Your data matches 154 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00327: Dyck paths inverse Kreweras complementDyck paths
St001204: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [2,1] => [1,1,0,0]
=> [1,0,1,0]
=> 1
[1,1,0,0]
=> [1,2] => [1,0,1,0]
=> [1,1,0,0]
=> 0
[1,0,1,0,1,0]
=> [3,2,1] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 1
[1,0,1,1,0,0]
=> [2,3,1] => [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 0
[1,1,0,0,1,0]
=> [3,1,2] => [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 1
[1,1,0,1,0,0]
=> [2,1,3] => [1,1,0,0,1,0]
=> [1,0,1,1,0,0]
=> 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> 0
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> 0
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0]
=> 0
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [1,0,1,0,1,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [1,0,1,1,1,0,0,0]
=> 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0,1,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,1,0,0,1,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,1,0,0,1,1,0,0]
=> 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> 0
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 1
Description
Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. Associate to this special CNakayama algebra a Dyck path as follows: In the list L delete the first entry $c_0$ and substract from all other entries $n$−1 and then append the last element 1. The result is a Kupisch series of an LNakayama algebra. The statistic gives the $(t-1)/2$ when $t$ is the projective dimension of the simple module $S_{n-2}$.
Matching statistic: St001217
Mp00031: Dyck paths to 312-avoiding permutationPermutations
Mp00067: Permutations Foata bijectionPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
St001217: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,2] => [1,2] => [1,0,1,0]
=> 0
[1,1,0,0]
=> [2,1] => [2,1] => [1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [1,0,1,0,1,0]
=> 0
[1,0,1,1,0,0]
=> [1,3,2] => [3,1,2] => [1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [1,1,0,0,1,0]
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => [2,3,1] => [1,1,0,1,0,0]
=> 0
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => [1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [4,1,2,3] => [1,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [3,1,2,4] => [1,1,1,0,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [1,1,0,0,1,0,1,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [4,2,1,3] => [1,1,1,1,0,0,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [2,3,1,4] => [1,1,0,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [2,3,4,1] => [1,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [4,2,3,1] => [1,1,1,1,0,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => [1,1,1,0,0,0,1,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => [1,1,1,0,0,1,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [3,4,2,1] => [3,4,2,1] => [1,1,1,0,1,0,0,0]
=> 0
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => [1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [4,1,2,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [3,1,4,2,5] => [1,1,1,0,0,1,0,0,1,0]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [4,3,1,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,3,2] => [4,5,1,3,2] => [1,1,1,1,0,1,0,0,0,0]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [4,2,1,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [4,2,1,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [4,2,3,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,3,1] => [4,2,5,3,1] => [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> 1
Description
The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1.
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00241: Permutations invert Laguerre heapPermutations
Mp00068: Permutations Simion-Schmidt mapPermutations
St000314: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,2] => [1,2] => [1,2] => 2 = 1 + 1
[1,1,0,0]
=> [2,1] => [2,1] => [2,1] => 1 = 0 + 1
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [1,3,2] => 2 = 1 + 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => [1,3,2] => 2 = 1 + 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [2,1,3] => 2 = 1 + 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,1,2] => [3,1,2] => 1 = 0 + 1
[1,1,1,0,0,0]
=> [3,2,1] => [3,2,1] => [3,2,1] => 1 = 0 + 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [1,4,3,2] => 2 = 1 + 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => [1,4,3,2] => 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => [1,4,3,2] => 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,2,3] => [1,4,3,2] => 2 = 1 + 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,4,3,2] => [1,4,3,2] => 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [2,1,4,3] => 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1,2,4] => [3,1,4,2] => 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,1,2,3] => [4,1,3,2] => 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [4,3,1,2] => [4,3,1,2] => 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [3,2,1,4] => [3,2,1,4] => 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [4,1,3,2] => [4,1,3,2] => 1 = 0 + 1
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [3,1,4,2] => [3,1,4,2] => 2 = 1 + 1
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 1 = 0 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,5,4,3,2] => 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => [1,5,4,3,2] => 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => [1,5,4,3,2] => 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,3,4] => [1,5,4,3,2] => 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,5,4,3] => [1,5,4,3,2] => 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [1,5,4,3,2] => 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,5,4,3,2] => 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,2,3,5] => [1,5,4,3,2] => 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,2,3,4] => [1,5,4,3,2] => 2 = 1 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,5,4,2,3] => [1,5,4,3,2] => 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,4,3,2,5] => [1,5,4,3,2] => 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,5,2,4,3] => [1,5,4,3,2] => 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,4,2,5,3] => [1,5,4,3,2] => 2 = 1 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,5,4,3,2] => [1,5,4,3,2] => 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [2,1,5,4,3] => 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [2,1,5,4,3] => 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [2,1,5,4,3] => 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,3,4] => [2,1,5,4,3] => 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,5,4,3] => [2,1,5,4,3] => 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,1,2,4,5] => [3,1,5,4,2] => 2 = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,1,2,5,4] => [3,1,5,4,2] => 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,1,2,3,5] => [4,1,5,3,2] => 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,1,2,3,4] => [5,1,4,3,2] => 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [5,4,1,2,3] => [5,4,1,3,2] => 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [4,3,1,2,5] => [4,3,1,5,2] => 2 = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [5,1,2,4,3] => [5,1,4,3,2] => 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [4,1,2,5,3] => [4,1,5,3,2] => 2 = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [5,4,3,1,2] => [5,4,3,1,2] => 1 = 0 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => [3,2,1,4,5] => [3,2,1,5,4] => 2 = 1 + 1
Description
The number of left-to-right-maxima of a permutation. An integer $\sigma_i$ in the one-line notation of a permutation $\sigma$ is a '''left-to-right-maximum''' if there does not exist a $j < i$ such that $\sigma_j > \sigma_i$. This is also the number of weak exceedences of a permutation that are not mid-points of a decreasing subsequence of length 3, see [1] for more on the later description.
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00067: Permutations Foata bijectionPermutations
Mp00068: Permutations Simion-Schmidt mapPermutations
St000654: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [2,1] => [2,1] => [2,1] => 1 = 0 + 1
[1,1,0,0]
=> [1,2] => [1,2] => [1,2] => 2 = 1 + 1
[1,0,1,0,1,0]
=> [3,2,1] => [3,2,1] => [3,2,1] => 1 = 0 + 1
[1,0,1,1,0,0]
=> [2,3,1] => [2,3,1] => [2,3,1] => 2 = 1 + 1
[1,1,0,0,1,0]
=> [3,1,2] => [1,3,2] => [1,3,2] => 2 = 1 + 1
[1,1,0,1,0,0]
=> [2,1,3] => [2,1,3] => [2,1,3] => 1 = 0 + 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => [1,3,2] => 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [4,3,2,1] => [4,3,2,1] => 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [3,4,2,1] => [3,4,2,1] => 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [2,4,3,1] => [2,4,3,1] => 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [3,2,4,1] => [3,2,4,1] => 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [2,3,4,1] => [2,4,3,1] => 2 = 1 + 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [1,4,3,2] => [1,4,3,2] => 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [1,3,4,2] => [1,4,3,2] => 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [2,4,1,3] => [2,4,1,3] => 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [3,2,1,4] => [3,2,1,4] => 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [2,3,1,4] => [2,4,1,3] => 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [1,2,4,3] => [1,4,3,2] => 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [1,3,2,4] => [1,4,3,2] => 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => [2,1,4,3] => 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => [1,4,3,2] => 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [5,4,3,2,1] => [5,4,3,2,1] => 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [4,5,3,2,1] => [4,5,3,2,1] => 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [3,5,4,2,1] => [3,5,4,2,1] => 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [4,3,5,2,1] => [4,3,5,2,1] => 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [3,4,5,2,1] => [3,5,4,2,1] => 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [2,5,4,3,1] => [2,5,4,3,1] => 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [2,4,5,3,1] => [2,5,4,3,1] => 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [3,5,2,4,1] => [3,5,2,4,1] => 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [4,3,2,5,1] => [4,3,2,5,1] => 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [3,4,2,5,1] => [3,5,2,4,1] => 2 = 1 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [2,3,5,4,1] => [2,5,4,3,1] => 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [2,4,3,5,1] => [2,5,4,3,1] => 2 = 1 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [3,2,4,5,1] => [3,2,5,4,1] => 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,3,4,5,1] => [2,5,4,3,1] => 2 = 1 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [1,5,4,3,2] => [1,5,4,3,2] => 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [1,4,5,3,2] => [1,5,4,3,2] => 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [1,3,5,4,2] => [1,5,4,3,2] => 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [1,4,3,5,2] => [1,5,4,3,2] => 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [1,3,4,5,2] => [1,5,4,3,2] => 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [2,5,4,1,3] => [2,5,4,1,3] => 2 = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [2,4,5,1,3] => [2,5,4,1,3] => 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [3,5,2,1,4] => [3,5,2,1,4] => 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [4,3,2,1,5] => [4,3,2,1,5] => 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [3,4,2,1,5] => [3,5,2,1,4] => 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [2,3,5,1,4] => [2,5,4,1,3] => 2 = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [2,4,3,1,5] => [2,5,4,1,3] => 2 = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [3,2,4,1,5] => [3,2,5,1,4] => 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [2,3,4,1,5] => [2,5,4,1,3] => 2 = 1 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [1,2,5,4,3] => [1,5,4,3,2] => 2 = 1 + 1
Description
The first descent of a permutation. For a permutation $\pi$ of $\{1,\ldots,n\}$, this is the smallest index $0 < i \leq n$ such that $\pi(i) > \pi(i+1)$ where one considers $\pi(n+1)=0$.
Matching statistic: St000991
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00086: Permutations first fundamental transformationPermutations
Mp00068: Permutations Simion-Schmidt mapPermutations
St000991: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [2,1] => [2,1] => [2,1] => 1 = 0 + 1
[1,1,0,0]
=> [1,2] => [1,2] => [1,2] => 2 = 1 + 1
[1,0,1,0,1,0]
=> [3,2,1] => [3,1,2] => [3,1,2] => 2 = 1 + 1
[1,0,1,1,0,0]
=> [2,3,1] => [3,2,1] => [3,2,1] => 1 = 0 + 1
[1,1,0,0,1,0]
=> [3,1,2] => [2,3,1] => [2,3,1] => 1 = 0 + 1
[1,1,0,1,0,0]
=> [2,1,3] => [2,1,3] => [2,1,3] => 2 = 1 + 1
[1,1,1,0,0,0]
=> [1,2,3] => [1,2,3] => [1,3,2] => 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => [4,1,2,3] => [4,1,3,2] => 2 = 1 + 1
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => [4,1,3,2] => [4,1,3,2] => 2 = 1 + 1
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => [4,3,1,2] => [4,3,1,2] => 2 = 1 + 1
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => [4,3,2,1] => [4,3,2,1] => 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => [4,2,3,1] => [4,2,3,1] => 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => [2,4,1,3] => [2,4,1,3] => 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => [2,4,3,1] => [2,4,3,1] => 1 = 0 + 1
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => [3,1,4,2] => [3,1,4,2] => 2 = 1 + 1
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => [3,1,2,4] => [3,1,4,2] => 2 = 1 + 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => [3,2,1,4] => [3,2,1,4] => 2 = 1 + 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => [2,3,4,1] => [2,4,3,1] => 1 = 0 + 1
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => [2,3,1,4] => [2,4,1,3] => 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => [2,1,3,4] => [2,1,4,3] => 2 = 1 + 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [1,2,3,4] => [1,4,3,2] => 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => [5,1,2,3,4] => [5,1,4,3,2] => 2 = 1 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => [5,1,2,4,3] => [5,1,4,3,2] => 2 = 1 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => [5,1,4,2,3] => [5,1,4,3,2] => 2 = 1 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => [5,1,4,3,2] => [5,1,4,3,2] => 2 = 1 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => [5,1,3,4,2] => [5,1,4,3,2] => 2 = 1 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => [5,3,1,2,4] => [5,3,1,4,2] => 2 = 1 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => [5,3,1,4,2] => [5,3,1,4,2] => 2 = 1 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => [5,4,2,1,3] => [5,4,2,1,3] => 2 = 1 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => [5,4,2,3,1] => [5,4,2,3,1] => 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => [5,4,3,2,1] => [5,4,3,2,1] => 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => [5,3,4,1,2] => [5,3,4,1,2] => 2 = 1 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => [5,3,4,2,1] => [5,3,4,2,1] => 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => [5,3,2,4,1] => [5,3,2,4,1] => 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => [5,2,4,3,1] => 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => [2,5,1,3,4] => [2,5,1,4,3] => 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => [2,5,1,4,3] => [2,5,1,4,3] => 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => [2,5,4,1,3] => [2,5,4,1,3] => 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => [2,5,4,3,1] => [2,5,4,3,1] => 1 = 0 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => [2,5,3,4,1] => [2,5,4,3,1] => 1 = 0 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => [3,1,5,2,4] => [3,1,5,4,2] => 2 = 1 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => [3,1,5,4,2] => [3,1,5,4,2] => 2 = 1 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => [4,1,2,5,3] => [4,1,5,3,2] => 2 = 1 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => [4,1,2,3,5] => [4,1,5,3,2] => 2 = 1 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => [4,1,3,2,5] => [4,1,5,3,2] => 2 = 1 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => [4,3,1,5,2] => [4,3,1,5,2] => 2 = 1 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => [4,3,1,2,5] => [4,3,1,5,2] => 2 = 1 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => [4,3,2,1,5] => [4,3,2,1,5] => 2 = 1 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => [4,2,5,1,3] => 2 = 1 + 1
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => [2,3,5,1,4] => [2,5,4,1,3] => 2 = 1 + 1
Description
The number of right-to-left minima of a permutation. For the number of left-to-right maxima, see [[St000314]].
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000781: Integer partitions ⟶ ℤResult quality: 50% values known / values provided: 79%distinct values known / distinct values provided: 50%
Values
[1,0,1,0]
=> [1,2] => [1,1]
=> [1]
=> 1
[1,1,0,0]
=> [2,1] => [2]
=> []
=> ? = 0
[1,0,1,0,1,0]
=> [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0]
=> [1,3,2] => [2,1]
=> [1]
=> 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1]
=> [1]
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => [3]
=> []
=> ? ∊ {0,0}
[1,1,1,0,0,0]
=> [3,1,2] => [3]
=> []
=> ? ∊ {0,0}
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [3,1]
=> [1]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [3,1]
=> [1]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,2]
=> [2]
=> 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1]
=> [1]
=> 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4]
=> []
=> ? ∊ {0,0,0,0}
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [4]
=> []
=> ? ∊ {0,0,0,0}
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,1]
=> [1]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [4]
=> []
=> ? ∊ {0,0,0,0}
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [2,2]
=> [2]
=> 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [4]
=> []
=> ? ∊ {0,0,0,0}
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [2,2,1]
=> [2,1]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [4,1]
=> [1]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [4,1]
=> [1]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [4,1]
=> [1]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [2,2,1]
=> [2,1]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [4,1]
=> [1]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,2,1]
=> [2,1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,2,1]
=> [2,1]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [3,2]
=> [2]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [3,2]
=> [2]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2]
=> [2]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,1]
=> [1]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1}
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1}
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [4,1]
=> [1]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1}
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [3,2]
=> [2]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [3,2]
=> [2]
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [4,1]
=> [1]
=> 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,1,4,5,2] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1}
[1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1}
[1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [2,2,1]
=> [2,1]
=> 1
[1,1,1,0,1,0,0,1,0,0]
=> [3,4,1,5,2] => [3,2]
=> [2]
=> 1
[1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,1,2] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1}
[1,1,1,0,1,1,0,0,0,0]
=> [3,5,1,2,4] => [3,2]
=> [2]
=> 1
[1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => [4,1]
=> [1]
=> 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,3] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1}
[1,1,1,1,0,0,1,0,0,0]
=> [4,1,5,2,3] => [3,2]
=> [2]
=> 1
[1,1,1,1,0,1,0,0,0,0]
=> [4,5,1,2,3] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1}
[1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => [3,1,1,1]
=> [1,1,1]
=> 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,1,5] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,1,6,4] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,1,4,5] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,1,5,6,3] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,1,6,3,5] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,4,5,6,1,3] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,1,3,6,4] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,5,6,1,3,4] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,1,3,4,5] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,1,4,5,6,2] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,1,4,6,2,5] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,1,5,2,6,4] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,1,6,2,4,5] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [3,4,5,1,6,2] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,6,1,2,5] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,1,2,5,6,3] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,1,2,6,3,5] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [4,1,5,6,2,3] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,5,1,2,6,3] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [4,6,1,2,3,5] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,1,2,3,6,4] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [5,1,6,2,3,4] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [6,1,2,3,4,5] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
Description
The number of proper colouring schemes of a Ferrers diagram. A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1]. This statistic is the number of distinct such integer partitions that occur.
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001901: Integer partitions ⟶ ℤResult quality: 50% values known / values provided: 79%distinct values known / distinct values provided: 50%
Values
[1,0,1,0]
=> [1,2] => [1,1]
=> [1]
=> 1
[1,1,0,0]
=> [2,1] => [2]
=> []
=> ? = 0
[1,0,1,0,1,0]
=> [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0]
=> [1,3,2] => [2,1]
=> [1]
=> 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1]
=> [1]
=> 1
[1,1,0,1,0,0]
=> [2,3,1] => [3]
=> []
=> ? ∊ {0,0}
[1,1,1,0,0,0]
=> [3,1,2] => [3]
=> []
=> ? ∊ {0,0}
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [3,1]
=> [1]
=> 1
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [3,1]
=> [1]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,2]
=> [2]
=> 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1]
=> [1]
=> 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4]
=> []
=> ? ∊ {0,0,0,0}
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [4]
=> []
=> ? ∊ {0,0,0,0}
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,1]
=> [1]
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [4]
=> []
=> ? ∊ {0,0,0,0}
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [2,2]
=> [2]
=> 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [4]
=> []
=> ? ∊ {0,0,0,0}
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [2,2,1]
=> [2,1]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [4,1]
=> [1]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [4,1]
=> [1]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [4,1]
=> [1]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [2,2,1]
=> [2,1]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [4,1]
=> [1]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,2,1]
=> [2,1]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,2,1]
=> [2,1]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [3,2]
=> [2]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [3,2]
=> [2]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2]
=> [2]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,1]
=> [1]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1}
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1}
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [4,1]
=> [1]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1}
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [3,2]
=> [2]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [3,2]
=> [2]
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [4,1]
=> [1]
=> 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,1,4,5,2] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1}
[1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1}
[1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [2,2,1]
=> [2,1]
=> 1
[1,1,1,0,1,0,0,1,0,0]
=> [3,4,1,5,2] => [3,2]
=> [2]
=> 1
[1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,1,2] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1}
[1,1,1,0,1,1,0,0,0,0]
=> [3,5,1,2,4] => [3,2]
=> [2]
=> 1
[1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => [4,1]
=> [1]
=> 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,3] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1}
[1,1,1,1,0,0,1,0,0,0]
=> [4,1,5,2,3] => [3,2]
=> [2]
=> 1
[1,1,1,1,0,1,0,0,0,0]
=> [4,5,1,2,3] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1}
[1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => [3,1,1,1]
=> [1,1,1]
=> 1
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,1,5] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,1,6,4] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,1,4,5] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,4,1,5,6,3] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,4,1,6,3,5] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,4,5,6,1,3] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,5,1,3,6,4] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,5,6,1,3,4] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,6,1,3,4,5] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,1,4,5,6,2] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,1,4,6,2,5] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,1,5,2,6,4] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,1,6,2,4,5] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,1,0,1,0,1,0,0,1,0,0]
=> [3,4,5,1,6,2] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,4,6,1,2,5] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,1,2,5,6,3] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,1,2,6,3,5] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,1,1,0,0,1,0,1,0,0,0]
=> [4,1,5,6,2,3] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,5,1,2,6,3] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,1,1,0,1,1,0,0,0,0,0]
=> [4,6,1,2,3,5] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,1,2,3,6,4] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,1,1,1,0,0,1,0,0,0,0]
=> [5,1,6,2,3,4] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
[1,1,1,1,1,1,0,0,0,0,0,0]
=> [6,1,2,3,4,5] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}
Description
The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition.
Mp00201: Dyck paths RingelPermutations
Mp00068: Permutations Simion-Schmidt mapPermutations
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
St001199: Dyck paths ⟶ ℤResult quality: 50% values known / values provided: 71%distinct values known / distinct values provided: 50%
Values
[1,0,1,0]
=> [3,1,2] => [3,1,2] => [1,1,1,0,0,0]
=> ? = 0
[1,1,0,0]
=> [2,3,1] => [2,3,1] => [1,1,0,1,0,0]
=> 1
[1,0,1,0,1,0]
=> [4,1,2,3] => [4,1,3,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0}
[1,0,1,1,0,0]
=> [3,1,4,2] => [3,1,4,2] => [1,1,1,0,0,1,0,0]
=> 1
[1,1,0,0,1,0]
=> [2,4,1,3] => [2,4,1,3] => [1,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,0,0]
=> [4,3,1,2] => [4,3,1,2] => [1,1,1,1,0,0,0,0]
=> ? ∊ {0,0}
[1,1,1,0,0,0]
=> [2,3,4,1] => [2,4,3,1] => [1,1,0,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,1}
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [4,1,5,3,2] => [1,1,1,1,0,0,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [3,1,5,4,2] => [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,1}
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [3,1,5,4,2] => [1,1,1,0,0,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [2,5,1,4,3] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [2,5,1,4,3] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,1}
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,1}
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> ? ∊ {0,0,0,0,1}
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [6,1,5,4,3,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1}
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [5,1,6,4,3,2] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [4,1,6,5,3,2] => [1,1,1,1,0,0,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [6,1,5,4,3,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1}
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [4,1,6,5,3,2] => [1,1,1,1,0,0,1,1,0,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [3,1,6,5,4,2] => [1,1,1,0,0,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [3,1,6,5,4,2] => [1,1,1,0,0,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [6,1,5,4,3,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1}
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [6,1,5,4,3,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1}
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [5,1,6,4,3,2] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [3,1,6,5,4,2] => [1,1,1,0,0,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [3,1,6,5,4,2] => [1,1,1,0,0,1,1,1,0,0,0,0]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [6,1,5,4,3,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1}
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [3,1,6,5,4,2] => [1,1,1,0,0,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [2,6,1,5,4,3] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [2,6,1,5,4,3] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [2,6,1,5,4,3] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [2,6,1,5,4,3] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [2,6,1,5,4,3] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [6,3,1,5,4,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1}
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [5,3,1,6,4,2] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [6,4,1,5,3,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1}
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [5,6,1,4,3,2] => [1,1,1,1,1,0,1,0,0,0,0,0]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [5,4,1,6,3,2] => [1,1,1,1,1,0,0,0,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [4,3,1,6,5,2] => [1,1,1,1,0,0,0,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [6,3,1,5,4,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1}
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [6,4,1,5,3,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1}
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [4,3,1,6,5,2] => [1,1,1,1,0,0,0,1,1,0,0,0]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => [2,6,5,1,4,3] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => [2,6,5,1,4,3] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> [2,6,4,1,3,5] => [2,6,5,1,4,3] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,1,0,0,1,0,1,0,0]
=> [2,6,5,1,3,4] => [2,6,5,1,4,3] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,1,0,0,1,1,0,0,0]
=> [2,5,4,1,6,3] => [2,6,5,1,4,3] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,1,0,1,0,0,0,1,0]
=> [6,3,4,1,2,5] => [6,3,5,1,4,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1}
[1,1,1,0,1,0,0,1,0,0]
=> [6,3,5,1,2,4] => [6,3,5,1,4,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1}
[1,1,1,0,1,0,1,0,0,0]
=> [6,5,4,1,2,3] => [6,5,4,1,3,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1}
[1,1,1,0,1,1,0,0,0,0]
=> [5,3,4,1,6,2] => [5,3,6,1,4,2] => [1,1,1,1,1,0,0,1,0,0,0,0]
=> 1
[1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => [2,6,5,4,1,3] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,1,1,0,0,0,1,0,0]
=> [2,3,6,5,1,4] => [2,6,5,4,1,3] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,1,1,0,0,1,0,0,0]
=> [2,6,4,5,1,3] => [2,6,5,4,1,3] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,1,1,1,0,1,0,0,0,0]
=> [6,3,4,5,1,2] => [6,3,5,4,1,2] => [1,1,1,1,1,1,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1}
[1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => [2,6,5,4,3,1] => [1,1,0,1,1,1,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [7,1,2,3,4,5,6] => [7,1,6,5,4,3,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [6,1,2,3,4,7,5] => [6,1,7,5,4,3,2] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,1,2,3,7,4,6] => [5,1,7,6,4,3,2] => [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [7,1,2,3,6,4,5] => [7,1,6,5,4,3,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [5,1,2,3,6,7,4] => [5,1,7,6,4,3,2] => [1,1,1,1,1,0,0,1,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [4,1,2,7,3,5,6] => [4,1,7,6,5,3,2] => [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,1,2,6,3,7,5] => [4,1,7,6,5,3,2] => [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [7,1,2,5,3,4,6] => [7,1,6,5,4,3,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [7,1,2,6,3,4,5] => [7,1,6,5,4,3,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [6,1,2,5,3,7,4] => [6,1,7,5,4,3,2] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [4,1,2,5,7,3,6] => [4,1,7,6,5,3,2] => [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [4,1,2,7,6,3,5] => [4,1,7,6,5,3,2] => [1,1,1,1,0,0,1,1,1,0,0,0,0,0]
=> 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [7,1,2,5,6,3,4] => [7,1,6,5,4,3,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [7,1,4,2,3,5,6] => [7,1,6,5,4,3,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [7,1,5,2,3,4,6] => [7,1,6,5,4,3,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [7,1,4,2,6,3,5] => [7,1,6,5,4,3,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [7,1,5,2,6,3,4] => [7,1,6,5,4,3,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [7,1,4,5,2,3,6] => [7,1,6,5,4,3,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [7,1,4,6,2,3,5] => [7,1,6,5,4,3,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [7,1,6,5,2,3,4] => [7,1,6,5,4,3,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [7,1,4,5,6,2,3] => [7,1,6,5,4,3,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [7,3,1,2,4,5,6] => [7,3,1,6,5,4,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [7,3,1,2,6,4,5] => [7,3,1,6,5,4,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,0,1,0,1,0,0,1,0,1,0]
=> [7,4,1,2,3,5,6] => [7,4,1,6,5,3,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [7,6,1,2,3,4,5] => [7,6,1,5,4,3,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [7,4,1,2,6,3,5] => [7,4,1,6,5,3,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [7,3,1,5,2,4,6] => [7,3,1,6,5,4,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,0,1,1,0,0,1,0,1,0,0]
=> [7,3,1,6,2,4,5] => [7,3,1,6,5,4,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,0,1,1,0,1,0,0,0,1,0]
=> [7,4,1,5,2,3,6] => [7,4,1,6,5,3,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,0,1,1,0,1,0,0,1,0,0]
=> [7,4,1,6,2,3,5] => [7,4,1,6,5,3,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,0,1,1,1,0,0,1,0,0,0]
=> [7,3,1,5,6,2,4] => [7,3,1,6,5,4,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,0,1,1,1,0,1,0,0,0,0]
=> [7,4,1,5,6,2,3] => [7,4,1,6,5,3,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,1,0,1,0,0,0,1,0,1,0]
=> [7,3,4,1,2,5,6] => [7,3,6,1,5,4,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,1,0,1,0,0,1,0,0,1,0]
=> [7,3,5,1,2,4,6] => [7,3,6,1,5,4,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,1,0,1,0,1,0,0,0,1,0]
=> [7,5,4,1,2,3,6] => [7,5,4,1,6,3,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,1,0,1,1,0,0,0,1,0,0]
=> [7,3,4,1,6,2,5] => [7,3,6,1,5,4,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,1,0,1,1,0,0,1,0,0,0]
=> [7,3,5,1,6,2,4] => [7,3,6,1,5,4,2] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}
Description
The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$.
Mp00102: Dyck paths rise compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00247: Graphs de-duplicateGraphs
St000260: Graphs ⟶ ℤResult quality: 70% values known / values provided: 70%distinct values known / distinct values provided: 100%
Values
[1,0,1,0]
=> [1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,1,0,0]
=> [2] => ([],2)
=> ([],1)
=> 0
[1,0,1,0,1,0]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[1,0,1,1,0,0]
=> [1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 0
[1,1,0,0,1,0]
=> [2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
[1,1,0,1,0,0]
=> [2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1
[1,1,1,0,0,0]
=> [3] => ([],3)
=> ([],1)
=> 0
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,0,1,0,1,1,0,0]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,1}
[1,0,1,1,0,0,1,0]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,0,1,1,0,1,0,0]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,0,1,1,1,0,0,0]
=> [1,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,1}
[1,1,0,0,1,0,1,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[1,1,0,0,1,1,0,0]
=> [2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,1}
[1,1,0,1,0,0,1,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[1,1,0,1,0,1,0,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[1,1,0,1,1,0,0,0]
=> [2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,1}
[1,1,1,0,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[1,1,1,0,1,0,0,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1
[1,1,1,1,0,0,0,0]
=> [4] => ([],4)
=> ([],1)
=> 0
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1}
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1}
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1}
[1,0,1,1,0,1,0,0,1,0]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1}
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1}
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1}
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1}
[1,1,0,1,0,0,1,0,1,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1}
[1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1}
[1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1}
[1,1,1,0,0,1,0,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[1,1,1,0,0,1,0,1,0,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[1,1,1,0,0,1,1,0,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1}
[1,1,1,0,1,0,0,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[1,1,1,0,1,0,0,1,0,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[1,1,1,0,1,0,1,0,0,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1
[1,1,1,0,1,1,0,0,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,1,1,1,1,1}
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[1,1,1,1,0,0,0,1,0,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[1,1,1,1,0,0,1,0,0,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[1,1,1,1,0,1,0,0,0,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1
[1,1,1,1,1,0,0,0,0,0]
=> [5] => ([],5)
=> ([],1)
=> 0
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4] => ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,4] => ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,1,0,0,0,1,0,1,1,0,0]
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,1,0,0,1,0,0,1,1,0,0]
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
[1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}
Description
The radius of a connected graph. This is the minimum eccentricity of any vertex.
Mp00129: Dyck paths to 321-avoiding permutation (Billey-Jockusch-Stanley)Permutations
Mp00060: Permutations Robinson-Schensted tableau shapeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000284: Integer partitions ⟶ ℤResult quality: 50% values known / values provided: 69%distinct values known / distinct values provided: 50%
Values
[1,0,1,0]
=> [2,1] => [1,1]
=> [1]
=> ? ∊ {0,1}
[1,1,0,0]
=> [1,2] => [2]
=> []
=> ? ∊ {0,1}
[1,0,1,0,1,0]
=> [2,3,1] => [2,1]
=> [1]
=> ? ∊ {0,0,1,1,1}
[1,0,1,1,0,0]
=> [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,0,1,1,1}
[1,1,0,0,1,0]
=> [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,1,1,1}
[1,1,0,1,0,0]
=> [3,1,2] => [2,1]
=> [1]
=> ? ∊ {0,0,1,1,1}
[1,1,1,0,0,0]
=> [1,2,3] => [3]
=> []
=> ? ∊ {0,0,1,1,1}
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1}
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1}
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [2,2]
=> [2]
=> 1
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [2,2]
=> [2]
=> 1
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1}
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1}
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1}
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [2,2]
=> [2]
=> 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [2,2]
=> [2]
=> 1
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1}
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1}
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1}
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,1,1,1,1,1,1}
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [4]
=> []
=> ? ∊ {0,0,0,0,1,1,1,1,1,1}
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1}
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1}
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [3,2]
=> [2]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [3,2]
=> [2]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1}
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [3,2]
=> [2]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [3,2]
=> [2]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [3,2]
=> [2]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [3,2]
=> [2]
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [3,2]
=> [2]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [3,2]
=> [2]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [3,2]
=> [2]
=> 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [3,2]
=> [2]
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1}
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1}
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1}
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [3,2]
=> [2]
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [3,2]
=> [2]
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1}
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [3,2]
=> [2]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [3,2]
=> [2]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [3,2]
=> [2]
=> 1
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [3,2]
=> [2]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [3,2]
=> [2]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [3,2]
=> [2]
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [3,2]
=> [2]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [3,2]
=> [2]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1}
[1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1}
[1,1,1,0,0,0,1,1,0,0]
=> [1,2,4,3,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1}
[1,1,1,0,0,1,0,0,1,0]
=> [1,4,2,5,3] => [3,2]
=> [2]
=> 1
[1,1,1,0,0,1,0,1,0,0]
=> [1,4,5,2,3] => [3,2]
=> [2]
=> 1
[1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,3,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1}
[1,1,1,0,1,0,0,0,1,0]
=> [4,1,2,5,3] => [3,2]
=> [2]
=> 1
[1,1,1,0,1,0,0,1,0,0]
=> [4,1,5,2,3] => [3,2]
=> [2]
=> 1
[1,1,1,0,1,0,1,0,0,0]
=> [4,5,1,2,3] => [3,2]
=> [2]
=> 1
[1,1,1,0,1,1,0,0,0,0]
=> [4,1,2,3,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1}
[1,1,1,1,0,0,0,0,1,0]
=> [1,2,3,5,4] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1}
[1,1,1,1,0,0,0,1,0,0]
=> [1,2,5,3,4] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1}
[1,1,1,1,0,0,1,0,0,0]
=> [1,5,2,3,4] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1}
[1,1,1,1,0,1,0,0,0,0]
=> [5,1,2,3,4] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1}
[1,1,1,1,1,0,0,0,0,0]
=> [1,2,3,4,5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,6,1] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,5,1,6] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [2,3,4,1,6,5] => [4,2]
=> [2]
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [2,3,4,6,1,5] => [4,2]
=> [2]
=> 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [2,3,4,1,5,6] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [2,3,1,5,6,4] => [4,2]
=> [2]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [2,3,1,5,4,6] => [4,2]
=> [2]
=> 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [2,3,5,1,6,4] => [4,2]
=> [2]
=> 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [2,3,5,6,1,4] => [4,2]
=> [2]
=> 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [2,3,5,1,4,6] => [4,2]
=> [2]
=> 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [2,3,1,4,6,5] => [4,2]
=> [2]
=> 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [2,3,1,6,4,5] => [4,2]
=> [2]
=> 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [2,3,6,1,4,5] => [4,2]
=> [2]
=> 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [2,3,1,4,5,6] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [2,1,4,5,6,3] => [4,2]
=> [2]
=> 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [2,1,4,5,3,6] => [4,2]
=> [2]
=> 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,6,5] => [3,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,6,3,5] => [3,3]
=> [3]
=> 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [2,1,4,3,5,6] => [4,2]
=> [2]
=> 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [2,4,1,5,6,3] => [4,2]
=> [2]
=> 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [2,4,1,5,3,6] => [4,2]
=> [2]
=> 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [2,4,5,1,6,3] => [4,2]
=> [2]
=> 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [2,4,5,6,1,3] => [4,2]
=> [2]
=> 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [2,4,5,1,3,6] => [4,2]
=> [2]
=> 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,6,5] => [3,3]
=> [3]
=> 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [2,1,3,4,5,6] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [1,3,4,5,6,2] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,3,4,5,2,6] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,3,4,2,5,6] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,3,2,4,5,6] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[1,1,0,1,1,1,1,0,0,0,0,0]
=> [3,1,2,4,5,6] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[1,1,1,0,0,0,1,0,1,0,1,0]
=> [1,2,4,5,6,3] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[1,1,1,0,0,0,1,0,1,1,0,0]
=> [1,2,4,5,3,6] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [1,2,4,3,5,6] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[1,1,1,0,0,1,1,1,0,0,0,0]
=> [1,4,2,3,5,6] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[1,1,1,0,1,1,1,0,0,0,0,0]
=> [4,1,2,3,5,6] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[1,1,1,1,0,0,0,0,1,0,1,0]
=> [1,2,3,5,6,4] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
Description
The Plancherel distribution on integer partitions. This is defined as the distribution induced by the RSK shape of the uniform distribution on permutations. In other words, this is the size of the preimage of the map 'Robinson-Schensted tableau shape' from permutations to integer partitions. Equivalently, this is given by the square of the number of standard Young tableaux of the given shape.
The following 144 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000706The product of the factorials of the multiplicities of an integer partition. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000934The 2-degree of an integer partition. St000993The multiplicity of the largest part of an integer partition. St001128The exponens consonantiae of a partition. St001568The smallest positive integer that does not appear twice in the partition. St000212The number of standard Young tableaux for an integer partition such that no two consecutive entries appear in the same row. St000326The position of the first one in a binary word after appending a 1 at the end. St000913The number of ways to refine the partition into singletons. St001006Number of simple modules with projective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001011Number of simple modules of projective dimension 2 in the Nakayama algebra corresponding to the Dyck path. St001013Number of indecomposable injective modules with codominant dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001063Numbers of 3-torsionfree simple modules in the corresponding Nakayama algebra. St001064Number of simple modules in the corresponding Nakayama algebra that are 3-syzygy modules. St001121The multiplicity of the irreducible representation indexed by the partition in the Kronecker square corresponding to the partition. St001125The number of simple modules that satisfy the 2-regular condition in the corresponding Nakayama algebra. St001159Number of simple modules with dominant dimension equal to the global dimension in the corresponding Nakayama algebra. St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. St001191Number of simple modules $S$ with $Ext_A^i(S,A)=0$ for all $i=0,1,...,g-1$ in the corresponding Nakayama algebra $A$ with global dimension $g$. St001196The global dimension of $A$ minus the global dimension of $eAe$ for the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001216The number of indecomposable injective modules in the corresponding Nakayama algebra that have non-vanishing second Ext-group with the regular module. St001230The number of simple modules with injective dimension equal to the dominant dimension equal to one and the dual property. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001256Number of simple reflexive modules that are 2-stable reflexive. St001274The number of indecomposable injective modules with projective dimension equal to two. St001276The number of 2-regular indecomposable modules in the corresponding Nakayama algebra. St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St001507The sum of projective dimension of simple modules with even projective dimension divided by 2 in the LNakayama algebra corresponding to Dyck paths. St001487The number of inner corners of a skew partition. St001490The number of connected components of a skew partition. St001933The largest multiplicity of a part in an integer partition. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001498The normalised height of a Nakayama algebra with magnitude 1. St000864The number of circled entries of the shifted recording tableau of a permutation. St001035The convexity degree of the parallelogram polyomino associated with the Dyck path. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St001859The number of factors of the Stanley symmetric function associated with a permutation. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St000455The second largest eigenvalue of a graph if it is integral. St000741The Colin de Verdière graph invariant. St001085The number of occurrences of the vincular pattern |21-3 in a permutation. St000282The size of the preimage of the map 'to poset' from Ordered trees to Posets. St000659The number of rises of length at least 2 of a Dyck path. St000914The sum of the values of the Möbius function of a poset. St001890The maximum magnitude of the Möbius function of a poset. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St000253The crossing number of a set partition. St000254The nesting number of a set partition. St000730The maximal arc length of a set partition. St001096The size of the overlap set of a permutation. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001737The number of descents of type 2 in a permutation. St000374The number of exclusive right-to-left minima of a permutation. St001004The number of indices that are either left-to-right maxima or right-to-left minima. St000888The maximal sum of entries on a diagonal of an alternating sign matrix. St000456The monochromatic index of a connected graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000996The number of exclusive left-to-right maxima of a permutation. St000451The length of the longest pattern of the form k 1 2. St001174The Gorenstein dimension of the algebra $A/I$ when $I$ is the tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001273The projective dimension of the first term in an injective coresolution of the regular module. St001948The number of augmented double ascents of a permutation. St001652The length of a longest interval of consecutive numbers. St001662The length of the longest factor of consecutive numbers in a permutation. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001593This is the number of standard Young tableaux of the given shifted shape. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St000929The constant term of the character polynomial of an integer partition. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St000137The Grundy value of an integer partition. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000618The number of self-evacuating tableaux of given shape. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000928The sum of the coefficients of the character polynomial of an integer partition. St000944The 3-degree of an integer partition. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001280The number of parts of an integer partition that are at least two. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001383The BG-rank of an integer partition. St001432The order dimension of the partition. St001562The value of the complete homogeneous symmetric function evaluated at 1. St001563The value of the power-sum symmetric function evaluated at 1. St001564The value of the forgotten symmetric functions when all variables set to 1. St001587Half of the largest even part of an integer partition. St001601The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on trees. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001657The number of twos in an integer partition. St001780The order of promotion on the set of standard tableaux of given shape. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001924The number of cells in an integer partition whose arm and leg length coincide. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St001967The coefficient of the monomial corresponding to the integer partition in a certain power series. St001968The coefficient of the monomial corresponding to the integer partition in a certain power series. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001520The number of strict 3-descents. St000298The order dimension or Dushnik-Miller dimension of a poset. St000845The maximal number of elements covered by an element in a poset. St000846The maximal number of elements covering an element of a poset. St000307The number of rowmotion orbits of a poset. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St000760The length of the longest strictly decreasing subsequence of parts of an integer composition. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001728The number of invisible descents of a permutation. St001330The hat guessing number of a graph. St000768The number of peaks in an integer composition. St001877Number of indecomposable injective modules with projective dimension 2. St000891The number of distinct diagonal sums of a permutation matrix. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000640The rank of the largest boolean interval in a poset. St000940The number of characters of the symmetric group whose value on the partition is zero. St000941The number of characters of the symmetric group whose value on the partition is even. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001024Maximum of dominant dimensions of the simple modules in the Nakayama algebra corresponding to the Dyck path. St001730The number of times the path corresponding to a binary word crosses the base line. St001960The number of descents of a permutation minus one if its first entry is not one. St000764The number of strong records in an integer composition. St001503The largest distance of a vertex to a vertex in a cycle in the resolution quiver of the corresponding Nakayama algebra. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St000850The number of 1/2-balanced pairs in a poset. St000633The size of the automorphism group of a poset. St001399The distinguishing number of a poset. St001621The number of atoms of a lattice. St001624The breadth of a lattice.