=> [1]
=> 10 => 1
[[2]]
=> [2]
=> []
=> => ? ∊ {0,1}
[[1,1]]
=> [2]
=> []
=> => ? ∊ {0,1}
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> 110 => 1
[[2],[1]]
=> [2,1]
=> [1]
=> 10 => 1
[[1,1],[1]]
=> [2,1]
=> [1]
=> 10 => 1
[[3]]
=> [3]
=> []
=> => ? ∊ {0,0,0}
[[2,1]]
=> [3]
=> []
=> => ? ∊ {0,0,0}
[[1,1,1]]
=> [3]
=> []
=> => ? ∊ {0,0,0}
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> 1110 => 2
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> 110 => 1
[[2],[2]]
=> [2,2]
=> [2]
=> 100 => 1
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> 110 => 1
[[1,1],[1,1]]
=> [2,2]
=> [2]
=> 100 => 1
[[3],[1]]
=> [3,1]
=> [1]
=> 10 => 1
[[2,1],[1]]
=> [3,1]
=> [1]
=> 10 => 1
[[1,1,1],[1]]
=> [3,1]
=> [1]
=> 10 => 1
[[4]]
=> [4]
=> []
=> => ? ∊ {0,0,0,1,2}
[[3,1]]
=> [4]
=> []
=> => ? ∊ {0,0,0,1,2}
[[2,2]]
=> [4]
=> []
=> => ? ∊ {0,0,0,1,2}
[[2,1,1]]
=> [4]
=> []
=> => ? ∊ {0,0,0,1,2}
[[1,1,1,1]]
=> [4]
=> []
=> => ? ∊ {0,0,0,1,2}
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 11110 => ? ∊ {0,0,0,1,1,1,2,2}
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> 1110 => 2
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> 1010 => 0
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> 1110 => 2
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> 1010 => 0
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> 110 => 1
[[3],[2]]
=> [3,2]
=> [2]
=> 100 => 1
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> 110 => 1
[[2,1],[2]]
=> [3,2]
=> [2]
=> 100 => 1
[[2,1],[1,1]]
=> [3,2]
=> [2]
=> 100 => 1
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> 110 => 1
[[1,1,1],[1,1]]
=> [3,2]
=> [2]
=> 100 => 1
[[4],[1]]
=> [4,1]
=> [1]
=> 10 => 1
[[3,1],[1]]
=> [4,1]
=> [1]
=> 10 => 1
[[2,2],[1]]
=> [4,1]
=> [1]
=> 10 => 1
[[2,1,1],[1]]
=> [4,1]
=> [1]
=> 10 => 1
[[1,1,1,1],[1]]
=> [4,1]
=> [1]
=> 10 => 1
[[5]]
=> [5]
=> []
=> => ? ∊ {0,0,0,1,1,1,2,2}
[[4,1]]
=> [5]
=> []
=> => ? ∊ {0,0,0,1,1,1,2,2}
[[3,2]]
=> [5]
=> []
=> => ? ∊ {0,0,0,1,1,1,2,2}
[[3,1,1]]
=> [5]
=> []
=> => ? ∊ {0,0,0,1,1,1,2,2}
[[2,2,1]]
=> [5]
=> []
=> => ? ∊ {0,0,0,1,1,1,2,2}
[[2,1,1,1]]
=> [5]
=> []
=> => ? ∊ {0,0,0,1,1,1,2,2}
[[1,1,1,1,1]]
=> [5]
=> []
=> => ? ∊ {0,0,0,1,1,1,2,2}
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 111110 => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 11110 => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> 10110 => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> 1100 => 1
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 11110 => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> 10110 => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> 1100 => 1
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> 1110 => 2
[[3],[2],[1]]
=> [3,2,1]
=> [2,1]
=> 1010 => 0
[[3],[3]]
=> [3,3]
=> [3]
=> 1000 => 1
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> 1110 => 2
[[2,1],[2],[1]]
=> [3,2,1]
=> [2,1]
=> 1010 => 0
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> 1010 => 0
[[2,1],[2,1]]
=> [3,3]
=> [3]
=> 1000 => 1
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> 1110 => 2
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> 1010 => 0
[[1,1,1],[1,1,1]]
=> [3,3]
=> [3]
=> 1000 => 1
[[4],[1],[1]]
=> [4,1,1]
=> [1,1]
=> 110 => 1
[[4],[2]]
=> [4,2]
=> [2]
=> 100 => 1
[[3,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> 110 => 1
[[3,1],[2]]
=> [4,2]
=> [2]
=> 100 => 1
[[3,1],[1,1]]
=> [4,2]
=> [2]
=> 100 => 1
[[2,2],[1],[1]]
=> [4,1,1]
=> [1,1]
=> 110 => 1
[[2,2],[2]]
=> [4,2]
=> [2]
=> 100 => 1
[[2,2],[1,1]]
=> [4,2]
=> [2]
=> 100 => 1
[[2,1,1],[1],[1]]
=> [4,1,1]
=> [1,1]
=> 110 => 1
[[2,1,1],[2]]
=> [4,2]
=> [2]
=> 100 => 1
[[6]]
=> [6]
=> []
=> => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[5,1]]
=> [6]
=> []
=> => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[4,2]]
=> [6]
=> []
=> => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[4,1,1]]
=> [6]
=> []
=> => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[3,3]]
=> [6]
=> []
=> => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[3,2,1]]
=> [6]
=> []
=> => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[3,1,1,1]]
=> [6]
=> []
=> => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[2,2,2]]
=> [6]
=> []
=> => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[2,2,1,1]]
=> [6]
=> []
=> => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[2,1,1,1,1]]
=> [6]
=> []
=> => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[1,1,1,1,1,1]]
=> [6]
=> []
=> => ? ∊ {0,0,0,0,0,1,2,2,2,2,2,2,2,2,3,3}
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 1111110 => ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 111110 => ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> 101110 => ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> 11010 => ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> 111110 => ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> 101110 => ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> 11010 => ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 11110 => ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> 10110 => ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[[3],[3],[1]]
=> [3,3,1]
=> [3,1]
=> 10010 => ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 11110 => ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> 10110 => ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> 10110 => ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[[2,1],[2,1],[1]]
=> [3,3,1]
=> [3,1]
=> 10010 => ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> 11110 => ? ∊ {0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3}
Description
The number of indecomposable projective-injective modules in the algebra corresponding to a subset. Let $A_n=K[x]/(x^n)$. We associate to a nonempty subset S of an (n-1)-set the module $M_S$, which is the direct sum of $A_n$-modules with indecomposable non-projective direct summands of dimension $i$ when $i$ is in $S$ (note that such modules have vector space dimension at most n-1). Then the corresponding algebra associated to S is the stable endomorphism ring of $M_S$. We decode the subset as a binary word so that for example the subset $S=\{1,3 \} $ of $\{1,2,3 \}$ is decoded as 101.
Matching statistic: St000668
Mp00311: Plane partitions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000668: Integer partitions ⟶ ℤResult quality: 39% values known / values provided: 39%distinct values known / distinct values provided: 50%
Values
[[1]]
=> [1]
=> []
=> ?
=> ? = 0
[[1],[1]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1}
[[2]]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1}
[[1,1]]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1}
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,1,1,1}
[[2],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1}
[[1,1],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1}
[[3]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1}
[[2,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1}
[[1,1,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1}
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[2],[2]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[1,1],[1,1]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[3],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[2,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[1,1,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[4]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[3,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[2,2]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[2,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[1,1,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,2],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[5]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3,2]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,2,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 2
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[3],[3]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[2,1],[2,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[1,1,1],[1,1,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,3}
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 2
[[4],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 2
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[[1,1],[1,1],[1,1],[1,1]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 2
[[3],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[3],[2],[1],[1],[1]]
=> [3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[2],[1]]
=> [3,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[3],[1],[1]]
=> [3,3,1,1]
=> [3,1,1]
=> [1,1]
=> 1
Description
The least common multiple of the parts of the partition.
Matching statistic: St000698
Mp00311: Plane partitions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000698: Integer partitions ⟶ ℤResult quality: 39% values known / values provided: 39%distinct values known / distinct values provided: 83%
Values
[[1]]
=> [1]
=> []
=> ?
=> ? = 0
[[1],[1]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1}
[[2]]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1}
[[1,1]]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1}
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,1,1,1}
[[2],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1}
[[1,1],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1}
[[3]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1}
[[2,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1}
[[1,1,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1}
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[2],[2]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[1,1],[1,1]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[3],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[2,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[1,1,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[4]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[3,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[2,2]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[2,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[1,1,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,2],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[5]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3,2]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,2,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 2
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3}
[[3],[3]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3}
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3}
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3}
[[2,1],[2,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3}
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3}
[[1,1,1],[1,1,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3}
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 2
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 2
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 0
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 2
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 0
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[4],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 3
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 2
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 2
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 2
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 2
[[1,1],[1,1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 2
[[1,1],[1,1],[1,1],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[[1,1],[1,1],[1,1],[1,1]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 2
[[3],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 2
[[3],[2],[1],[1],[1]]
=> [3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[2],[1]]
=> [3,2,2,1]
=> [2,2,1]
=> [2,1]
=> 0
[[3],[3],[1],[1]]
=> [3,3,1,1]
=> [3,1,1]
=> [1,1]
=> 1
Description
The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. For any positive integer $k$, one associates a $k$-core to a partition by repeatedly removing all rim hooks of size $k$. This statistic counts the $2$-rim hooks that are removed in this process to obtain a $2$-core.
Matching statistic: St001128
Mp00311: Plane partitions to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001128: Integer partitions ⟶ ℤResult quality: 39% values known / values provided: 39%distinct values known / distinct values provided: 50%
Values
[[1]]
=> [1]
=> []
=> ?
=> ? = 0
[[1],[1]]
=> [1,1]
=> [1]
=> []
=> ? ∊ {0,1,1}
[[2]]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1}
[[1,1]]
=> [2]
=> []
=> ?
=> ? ∊ {0,1,1}
[[1],[1],[1]]
=> [1,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,1,1,1}
[[2],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1}
[[1,1],[1]]
=> [2,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1}
[[3]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1}
[[2,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1}
[[1,1,1]]
=> [3]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1}
[[1],[1],[1],[1]]
=> [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[2],[2]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[1,1],[1],[1]]
=> [2,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[1,1],[1,1]]
=> [2,2]
=> [2]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[3],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[2,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[1,1,1],[1]]
=> [3,1]
=> [1]
=> []
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[4]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[3,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[2,2]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[2,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[1,1,1,1]]
=> [4]
=> []
=> ?
=> ? ∊ {0,0,0,1,1,1,1,1,1,1,2,2}
[[1],[1],[1],[1],[1]]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2],[2],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1],[1],[1],[1]]
=> [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1]]
=> [2,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[2]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1],[1],[1]]
=> [3,1,1]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1],[1,1]]
=> [3,2]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,2],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1],[1]]
=> [4,1]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[5]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[4,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3,2]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[3,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,2,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[2,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1,1,1,1,1]]
=> [5]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2}
[[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2],[2],[2]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[1,1],[1],[1],[1],[1]]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1],[1]]
=> [2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1],[1,1],[1,1]]
=> [2,2,2]
=> [2,2]
=> [2]
=> 1
[[3],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3}
[[3],[3]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3}
[[2,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1],[2],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3}
[[2,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3}
[[2,1],[2,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3}
[[1,1,1],[1],[1],[1]]
=> [3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1]]
=> [3,2,1]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3}
[[1,1,1],[1,1,1]]
=> [3,3]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3}
[[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[2],[2],[2],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[1,1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1]]
=> [2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1]]
=> [2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[3],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[2,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[2,1],[2],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[2],[2]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[2,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[2,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[1,1,1],[1],[1],[1],[1]]
=> [3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[[1,1,1],[1,1],[1],[1]]
=> [3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[[1,1,1],[1,1],[1,1]]
=> [3,2,2]
=> [2,2]
=> [2]
=> 1
[[4],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[3,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,2],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[2,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1,1,1,1],[1],[1],[1]]
=> [4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[[1],[1],[1],[1],[1],[1],[1],[1]]
=> [1,1,1,1,1,1,1,1]
=> [1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> 1
[[2],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[2],[2],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[[2],[2],[2],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[[2],[2],[2],[2]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 1
[[1,1],[1],[1],[1],[1],[1],[1]]
=> [2,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[[1,1],[1,1],[1],[1],[1],[1]]
=> [2,2,1,1,1,1]
=> [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[[1,1],[1,1],[1,1],[1],[1]]
=> [2,2,2,1,1]
=> [2,2,1,1]
=> [2,1,1]
=> 2
[[1,1],[1,1],[1,1],[1,1]]
=> [2,2,2,2]
=> [2,2,2]
=> [2,2]
=> 1
[[3],[1],[1],[1],[1],[1]]
=> [3,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[[3],[2],[1],[1],[1]]
=> [3,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[[3],[2],[2],[1]]
=> [3,2,2,1]
=> [2,2,1]
=> [2,1]
=> 2
[[3],[3],[1],[1]]
=> [3,3,1,1]
=> [3,1,1]
=> [1,1]
=> 1
Description
The exponens consonantiae of a partition. This is the quotient of the least common multiple and the greatest common divior of the parts of the partiton. See [1, Caput sextum, §19-§22].
The following 1 statistic also match your data. Click on any of them to see the details.
St001568The smallest positive integer that does not appear twice in the partition.