searching the database
Your data matches 162 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001333
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00088: Permutations —Kreweras complement⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001333: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00088: Permutations —Kreweras complement⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St001333: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [1] => ([],1)
=> 0
[1,2] => [1,2] => [2,1] => ([(0,1)],2)
=> 1
[2,1] => [1,2] => [2,1] => ([(0,1)],2)
=> 1
[1,2,3] => [1,2,3] => [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[1,3,2] => [1,2,3] => [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[2,1,3] => [1,2,3] => [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[2,3,1] => [1,2,3] => [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[3,1,2] => [1,3,2] => [2,1,3] => ([(1,2)],3)
=> 1
[3,2,1] => [1,3,2] => [2,1,3] => ([(1,2)],3)
=> 1
[1,2,3,4] => [1,2,3,4] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,2,4,3] => [1,2,3,4] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,3,2,4] => [1,2,3,4] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,3,4,2] => [1,2,3,4] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[1,4,2,3] => [1,2,4,3] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> 1
[1,4,3,2] => [1,2,4,3] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> 1
[2,1,3,4] => [1,2,3,4] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[2,1,4,3] => [1,2,3,4] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[2,3,1,4] => [1,2,3,4] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[2,3,4,1] => [1,2,3,4] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[2,4,1,3] => [1,2,4,3] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> 1
[2,4,3,1] => [1,2,4,3] => [2,3,1,4] => ([(1,3),(2,3)],4)
=> 1
[3,1,2,4] => [1,3,2,4] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,1,4,2] => [1,3,4,2] => [2,1,3,4] => ([(2,3)],4)
=> 1
[3,2,1,4] => [1,3,2,4] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,2,4,1] => [1,3,4,2] => [2,1,3,4] => ([(2,3)],4)
=> 1
[3,4,1,2] => [1,3,2,4] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,4,2,1] => [1,3,2,4] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[4,1,2,3] => [1,4,3,2] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> 2
[4,1,3,2] => [1,4,2,3] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 1
[4,2,1,3] => [1,4,3,2] => [2,1,4,3] => ([(0,3),(1,2)],4)
=> 2
[4,2,3,1] => [1,4,2,3] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 1
[4,3,1,2] => [1,4,2,3] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 1
[4,3,2,1] => [1,4,2,3] => [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 1
[1,2,3,4,5] => [1,2,3,4,5] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,2,3,5,4] => [1,2,3,4,5] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,2,4,3,5] => [1,2,3,4,5] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,2,4,5,3] => [1,2,3,4,5] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,2,5,3,4] => [1,2,3,5,4] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> 1
[1,2,5,4,3] => [1,2,3,5,4] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> 1
[1,3,2,4,5] => [1,2,3,4,5] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,3,2,5,4] => [1,2,3,4,5] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,3,4,2,5] => [1,2,3,4,5] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,3,4,5,2] => [1,2,3,4,5] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,3,5,2,4] => [1,2,3,5,4] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> 1
[1,3,5,4,2] => [1,2,3,5,4] => [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> 1
[1,4,2,3,5] => [1,2,4,3,5] => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,4,2,5,3] => [1,2,4,5,3] => [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> 1
[1,4,3,2,5] => [1,2,4,3,5] => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,4,3,5,2] => [1,2,4,5,3] => [2,3,1,4,5] => ([(2,4),(3,4)],5)
=> 1
[1,4,5,2,3] => [1,2,4,3,5] => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
Description
The cardinality of a minimal edge-isolating set of a graph.
Let $\mathcal F$ be a set of graphs. A set of vertices $S$ is $\mathcal F$-isolating, if the subgraph induced by the vertices in the complement of the closed neighbourhood of $S$ does not contain any graph in $\mathcal F$.
This statistic returns the cardinality of the smallest isolating set when $\mathcal F$ contains only the graph with one edge.
Matching statistic: St001737
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
St001737: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00014: Binary trees —to 132-avoiding permutation⟶ Permutations
St001737: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1] => [1] => [.,.]
=> [1] => 0
[1,2] => [1,2] => [.,[.,.]]
=> [2,1] => 1
[2,1] => [1,2] => [.,[.,.]]
=> [2,1] => 1
[1,2,3] => [1,2,3] => [.,[.,[.,.]]]
=> [3,2,1] => 1
[1,3,2] => [1,2,3] => [.,[.,[.,.]]]
=> [3,2,1] => 1
[2,1,3] => [1,2,3] => [.,[.,[.,.]]]
=> [3,2,1] => 1
[2,3,1] => [1,2,3] => [.,[.,[.,.]]]
=> [3,2,1] => 1
[3,1,2] => [1,3,2] => [.,[[.,.],.]]
=> [2,3,1] => 1
[3,2,1] => [1,3,2] => [.,[[.,.],.]]
=> [2,3,1] => 1
[1,2,3,4] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => 1
[1,2,4,3] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => 1
[1,3,2,4] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => 1
[1,3,4,2] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => 1
[1,4,2,3] => [1,2,4,3] => [.,[.,[[.,.],.]]]
=> [3,4,2,1] => 1
[1,4,3,2] => [1,2,4,3] => [.,[.,[[.,.],.]]]
=> [3,4,2,1] => 1
[2,1,3,4] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => 1
[2,1,4,3] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => 1
[2,3,1,4] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => 1
[2,3,4,1] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [4,3,2,1] => 1
[2,4,1,3] => [1,2,4,3] => [.,[.,[[.,.],.]]]
=> [3,4,2,1] => 1
[2,4,3,1] => [1,2,4,3] => [.,[.,[[.,.],.]]]
=> [3,4,2,1] => 1
[3,1,2,4] => [1,3,2,4] => [.,[[.,.],[.,.]]]
=> [4,2,3,1] => 1
[3,1,4,2] => [1,3,4,2] => [.,[[.,[.,.]],.]]
=> [3,2,4,1] => 2
[3,2,1,4] => [1,3,2,4] => [.,[[.,.],[.,.]]]
=> [4,2,3,1] => 1
[3,2,4,1] => [1,3,4,2] => [.,[[.,[.,.]],.]]
=> [3,2,4,1] => 2
[3,4,1,2] => [1,3,2,4] => [.,[[.,.],[.,.]]]
=> [4,2,3,1] => 1
[3,4,2,1] => [1,3,2,4] => [.,[[.,.],[.,.]]]
=> [4,2,3,1] => 1
[4,1,2,3] => [1,4,3,2] => [.,[[[.,.],.],.]]
=> [2,3,4,1] => 1
[4,1,3,2] => [1,4,2,3] => [.,[[.,.],[.,.]]]
=> [4,2,3,1] => 1
[4,2,1,3] => [1,4,3,2] => [.,[[[.,.],.],.]]
=> [2,3,4,1] => 1
[4,2,3,1] => [1,4,2,3] => [.,[[.,.],[.,.]]]
=> [4,2,3,1] => 1
[4,3,1,2] => [1,4,2,3] => [.,[[.,.],[.,.]]]
=> [4,2,3,1] => 1
[4,3,2,1] => [1,4,2,3] => [.,[[.,.],[.,.]]]
=> [4,2,3,1] => 1
[1,2,3,4,5] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => 1
[1,2,3,5,4] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => 1
[1,2,4,3,5] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => 1
[1,2,4,5,3] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => 1
[1,2,5,3,4] => [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => 1
[1,2,5,4,3] => [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => 1
[1,3,2,4,5] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => 1
[1,3,2,5,4] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => 1
[1,3,4,2,5] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => 1
[1,3,4,5,2] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => 1
[1,3,5,2,4] => [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => 1
[1,3,5,4,2] => [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => 1
[1,4,2,3,5] => [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => 1
[1,4,2,5,3] => [1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => 2
[1,4,3,2,5] => [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => 1
[1,4,3,5,2] => [1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => 2
[1,4,5,2,3] => [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => 1
Description
The number of descents of type 2 in a permutation.
A position $i\in[1,n-1]$ is a descent of type 2 of a permutation $\pi$ of $n$ letters, if it is a descent and if $\pi(j) < \pi(i)$ for all $j < i$.
Matching statistic: St001162
St001162: Permutations ⟶ ℤResult quality: 75% ●values known / values provided: 100%●distinct values known / distinct values provided: 75%
Values
[1] => ? = 0
[1,2] => 1
[2,1] => 1
[1,2,3] => 1
[1,3,2] => 1
[2,1,3] => 1
[2,3,1] => 1
[3,1,2] => 1
[3,2,1] => 1
[1,2,3,4] => 1
[1,2,4,3] => 1
[1,3,2,4] => 1
[1,3,4,2] => 1
[1,4,2,3] => 1
[1,4,3,2] => 1
[2,1,3,4] => 1
[2,1,4,3] => 1
[2,3,1,4] => 1
[2,3,4,1] => 1
[2,4,1,3] => 2
[2,4,3,1] => 1
[3,1,2,4] => 1
[3,1,4,2] => 2
[3,2,1,4] => 1
[3,2,4,1] => 1
[3,4,1,2] => 1
[3,4,2,1] => 1
[4,1,2,3] => 1
[4,1,3,2] => 1
[4,2,1,3] => 1
[4,2,3,1] => 1
[4,3,1,2] => 1
[4,3,2,1] => 1
[1,2,3,4,5] => 1
[1,2,3,5,4] => 1
[1,2,4,3,5] => 1
[1,2,4,5,3] => 1
[1,2,5,3,4] => 1
[1,2,5,4,3] => 1
[1,3,2,4,5] => 1
[1,3,2,5,4] => 1
[1,3,4,2,5] => 1
[1,3,4,5,2] => 1
[1,3,5,2,4] => 2
[1,3,5,4,2] => 1
[1,4,2,3,5] => 1
[1,4,2,5,3] => 2
[1,4,3,2,5] => 1
[1,4,3,5,2] => 1
[1,4,5,2,3] => 1
[1,4,5,3,2] => 1
Description
The minimum jump of a permutation.
This is $\min_i |\pi_{i+1}-\pi_i|$, see [1].
Matching statistic: St001199
(load all 33 compositions to match this statistic)
(load all 33 compositions to match this statistic)
Mp00090: Permutations —cycle-as-one-line notation⟶ Permutations
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
St001199: Dyck paths ⟶ ℤResult quality: 50% ●values known / values provided: 93%●distinct values known / distinct values provided: 50%
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00020: Binary trees —to Tamari-corresponding Dyck path⟶ Dyck paths
St001199: Dyck paths ⟶ ℤResult quality: 50% ●values known / values provided: 93%●distinct values known / distinct values provided: 50%
Values
[1] => [1] => [.,.]
=> [1,0]
=> ? = 0
[1,2] => [1,2] => [.,[.,.]]
=> [1,1,0,0]
=> ? ∊ {1,1}
[2,1] => [1,2] => [.,[.,.]]
=> [1,1,0,0]
=> ? ∊ {1,1}
[1,2,3] => [1,2,3] => [.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> ? ∊ {1,1,1,1}
[1,3,2] => [1,2,3] => [.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> ? ∊ {1,1,1,1}
[2,1,3] => [1,2,3] => [.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> ? ∊ {1,1,1,1}
[2,3,1] => [1,2,3] => [.,[.,[.,.]]]
=> [1,1,1,0,0,0]
=> ? ∊ {1,1,1,1}
[3,1,2] => [1,3,2] => [.,[[.,.],.]]
=> [1,1,0,1,0,0]
=> 1
[3,2,1] => [1,3,2] => [.,[[.,.],.]]
=> [1,1,0,1,0,0]
=> 1
[1,2,3,4] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2}
[1,2,4,3] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2}
[1,3,2,4] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2}
[1,3,4,2] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2}
[1,4,2,3] => [1,2,4,3] => [.,[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0]
=> 1
[1,4,3,2] => [1,2,4,3] => [.,[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0]
=> 1
[2,1,3,4] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2}
[2,1,4,3] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2}
[2,3,1,4] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2}
[2,3,4,1] => [1,2,3,4] => [.,[.,[.,[.,.]]]]
=> [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2}
[2,4,1,3] => [1,2,4,3] => [.,[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0]
=> 1
[2,4,3,1] => [1,2,4,3] => [.,[.,[[.,.],.]]]
=> [1,1,1,0,1,0,0,0]
=> 1
[3,1,2,4] => [1,3,2,4] => [.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> 1
[3,1,4,2] => [1,3,4,2] => [.,[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0]
=> 1
[3,2,1,4] => [1,3,2,4] => [.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> 1
[3,2,4,1] => [1,3,4,2] => [.,[[.,[.,.]],.]]
=> [1,1,1,0,0,1,0,0]
=> 1
[3,4,1,2] => [1,3,2,4] => [.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> 1
[3,4,2,1] => [1,3,2,4] => [.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> 1
[4,1,2,3] => [1,4,3,2] => [.,[[[.,.],.],.]]
=> [1,1,0,1,0,1,0,0]
=> 1
[4,1,3,2] => [1,4,2,3] => [.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> 1
[4,2,1,3] => [1,4,3,2] => [.,[[[.,.],.],.]]
=> [1,1,0,1,0,1,0,0]
=> 1
[4,2,3,1] => [1,4,2,3] => [.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> 1
[4,3,1,2] => [1,4,2,3] => [.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> 1
[4,3,2,1] => [1,4,2,3] => [.,[[.,.],[.,.]]]
=> [1,1,0,1,1,0,0,0]
=> 1
[1,2,3,4,5] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2}
[1,2,3,5,4] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2}
[1,2,4,3,5] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2}
[1,2,4,5,3] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2}
[1,2,5,3,4] => [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,2,5,4,3] => [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,3,2,4,5] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2}
[1,3,2,5,4] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2}
[1,3,4,2,5] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2}
[1,3,4,5,2] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2}
[1,3,5,2,4] => [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,3,5,4,2] => [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[1,4,2,3,5] => [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,4,2,5,3] => [1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,4,3,2,5] => [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,4,3,5,2] => [1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,4,5,2,3] => [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,4,5,3,2] => [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,5,2,3,4] => [1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
[1,5,2,4,3] => [1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,5,3,2,4] => [1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
[1,5,3,4,2] => [1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,5,4,2,3] => [1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,5,4,3,2] => [1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[2,1,3,4,5] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2}
[2,1,3,5,4] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2}
[2,1,4,3,5] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2}
[2,1,4,5,3] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2}
[2,1,5,3,4] => [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[2,1,5,4,3] => [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[2,3,1,4,5] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2}
[2,3,1,5,4] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2}
[2,3,4,1,5] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2}
[2,3,4,5,1] => [1,2,3,4,5] => [.,[.,[.,[.,[.,.]]]]]
=> [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2}
[2,3,5,1,4] => [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[2,3,5,4,1] => [1,2,3,5,4] => [.,[.,[.,[[.,.],.]]]]
=> [1,1,1,1,0,1,0,0,0,0]
=> 1
[2,4,1,3,5] => [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[2,4,1,5,3] => [1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[2,4,3,1,5] => [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[2,4,3,5,1] => [1,2,4,5,3] => [.,[.,[[.,[.,.]],.]]]
=> [1,1,1,1,0,0,1,0,0,0]
=> 1
[2,4,5,1,3] => [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[2,4,5,3,1] => [1,2,4,3,5] => [.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[2,5,1,3,4] => [1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
[2,5,1,4,3] => [1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[2,5,3,1,4] => [1,2,5,4,3] => [.,[.,[[[.,.],.],.]]]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
[2,5,3,4,1] => [1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[2,5,4,1,3] => [1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[2,5,4,3,1] => [1,2,5,3,4] => [.,[.,[[.,.],[.,.]]]]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[1,2,3,4,5,6] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,2,3,4,6,5] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,2,3,5,4,6] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,2,3,5,6,4] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,2,4,3,5,6] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,2,4,3,6,5] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,2,4,5,3,6] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,2,4,5,6,3] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,3,2,4,5,6] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,3,2,4,6,5] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,3,2,5,4,6] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,3,2,5,6,4] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,3,4,2,5,6] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,3,4,2,6,5] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,3,4,5,2,6] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[1,3,4,5,6,2] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,1,3,4,5,6] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,1,3,4,6,5] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,1,3,5,4,6] => [1,2,3,4,5,6] => [.,[.,[.,[.,[.,[.,.]]]]]]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
Description
The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Matching statistic: St001934
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00248: Permutations —DEX composition⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001934: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 93%●distinct values known / distinct values provided: 50%
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001934: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 93%●distinct values known / distinct values provided: 50%
Values
[1] => [1] => [1]
=> []
=> ? = 0
[1,2] => [2] => [2]
=> []
=> ? ∊ {1,1}
[2,1] => [2] => [2]
=> []
=> ? ∊ {1,1}
[1,2,3] => [3] => [3]
=> []
=> ? ∊ {1,1,1,1}
[1,3,2] => [1,2] => [2,1]
=> [1]
=> 1
[2,1,3] => [3] => [3]
=> []
=> ? ∊ {1,1,1,1}
[2,3,1] => [3] => [3]
=> []
=> ? ∊ {1,1,1,1}
[3,1,2] => [3] => [3]
=> []
=> ? ∊ {1,1,1,1}
[3,2,1] => [2,1] => [2,1]
=> [1]
=> 1
[1,2,3,4] => [4] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[1,2,4,3] => [2,2] => [2,2]
=> [2]
=> 1
[1,3,2,4] => [1,3] => [3,1]
=> [1]
=> 1
[1,3,4,2] => [1,3] => [3,1]
=> [1]
=> 1
[1,4,2,3] => [1,3] => [3,1]
=> [1]
=> 1
[1,4,3,2] => [1,2,1] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,4] => [4] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[2,1,4,3] => [2,2] => [2,2]
=> [2]
=> 1
[2,3,1,4] => [4] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[2,3,4,1] => [4] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[2,4,1,3] => [4] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[2,4,3,1] => [3,1] => [3,1]
=> [1]
=> 1
[3,1,2,4] => [4] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[3,1,4,2] => [2,2] => [2,2]
=> [2]
=> 1
[3,2,1,4] => [2,2] => [2,2]
=> [2]
=> 1
[3,2,4,1] => [2,2] => [2,2]
=> [2]
=> 1
[3,4,1,2] => [4] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[3,4,2,1] => [3,1] => [3,1]
=> [1]
=> 1
[4,1,2,3] => [4] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2}
[4,1,3,2] => [3,1] => [3,1]
=> [1]
=> 1
[4,2,1,3] => [2,2] => [2,2]
=> [2]
=> 1
[4,2,3,1] => [3,1] => [3,1]
=> [1]
=> 1
[4,3,1,2] => [1,3] => [3,1]
=> [1]
=> 1
[4,3,2,1] => [1,2,1] => [2,1,1]
=> [1,1]
=> 1
[1,2,3,4,5] => [5] => [5]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,2,3,5,4] => [3,2] => [3,2]
=> [2]
=> 1
[1,2,4,3,5] => [2,3] => [3,2]
=> [2]
=> 1
[1,2,4,5,3] => [2,3] => [3,2]
=> [2]
=> 1
[1,2,5,3,4] => [2,3] => [3,2]
=> [2]
=> 1
[1,2,5,4,3] => [2,2,1] => [2,2,1]
=> [2,1]
=> 1
[1,3,2,4,5] => [1,4] => [4,1]
=> [1]
=> 1
[1,3,2,5,4] => [1,2,2] => [2,2,1]
=> [2,1]
=> 1
[1,3,4,2,5] => [1,4] => [4,1]
=> [1]
=> 1
[1,3,4,5,2] => [1,4] => [4,1]
=> [1]
=> 1
[1,3,5,2,4] => [1,4] => [4,1]
=> [1]
=> 1
[1,3,5,4,2] => [1,3,1] => [3,1,1]
=> [1,1]
=> 1
[1,4,2,3,5] => [1,4] => [4,1]
=> [1]
=> 1
[1,4,2,5,3] => [1,2,2] => [2,2,1]
=> [2,1]
=> 1
[1,4,3,2,5] => [1,2,2] => [2,2,1]
=> [2,1]
=> 1
[1,4,3,5,2] => [1,2,2] => [2,2,1]
=> [2,1]
=> 1
[1,4,5,2,3] => [1,4] => [4,1]
=> [1]
=> 1
[1,4,5,3,2] => [1,3,1] => [3,1,1]
=> [1,1]
=> 1
[1,5,2,3,4] => [1,4] => [4,1]
=> [1]
=> 1
[1,5,2,4,3] => [1,3,1] => [3,1,1]
=> [1,1]
=> 1
[1,5,3,2,4] => [1,2,2] => [2,2,1]
=> [2,1]
=> 1
[1,5,3,4,2] => [1,3,1] => [3,1,1]
=> [1,1]
=> 1
[1,5,4,2,3] => [1,1,3] => [3,1,1]
=> [1,1]
=> 1
[1,5,4,3,2] => [1,1,2,1] => [2,1,1,1]
=> [1,1,1]
=> 1
[2,1,3,4,5] => [5] => [5]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[2,1,3,5,4] => [3,2] => [3,2]
=> [2]
=> 1
[2,1,4,3,5] => [2,3] => [3,2]
=> [2]
=> 1
[2,1,4,5,3] => [2,3] => [3,2]
=> [2]
=> 1
[2,1,5,3,4] => [2,3] => [3,2]
=> [2]
=> 1
[2,1,5,4,3] => [2,2,1] => [2,2,1]
=> [2,1]
=> 1
[2,3,1,4,5] => [5] => [5]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[2,3,1,5,4] => [3,2] => [3,2]
=> [2]
=> 1
[2,3,4,1,5] => [5] => [5]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[2,3,4,5,1] => [5] => [5]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[2,3,5,1,4] => [5] => [5]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[2,3,5,4,1] => [4,1] => [4,1]
=> [1]
=> 1
[2,4,1,3,5] => [5] => [5]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[2,4,1,5,3] => [3,2] => [3,2]
=> [2]
=> 1
[2,4,3,1,5] => [3,2] => [3,2]
=> [2]
=> 1
[2,4,5,1,3] => [5] => [5]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[2,5,1,3,4] => [5] => [5]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[3,1,2,4,5] => [5] => [5]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[3,4,1,2,5] => [5] => [5]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[3,4,5,1,2] => [5] => [5]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[3,5,1,2,4] => [5] => [5]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[4,1,2,3,5] => [5] => [5]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[4,5,1,2,3] => [5] => [5]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,1,2,3,4] => [5] => [5]
=> []
=> ? ∊ {1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,2,3,4,5,6] => [6] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,1,3,4,5,6] => [6] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,3,1,4,5,6] => [6] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,3,4,1,5,6] => [6] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,3,4,5,1,6] => [6] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,3,4,5,6,1] => [6] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,3,4,6,1,5] => [6] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,3,5,1,4,6] => [6] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,3,5,6,1,4] => [6] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,3,6,1,4,5] => [6] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,1,3,5,6] => [6] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,5,1,3,6] => [6] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,5,6,1,3] => [6] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,6,1,3,5] => [6] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,5,1,3,4,6] => [6] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,5,6,1,3,4] => [6] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,6,1,3,4,5] => [6] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,1,2,4,5,6] => [6] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,4,1,2,5,6] => [6] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
Description
The number of monotone factorisations of genus zero of a permutation of given cycle type.
A monotone factorisation of genus zero of a permutation $\pi\in\mathfrak S_n$ with $\ell$ cycles, including fixed points, is a tuple of $r = n - \ell$ transpositions
$$
(a_1, b_1),\dots,(a_r, b_r)
$$
with $b_1 \leq \dots \leq b_r$ and $a_i < b_i$ for all $i$, whose product, in this order, is $\pi$.
For example, the cycle $(2,3,1)$ has the two factorizations $(2,3)(1,3)$ and $(1,2)(2,3)$.
Matching statistic: St001432
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00313: Integer partitions —Glaisher-Franklin inverse⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001432: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 92%●distinct values known / distinct values provided: 50%
Mp00313: Integer partitions —Glaisher-Franklin inverse⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001432: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 92%●distinct values known / distinct values provided: 50%
Values
[1] => [1]
=> [1]
=> []
=> ? = 0
[1,2] => [1,1]
=> [2]
=> []
=> ? = 1
[2,1] => [2]
=> [1,1]
=> [1]
=> 1
[1,2,3] => [1,1,1]
=> [2,1]
=> [1]
=> 1
[1,3,2] => [2,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,3] => [2,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,3,1] => [3]
=> [3]
=> []
=> ? ∊ {1,1}
[3,1,2] => [3]
=> [3]
=> []
=> ? ∊ {1,1}
[3,2,1] => [2,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,3,4] => [1,1,1,1]
=> [2,2]
=> [2]
=> 1
[1,2,4,3] => [2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,3,2,4] => [2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,3,4,2] => [3,1]
=> [3,1]
=> [1]
=> 1
[1,4,2,3] => [3,1]
=> [3,1]
=> [1]
=> 1
[1,4,3,2] => [2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[2,1,3,4] => [2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[2,1,4,3] => [2,2]
=> [4]
=> []
=> ? ∊ {1,2,2}
[2,3,1,4] => [3,1]
=> [3,1]
=> [1]
=> 1
[2,3,4,1] => [4]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[2,4,1,3] => [4]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[2,4,3,1] => [3,1]
=> [3,1]
=> [1]
=> 1
[3,1,2,4] => [3,1]
=> [3,1]
=> [1]
=> 1
[3,1,4,2] => [4]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[3,2,1,4] => [2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[3,2,4,1] => [3,1]
=> [3,1]
=> [1]
=> 1
[3,4,1,2] => [2,2]
=> [4]
=> []
=> ? ∊ {1,2,2}
[3,4,2,1] => [4]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[4,1,2,3] => [4]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[4,1,3,2] => [3,1]
=> [3,1]
=> [1]
=> 1
[4,2,1,3] => [3,1]
=> [3,1]
=> [1]
=> 1
[4,2,3,1] => [2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[4,3,1,2] => [4]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[4,3,2,1] => [2,2]
=> [4]
=> []
=> ? ∊ {1,2,2}
[1,2,3,4,5] => [1,1,1,1,1]
=> [2,2,1]
=> [2,1]
=> 2
[1,2,3,5,4] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [3,2]
=> [2]
=> 1
[1,2,5,3,4] => [3,1,1]
=> [3,2]
=> [2]
=> 1
[1,2,5,4,3] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [4,1]
=> [1]
=> 1
[1,3,4,2,5] => [3,1,1]
=> [3,2]
=> [2]
=> 1
[1,3,4,5,2] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,3,5,2,4] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,3,5,4,2] => [3,1,1]
=> [3,2]
=> [2]
=> 1
[1,4,2,3,5] => [3,1,1]
=> [3,2]
=> [2]
=> 1
[1,4,2,5,3] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,4,3,2,5] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [3,2]
=> [2]
=> 1
[1,4,5,2,3] => [2,2,1]
=> [4,1]
=> [1]
=> 1
[1,4,5,3,2] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,5,2,3,4] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,5,2,4,3] => [3,1,1]
=> [3,2]
=> [2]
=> 1
[1,5,3,2,4] => [3,1,1]
=> [3,2]
=> [2]
=> 1
[1,5,3,4,2] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,5,4,2,3] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,5,4,3,2] => [2,2,1]
=> [4,1]
=> [1]
=> 1
[2,3,4,5,1] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[2,3,5,1,4] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[2,4,1,5,3] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[2,4,5,3,1] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[2,5,1,3,4] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[2,5,4,1,3] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[3,1,4,5,2] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[3,1,5,2,4] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[3,4,2,5,1] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[3,4,5,1,2] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[3,5,2,1,4] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[3,5,4,2,1] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[4,1,2,5,3] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[4,1,5,3,2] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[4,3,1,5,2] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[4,3,5,2,1] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[4,5,1,2,3] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[4,5,2,3,1] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,1,2,3,4] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,1,4,2,3] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,3,1,2,4] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,3,4,1,2] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,4,1,3,2] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,4,2,1,3] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[2,3,1,5,6,4] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,3,1,6,4,5] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,5,1,6,3] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,6,1,3,5] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,5,4,6,1,3] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,5,6,3,1,4] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,6,4,5,3,1] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,6,5,3,4,1] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,1,2,5,6,4] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,1,2,6,4,5] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,4,5,6,1,2] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,4,6,5,2,1] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,5,4,1,6,2] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,5,6,2,4,1] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,6,4,1,2,5] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,6,5,2,1,4] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[4,1,5,2,6,3] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[4,1,6,2,3,5] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[4,3,5,6,2,1] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
Description
The order dimension of the partition.
Given a partition $\lambda$, let $I(\lambda)$ be the principal order ideal in the Young lattice generated by $\lambda$. The order dimension of a partition is defined as the order dimension of the poset $I(\lambda)$.
Matching statistic: St001899
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00313: Integer partitions —Glaisher-Franklin inverse⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001899: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 92%●distinct values known / distinct values provided: 50%
Mp00313: Integer partitions —Glaisher-Franklin inverse⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001899: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 92%●distinct values known / distinct values provided: 50%
Values
[1] => [1]
=> [1]
=> []
=> ? = 0
[1,2] => [1,1]
=> [2]
=> []
=> ? = 1
[2,1] => [2]
=> [1,1]
=> [1]
=> 1
[1,2,3] => [1,1,1]
=> [2,1]
=> [1]
=> 1
[1,3,2] => [2,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,3] => [2,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,3,1] => [3]
=> [3]
=> []
=> ? ∊ {1,1}
[3,1,2] => [3]
=> [3]
=> []
=> ? ∊ {1,1}
[3,2,1] => [2,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,3,4] => [1,1,1,1]
=> [2,2]
=> [2]
=> 1
[1,2,4,3] => [2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,3,2,4] => [2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,3,4,2] => [3,1]
=> [3,1]
=> [1]
=> 1
[1,4,2,3] => [3,1]
=> [3,1]
=> [1]
=> 1
[1,4,3,2] => [2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[2,1,3,4] => [2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[2,1,4,3] => [2,2]
=> [4]
=> []
=> ? ∊ {1,2,2}
[2,3,1,4] => [3,1]
=> [3,1]
=> [1]
=> 1
[2,3,4,1] => [4]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[2,4,1,3] => [4]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[2,4,3,1] => [3,1]
=> [3,1]
=> [1]
=> 1
[3,1,2,4] => [3,1]
=> [3,1]
=> [1]
=> 1
[3,1,4,2] => [4]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[3,2,1,4] => [2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[3,2,4,1] => [3,1]
=> [3,1]
=> [1]
=> 1
[3,4,1,2] => [2,2]
=> [4]
=> []
=> ? ∊ {1,2,2}
[3,4,2,1] => [4]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[4,1,2,3] => [4]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[4,1,3,2] => [3,1]
=> [3,1]
=> [1]
=> 1
[4,2,1,3] => [3,1]
=> [3,1]
=> [1]
=> 1
[4,2,3,1] => [2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[4,3,1,2] => [4]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[4,3,2,1] => [2,2]
=> [4]
=> []
=> ? ∊ {1,2,2}
[1,2,3,4,5] => [1,1,1,1,1]
=> [2,2,1]
=> [2,1]
=> 2
[1,2,3,5,4] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [3,2]
=> [2]
=> 1
[1,2,5,3,4] => [3,1,1]
=> [3,2]
=> [2]
=> 1
[1,2,5,4,3] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [4,1]
=> [1]
=> 1
[1,3,4,2,5] => [3,1,1]
=> [3,2]
=> [2]
=> 1
[1,3,4,5,2] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,3,5,2,4] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,3,5,4,2] => [3,1,1]
=> [3,2]
=> [2]
=> 1
[1,4,2,3,5] => [3,1,1]
=> [3,2]
=> [2]
=> 1
[1,4,2,5,3] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,4,3,2,5] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [3,2]
=> [2]
=> 1
[1,4,5,2,3] => [2,2,1]
=> [4,1]
=> [1]
=> 1
[1,4,5,3,2] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,5,2,3,4] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,5,2,4,3] => [3,1,1]
=> [3,2]
=> [2]
=> 1
[1,5,3,2,4] => [3,1,1]
=> [3,2]
=> [2]
=> 1
[1,5,3,4,2] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,5,4,2,3] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,5,4,3,2] => [2,2,1]
=> [4,1]
=> [1]
=> 1
[2,3,4,5,1] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[2,3,5,1,4] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[2,4,1,5,3] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[2,4,5,3,1] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[2,5,1,3,4] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[2,5,4,1,3] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[3,1,4,5,2] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[3,1,5,2,4] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[3,4,2,5,1] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[3,4,5,1,2] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[3,5,2,1,4] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[3,5,4,2,1] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[4,1,2,5,3] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[4,1,5,3,2] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[4,3,1,5,2] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[4,3,5,2,1] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[4,5,1,2,3] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[4,5,2,3,1] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,1,2,3,4] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,1,4,2,3] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,3,1,2,4] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,3,4,1,2] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,4,1,3,2] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,4,2,1,3] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[2,3,1,5,6,4] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,3,1,6,4,5] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,5,1,6,3] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,6,1,3,5] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,5,4,6,1,3] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,5,6,3,1,4] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,6,4,5,3,1] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,6,5,3,4,1] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,1,2,5,6,4] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,1,2,6,4,5] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,4,5,6,1,2] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,4,6,5,2,1] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,5,4,1,6,2] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,5,6,2,4,1] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,6,4,1,2,5] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,6,5,2,1,4] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[4,1,5,2,6,3] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[4,1,6,2,3,5] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[4,3,5,6,2,1] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
Description
The total number of irreducible representations contained in the higher Lie character for an integer partition.
Matching statistic: St001900
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00313: Integer partitions —Glaisher-Franklin inverse⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001900: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 92%●distinct values known / distinct values provided: 50%
Mp00313: Integer partitions —Glaisher-Franklin inverse⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001900: Integer partitions ⟶ ℤResult quality: 50% ●values known / values provided: 92%●distinct values known / distinct values provided: 50%
Values
[1] => [1]
=> [1]
=> []
=> ? = 0
[1,2] => [1,1]
=> [2]
=> []
=> ? = 1
[2,1] => [2]
=> [1,1]
=> [1]
=> 1
[1,2,3] => [1,1,1]
=> [2,1]
=> [1]
=> 1
[1,3,2] => [2,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,3] => [2,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,3,1] => [3]
=> [3]
=> []
=> ? ∊ {1,1}
[3,1,2] => [3]
=> [3]
=> []
=> ? ∊ {1,1}
[3,2,1] => [2,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,3,4] => [1,1,1,1]
=> [2,2]
=> [2]
=> 1
[1,2,4,3] => [2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,3,2,4] => [2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[1,3,4,2] => [3,1]
=> [3,1]
=> [1]
=> 1
[1,4,2,3] => [3,1]
=> [3,1]
=> [1]
=> 1
[1,4,3,2] => [2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[2,1,3,4] => [2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[2,1,4,3] => [2,2]
=> [4]
=> []
=> ? ∊ {1,2,2}
[2,3,1,4] => [3,1]
=> [3,1]
=> [1]
=> 1
[2,3,4,1] => [4]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[2,4,1,3] => [4]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[2,4,3,1] => [3,1]
=> [3,1]
=> [1]
=> 1
[3,1,2,4] => [3,1]
=> [3,1]
=> [1]
=> 1
[3,1,4,2] => [4]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[3,2,1,4] => [2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[3,2,4,1] => [3,1]
=> [3,1]
=> [1]
=> 1
[3,4,1,2] => [2,2]
=> [4]
=> []
=> ? ∊ {1,2,2}
[3,4,2,1] => [4]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[4,1,2,3] => [4]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[4,1,3,2] => [3,1]
=> [3,1]
=> [1]
=> 1
[4,2,1,3] => [3,1]
=> [3,1]
=> [1]
=> 1
[4,2,3,1] => [2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[4,3,1,2] => [4]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[4,3,2,1] => [2,2]
=> [4]
=> []
=> ? ∊ {1,2,2}
[1,2,3,4,5] => [1,1,1,1,1]
=> [2,2,1]
=> [2,1]
=> 2
[1,2,3,5,4] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [3,2]
=> [2]
=> 1
[1,2,5,3,4] => [3,1,1]
=> [3,2]
=> [2]
=> 1
[1,2,5,4,3] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [4,1]
=> [1]
=> 1
[1,3,4,2,5] => [3,1,1]
=> [3,2]
=> [2]
=> 1
[1,3,4,5,2] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,3,5,2,4] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,3,5,4,2] => [3,1,1]
=> [3,2]
=> [2]
=> 1
[1,4,2,3,5] => [3,1,1]
=> [3,2]
=> [2]
=> 1
[1,4,2,5,3] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,4,3,2,5] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [3,2]
=> [2]
=> 1
[1,4,5,2,3] => [2,2,1]
=> [4,1]
=> [1]
=> 1
[1,4,5,3,2] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,5,2,3,4] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,5,2,4,3] => [3,1,1]
=> [3,2]
=> [2]
=> 1
[1,5,3,2,4] => [3,1,1]
=> [3,2]
=> [2]
=> 1
[1,5,3,4,2] => [2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[1,5,4,2,3] => [4,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,5,4,3,2] => [2,2,1]
=> [4,1]
=> [1]
=> 1
[2,3,4,5,1] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[2,3,5,1,4] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[2,4,1,5,3] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[2,4,5,3,1] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[2,5,1,3,4] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[2,5,4,1,3] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[3,1,4,5,2] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[3,1,5,2,4] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[3,4,2,5,1] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[3,4,5,1,2] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[3,5,2,1,4] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[3,5,4,2,1] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[4,1,2,5,3] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[4,1,5,3,2] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[4,3,1,5,2] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[4,3,5,2,1] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[4,5,1,2,3] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[4,5,2,3,1] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,1,2,3,4] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,1,4,2,3] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,3,1,2,4] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,3,4,1,2] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,4,1,3,2] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,4,2,1,3] => [5]
=> [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[2,3,1,5,6,4] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,3,1,6,4,5] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,5,1,6,3] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,4,6,1,3,5] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,5,4,6,1,3] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,5,6,3,1,4] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,6,4,5,3,1] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[2,6,5,3,4,1] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,1,2,5,6,4] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,1,2,6,4,5] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,4,5,6,1,2] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,4,6,5,2,1] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,5,4,1,6,2] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,5,6,2,4,1] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,6,4,1,2,5] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[3,6,5,2,1,4] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[4,1,5,2,6,3] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[4,1,6,2,3,5] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
[4,3,5,6,2,1] => [3,3]
=> [6]
=> []
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3}
Description
The number of distinct irreducible representations contained in the higher Lie character for an integer partition.
Matching statistic: St001198
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00223: Permutations —runsort⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001198: Dyck paths ⟶ ℤResult quality: 50% ●values known / values provided: 87%●distinct values known / distinct values provided: 50%
Mp00067: Permutations —Foata bijection⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001198: Dyck paths ⟶ ℤResult quality: 50% ●values known / values provided: 87%●distinct values known / distinct values provided: 50%
Values
[1] => [1] => [1] => [1,0]
=> ? = 0 + 1
[1,2] => [1,2] => [1,2] => [1,0,1,0]
=> 2 = 1 + 1
[2,1] => [1,2] => [1,2] => [1,0,1,0]
=> 2 = 1 + 1
[1,2,3] => [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,3,2] => [1,3,2] => [3,1,2] => [1,1,1,0,0,0]
=> ? ∊ {1,1} + 1
[2,1,3] => [1,3,2] => [3,1,2] => [1,1,1,0,0,0]
=> ? ∊ {1,1} + 1
[2,3,1] => [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 2 = 1 + 1
[3,1,2] => [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 2 = 1 + 1
[3,2,1] => [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,2,4,3] => [1,2,4,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,2,2} + 1
[1,3,2,4] => [1,3,2,4] => [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,3,4,2] => [1,3,4,2] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,4,2,3] => [1,4,2,3] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,4,3,2] => [1,4,2,3] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[2,1,3,4] => [1,3,4,2] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[2,1,4,3] => [1,4,2,3] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[2,3,1,4] => [1,4,2,3] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[2,3,4,1] => [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[2,4,1,3] => [1,3,2,4] => [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[2,4,3,1] => [1,2,4,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,2,2} + 1
[3,1,2,4] => [1,2,4,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,2,2} + 1
[3,1,4,2] => [1,4,2,3] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[3,2,1,4] => [1,4,2,3] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[3,2,4,1] => [1,2,4,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,2,2} + 1
[3,4,1,2] => [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[3,4,2,1] => [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[4,1,2,3] => [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[4,1,3,2] => [1,3,2,4] => [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[4,2,1,3] => [1,3,2,4] => [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[4,2,3,1] => [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[4,3,1,2] => [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[4,3,2,1] => [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,2,3,5,4] => [1,2,3,5,4] => [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[1,2,4,3,5] => [1,2,4,3,5] => [4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> 2 = 1 + 1
[1,2,4,5,3] => [1,2,4,5,3] => [4,1,2,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> 2 = 1 + 1
[1,2,5,3,4] => [1,2,5,3,4] => [1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,2,5,4,3] => [1,2,5,3,4] => [1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,3,2,4,5] => [1,3,2,4,5] => [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,3,2,5,4] => [1,3,2,5,4] => [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[1,3,4,2,5] => [1,3,4,2,5] => [3,1,4,2,5] => [1,1,1,0,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,3,4,5,2] => [1,3,4,5,2] => [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,3,5,2,4] => [1,3,5,2,4] => [3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,3,5,4,2] => [1,3,5,2,4] => [3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,4,2,3,5] => [1,4,2,3,5] => [1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,4,2,5,3] => [1,4,2,5,3] => [4,5,1,2,3] => [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,4,3,2,5] => [1,4,2,5,3] => [4,5,1,2,3] => [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,4,3,5,2] => [1,4,2,3,5] => [1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,4,5,2,3] => [1,4,5,2,3] => [1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,4,5,3,2] => [1,4,5,2,3] => [1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,5,2,3,4] => [1,5,2,3,4] => [1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,5,2,4,3] => [1,5,2,4,3] => [5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[1,5,3,2,4] => [1,5,2,4,3] => [5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[1,5,3,4,2] => [1,5,2,3,4] => [1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,5,4,2,3] => [1,5,2,3,4] => [1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,5,4,3,2] => [1,5,2,3,4] => [1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[2,1,3,4,5] => [1,3,4,5,2] => [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> 3 = 2 + 1
[2,1,3,5,4] => [1,3,5,2,4] => [3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 2 = 1 + 1
[2,1,4,3,5] => [1,4,2,3,5] => [1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[2,1,4,5,3] => [1,4,5,2,3] => [1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[2,3,5,4,1] => [1,2,3,5,4] => [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[2,4,1,5,3] => [1,5,2,4,3] => [5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[2,4,3,1,5] => [1,5,2,4,3] => [5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[2,5,4,1,3] => [1,3,2,5,4] => [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[3,1,5,2,4] => [1,5,2,4,3] => [5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[3,2,4,1,5] => [1,5,2,4,3] => [5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[3,5,4,1,2] => [1,2,3,5,4] => [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[3,5,4,2,1] => [1,2,3,5,4] => [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[4,1,2,3,5] => [1,2,3,5,4] => [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[4,1,3,2,5] => [1,3,2,5,4] => [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[4,2,3,5,1] => [1,2,3,5,4] => [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[4,2,5,1,3] => [1,3,2,5,4] => [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[4,3,5,1,2] => [1,2,3,5,4] => [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[4,3,5,2,1] => [1,2,3,5,4] => [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[1,2,3,4,6,5] => [1,2,3,4,6,5] => [6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[1,2,4,3,6,5] => [1,2,4,3,6,5] => [6,4,1,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[1,2,6,3,5,4] => [1,2,6,3,5,4] => [6,1,5,2,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[1,2,6,4,3,5] => [1,2,6,3,5,4] => [6,1,5,2,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[1,3,2,4,6,5] => [1,3,2,4,6,5] => [6,3,1,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[1,3,4,2,6,5] => [1,3,4,2,6,5] => [6,3,1,4,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[1,3,6,2,5,4] => [1,3,6,2,5,4] => [6,3,1,2,5,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[1,3,6,4,2,5] => [1,3,6,2,5,4] => [6,3,1,2,5,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[1,4,2,3,6,5] => [1,4,2,3,6,5] => [6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[1,4,3,6,5,2] => [1,4,2,3,6,5] => [6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[1,6,2,3,5,4] => [1,6,2,3,5,4] => [6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[1,6,2,4,5,3] => [1,6,2,4,5,3] => [6,1,2,4,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[1,6,3,2,4,5] => [1,6,2,4,5,3] => [6,1,2,4,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[1,6,3,5,4,2] => [1,6,2,3,5,4] => [6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[1,6,4,2,3,5] => [1,6,2,3,5,4] => [6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[1,6,4,3,5,2] => [1,6,2,3,5,4] => [6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[2,1,4,3,6,5] => [1,4,2,3,6,5] => [6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[2,1,6,3,5,4] => [1,6,2,3,5,4] => [6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[2,1,6,4,3,5] => [1,6,2,3,5,4] => [6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[2,3,4,6,5,1] => [1,2,3,4,6,5] => [6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[2,3,5,1,6,4] => [1,6,2,3,5,4] => [6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[2,3,5,4,1,6] => [1,6,2,3,5,4] => [6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[2,3,6,5,1,4] => [1,4,2,3,6,5] => [6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[2,4,3,6,5,1] => [1,2,4,3,6,5] => [6,4,1,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[2,4,5,1,6,3] => [1,6,2,4,5,3] => [6,1,2,4,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
Description
The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Matching statistic: St001206
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00223: Permutations —runsort⟶ Permutations
Mp00067: Permutations —Foata bijection⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001206: Dyck paths ⟶ ℤResult quality: 50% ●values known / values provided: 87%●distinct values known / distinct values provided: 50%
Mp00067: Permutations —Foata bijection⟶ Permutations
Mp00127: Permutations —left-to-right-maxima to Dyck path⟶ Dyck paths
St001206: Dyck paths ⟶ ℤResult quality: 50% ●values known / values provided: 87%●distinct values known / distinct values provided: 50%
Values
[1] => [1] => [1] => [1,0]
=> ? = 0 + 1
[1,2] => [1,2] => [1,2] => [1,0,1,0]
=> 2 = 1 + 1
[2,1] => [1,2] => [1,2] => [1,0,1,0]
=> 2 = 1 + 1
[1,2,3] => [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,3,2] => [1,3,2] => [3,1,2] => [1,1,1,0,0,0]
=> ? ∊ {1,1} + 1
[2,1,3] => [1,3,2] => [3,1,2] => [1,1,1,0,0,0]
=> ? ∊ {1,1} + 1
[2,3,1] => [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 2 = 1 + 1
[3,1,2] => [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 2 = 1 + 1
[3,2,1] => [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 2 = 1 + 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,2,4,3] => [1,2,4,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,2,2} + 1
[1,3,2,4] => [1,3,2,4] => [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,3,4,2] => [1,3,4,2] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,4,2,3] => [1,4,2,3] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,4,3,2] => [1,4,2,3] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[2,1,3,4] => [1,3,4,2] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[2,1,4,3] => [1,4,2,3] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[2,3,1,4] => [1,4,2,3] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[2,3,4,1] => [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[2,4,1,3] => [1,3,2,4] => [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[2,4,3,1] => [1,2,4,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,2,2} + 1
[3,1,2,4] => [1,2,4,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,2,2} + 1
[3,1,4,2] => [1,4,2,3] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[3,2,1,4] => [1,4,2,3] => [1,4,2,3] => [1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[3,2,4,1] => [1,2,4,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> ? ∊ {1,1,2,2} + 1
[3,4,1,2] => [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[3,4,2,1] => [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[4,1,2,3] => [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[4,1,3,2] => [1,3,2,4] => [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[4,2,1,3] => [1,3,2,4] => [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[4,2,3,1] => [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[4,3,1,2] => [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[4,3,2,1] => [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 2 = 1 + 1
[1,2,3,5,4] => [1,2,3,5,4] => [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[1,2,4,3,5] => [1,2,4,3,5] => [4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> 2 = 1 + 1
[1,2,4,5,3] => [1,2,4,5,3] => [4,1,2,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> 2 = 1 + 1
[1,2,5,3,4] => [1,2,5,3,4] => [1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,2,5,4,3] => [1,2,5,3,4] => [1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> 2 = 1 + 1
[1,3,2,4,5] => [1,3,2,4,5] => [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 2 = 1 + 1
[1,3,2,5,4] => [1,3,2,5,4] => [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[1,3,4,2,5] => [1,3,4,2,5] => [3,1,4,2,5] => [1,1,1,0,0,1,0,0,1,0]
=> 2 = 1 + 1
[1,3,4,5,2] => [1,3,4,5,2] => [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> 3 = 2 + 1
[1,3,5,2,4] => [1,3,5,2,4] => [3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,3,5,4,2] => [1,3,5,2,4] => [3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 2 = 1 + 1
[1,4,2,3,5] => [1,4,2,3,5] => [1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,4,2,5,3] => [1,4,2,5,3] => [4,5,1,2,3] => [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,4,3,2,5] => [1,4,2,5,3] => [4,5,1,2,3] => [1,1,1,1,0,1,0,0,0,0]
=> 2 = 1 + 1
[1,4,3,5,2] => [1,4,2,3,5] => [1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[1,4,5,2,3] => [1,4,5,2,3] => [1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,4,5,3,2] => [1,4,5,2,3] => [1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[1,5,2,3,4] => [1,5,2,3,4] => [1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,5,2,4,3] => [1,5,2,4,3] => [5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[1,5,3,2,4] => [1,5,2,4,3] => [5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[1,5,3,4,2] => [1,5,2,3,4] => [1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,5,4,2,3] => [1,5,2,3,4] => [1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[1,5,4,3,2] => [1,5,2,3,4] => [1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> 2 = 1 + 1
[2,1,3,4,5] => [1,3,4,5,2] => [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> 3 = 2 + 1
[2,1,3,5,4] => [1,3,5,2,4] => [3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> 2 = 1 + 1
[2,1,4,3,5] => [1,4,2,3,5] => [1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> 2 = 1 + 1
[2,1,4,5,3] => [1,4,5,2,3] => [1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> 2 = 1 + 1
[2,3,5,4,1] => [1,2,3,5,4] => [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[2,4,1,5,3] => [1,5,2,4,3] => [5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[2,4,3,1,5] => [1,5,2,4,3] => [5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[2,5,4,1,3] => [1,3,2,5,4] => [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[3,1,5,2,4] => [1,5,2,4,3] => [5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[3,2,4,1,5] => [1,5,2,4,3] => [5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[3,5,4,1,2] => [1,2,3,5,4] => [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[3,5,4,2,1] => [1,2,3,5,4] => [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[4,1,2,3,5] => [1,2,3,5,4] => [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[4,1,3,2,5] => [1,3,2,5,4] => [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[4,2,3,5,1] => [1,2,3,5,4] => [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[4,2,5,1,3] => [1,3,2,5,4] => [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[4,3,5,1,2] => [1,2,3,5,4] => [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[4,3,5,2,1] => [1,2,3,5,4] => [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2} + 1
[1,2,3,4,6,5] => [1,2,3,4,6,5] => [6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[1,2,4,3,6,5] => [1,2,4,3,6,5] => [6,4,1,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[1,2,6,3,5,4] => [1,2,6,3,5,4] => [6,1,5,2,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[1,2,6,4,3,5] => [1,2,6,3,5,4] => [6,1,5,2,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[1,3,2,4,6,5] => [1,3,2,4,6,5] => [6,3,1,2,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[1,3,4,2,6,5] => [1,3,4,2,6,5] => [6,3,1,4,2,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[1,3,6,2,5,4] => [1,3,6,2,5,4] => [6,3,1,2,5,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[1,3,6,4,2,5] => [1,3,6,2,5,4] => [6,3,1,2,5,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[1,4,2,3,6,5] => [1,4,2,3,6,5] => [6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[1,4,3,6,5,2] => [1,4,2,3,6,5] => [6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[1,6,2,3,5,4] => [1,6,2,3,5,4] => [6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[1,6,2,4,5,3] => [1,6,2,4,5,3] => [6,1,2,4,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[1,6,3,2,4,5] => [1,6,2,4,5,3] => [6,1,2,4,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[1,6,3,5,4,2] => [1,6,2,3,5,4] => [6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[1,6,4,2,3,5] => [1,6,2,3,5,4] => [6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[1,6,4,3,5,2] => [1,6,2,3,5,4] => [6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[2,1,4,3,6,5] => [1,4,2,3,6,5] => [6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[2,1,6,3,5,4] => [1,6,2,3,5,4] => [6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[2,1,6,4,3,5] => [1,6,2,3,5,4] => [6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[2,3,4,6,5,1] => [1,2,3,4,6,5] => [6,1,2,3,4,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[2,3,5,1,6,4] => [1,6,2,3,5,4] => [6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[2,3,5,4,1,6] => [1,6,2,3,5,4] => [6,1,2,5,3,4] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[2,3,6,5,1,4] => [1,4,2,3,6,5] => [6,1,4,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[2,4,3,6,5,1] => [1,2,4,3,6,5] => [6,4,1,2,3,5] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
[2,4,5,1,6,3] => [1,6,2,4,5,3] => [6,1,2,4,5,3] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3} + 1
Description
The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$.
The following 152 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001933The largest multiplicity of a part in an integer partition. St001128The exponens consonantiae of a partition. St000781The number of proper colouring schemes of a Ferrers diagram. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St000260The radius of a connected graph. St000003The number of standard Young tableaux of the partition. St000049The number of set partitions whose sorted block sizes correspond to the partition. St000159The number of distinct parts of the integer partition. St000182The number of permutations whose cycle type is the given integer partition. St000183The side length of the Durfee square of an integer partition. St000275Number of permutations whose sorted list of non zero multiplicities of the Lehmer code is the given partition. St000278The size of the preimage of the map 'to partition' from Integer compositions to Integer partitions. St000321The number of integer partitions of n that are dominated by an integer partition. St000326The position of the first one in a binary word after appending a 1 at the end. St000345The number of refinements of a partition. St000517The Kreweras number of an integer partition. St000533The minimum of the number of parts and the size of the first part of an integer partition. St000628The balance of a binary word. St000655The length of the minimal rise of a Dyck path. St000783The side length of the largest staircase partition fitting into a partition. St000847The number of standard Young tableaux whose descent set is the binary word. St000897The number of different multiplicities of parts of an integer partition. St000913The number of ways to refine the partition into singletons. St000935The number of ordered refinements of an integer partition. St000964Gives the dimension of Ext^g(D(A),A) of the corresponding LNakayama algebra, when g denotes the global dimension of that algebra. St000999Number of indecomposable projective module with injective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001006Number of simple modules with projective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001009Number of indecomposable injective modules with projective dimension g when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001011Number of simple modules of projective dimension 2 in the Nakayama algebra corresponding to the Dyck path. St001013Number of indecomposable injective modules with codominant dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001063Numbers of 3-torsionfree simple modules in the corresponding Nakayama algebra. St001064Number of simple modules in the corresponding Nakayama algebra that are 3-syzygy modules. St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001196The global dimension of $A$ minus the global dimension of $eAe$ for the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001238The number of simple modules S such that the Auslander-Reiten translate of S is isomorphic to the Nakayama functor applied to the second syzygy of S. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001256Number of simple reflexive modules that are 2-stable reflexive. St001289The vector space dimension of the n-fold tensor product of D(A), where n is maximal such that this n-fold tensor product is nonzero. St001385The number of conjugacy classes of subgroups with connected subgroups of sizes prescribed by an integer partition. St001481The minimal height of a peak of a Dyck path. St001483The number of simple module modules that appear in the socle of the regular module but have no nontrivial selfextensions with the regular module. St001487The number of inner corners of a skew partition. St001490The number of connected components of a skew partition. St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St001507The sum of projective dimension of simple modules with even projective dimension divided by 2 in the LNakayama algebra corresponding to Dyck paths. St001597The Frobenius rank of a skew partition. St001711The number of permutations such that conjugation with a permutation of given cycle type yields the squared permutation. St001722The number of minimal chains with small intervals between a binary word and the top element. St001786The number of total orderings of the north steps of a Dyck path such that steps after the k-th east step are not among the first k positions in the order. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000618The number of self-evacuating tableaux of given shape. St000667The greatest common divisor of the parts of the partition. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St001389The number of partitions of the same length below the given integer partition. St001571The Cartan determinant of the integer partition. St001599The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001780The order of promotion on the set of standard tableaux of given shape. St001924The number of cells in an integer partition whose arm and leg length coincide. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001095The number of non-isomorphic posets with precisely one further covering relation. St000706The product of the factorials of the multiplicities of an integer partition. St000993The multiplicity of the largest part of an integer partition. St001568The smallest positive integer that does not appear twice in the partition. St000640The rank of the largest boolean interval in a poset. St000914The sum of the values of the Möbius function of a poset. St001964The interval resolution global dimension of a poset. St000259The diameter of a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000741The Colin de Verdière graph invariant. St001890The maximum magnitude of the Möbius function of a poset. St000273The domination number of a graph. St000544The cop number of a graph. St000775The multiplicity of the largest eigenvalue in a graph. St001829The common independence number of a graph. St001877Number of indecomposable injective modules with projective dimension 2. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001875The number of simple modules with projective dimension at most 1. St001322The size of a minimal independent dominating set in a graph. St000284The Plancherel distribution on integer partitions. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000901The cube of the number of standard Young tableaux with shape given by the partition. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001339The irredundance number of a graph. St001363The Euler characteristic of a graph according to Knill. St000668The least common multiple of the parts of the partition. St000681The Grundy value of Chomp on Ferrers diagrams. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000933The number of multipartitions of sizes given by an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St000287The number of connected components of a graph. St000286The number of connected components of the complement of a graph. St001330The hat guessing number of a graph. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000456The monochromatic index of a connected graph. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000455The second largest eigenvalue of a graph if it is integral. St001625The Möbius invariant of a lattice. St000181The number of connected components of the Hasse diagram for the poset. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St000454The largest eigenvalue of a graph if it is integral. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000633The size of the automorphism group of a poset. St000910The number of maximal chains of minimal length in a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001395The number of strictly unfriendly partitions of a graph. St000636The hull number of a graph. St000917The open packing number of a graph. St001029The size of the core of a graph. St001109The number of proper colourings of a graph with as few colours as possible. St001654The monophonic hull number of a graph. St001340The cardinality of a minimal non-edge isolating set of a graph. St001354The number of series nodes in the modular decomposition of a graph. St001393The induced matching number of a graph. St000258The burning number of a graph. St000786The maximal number of occurrences of a colour in a proper colouring of a graph. St000918The 2-limited packing number of a graph. St001261The Castelnuovo-Mumford regularity of a graph. St001337The upper domination number of a graph. St001338The upper irredundance number of a graph. St000379The number of Hamiltonian cycles in a graph. St000699The toughness times the least common multiple of 1,. St001281The normalized isoperimetric number of a graph. St000093The cardinality of a maximal independent set of vertices of a graph. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St000264The girth of a graph, which is not a tree. St000907The number of maximal antichains of minimal length in a poset. St001624The breadth of a lattice. St001271The competition number of a graph. St000679The pruning number of an ordered tree. St001570The minimal number of edges to add to make a graph Hamiltonian.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!