searching the database
Your data matches 80 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St001081
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
St001081: Permutations ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,2] => 1
[2,1] => 1
[1,2,3] => 1
[1,3,2] => 2
[2,1,3] => 1
[2,3,1] => 1
[3,1,2] => 1
[3,2,1] => 1
[1,2,3,4] => 1
[1,2,4,3] => 2
[1,3,2,4] => 2
[1,3,4,2] => 3
[1,4,2,3] => 3
[1,4,3,2] => 2
[2,1,3,4] => 1
[2,1,4,3] => 4
[2,3,1,4] => 1
[2,3,4,1] => 1
[2,4,1,3] => 1
[2,4,3,1] => 1
[3,1,2,4] => 1
[3,1,4,2] => 1
[3,2,1,4] => 1
[3,2,4,1] => 1
[3,4,1,2] => 4
[3,4,2,1] => 1
[4,1,2,3] => 1
[4,1,3,2] => 1
[4,2,1,3] => 1
[4,2,3,1] => 1
[4,3,1,2] => 1
[4,3,2,1] => 4
[1,2,3,4,5] => 1
[1,2,3,5,4] => 2
[1,2,4,3,5] => 2
[1,2,4,5,3] => 3
[1,2,5,3,4] => 3
[1,2,5,4,3] => 2
[1,3,2,4,5] => 2
[1,3,2,5,4] => 24
[1,3,4,2,5] => 3
[1,3,4,5,2] => 4
[1,3,5,2,4] => 4
[1,3,5,4,2] => 3
[1,4,2,3,5] => 3
[1,4,2,5,3] => 4
[1,4,3,2,5] => 2
[1,4,3,5,2] => 3
[1,4,5,2,3] => 24
[1,4,5,3,2] => 4
Description
The number of minimal length factorizations of a permutation into star transpositions.
For a permutation π∈Sn a minimal length factorization into star transpositions is a factorization of the form
π=τi1⋯τik,2≤i1,…,ik≤n,
where τa=(1,a) for 2≤a≤n and k is minimal.
[1, lem.2.1] shows that the minimal length of such a factorization is n+m−a−1, where m is the number of non-trival cycles not containing the element 1, and a is the number of fixed points different from 1, see [[St001077]].
[2, cor.2] shows that the number of such minimal factorizations is
(n+m−2(k+1))!(n−k)!ℓ1⋯ℓm,
where ℓ1,…,ℓm is the cycle type of π and k is the number of fixed point different from 1.
Matching statistic: St000901
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00252: Permutations —restriction⟶ Permutations
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000901: Integer partitions ⟶ ℤResult quality: 18% ●values known / values provided: 52%●distinct values known / distinct values provided: 18%
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000901: Integer partitions ⟶ ℤResult quality: 18% ●values known / values provided: 52%●distinct values known / distinct values provided: 18%
Values
[1,2] => [1] => [1]
=> []
=> ? ∊ {1,1}
[2,1] => [1] => [1]
=> []
=> ? ∊ {1,1}
[1,2,3] => [1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,2}
[1,3,2] => [1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,2}
[2,1,3] => [2,1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,2}
[2,3,1] => [2,1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,2}
[3,1,2] => [1,2] => [1,1]
=> [1]
=> ? ∊ {1,1,1,1,1,2}
[3,2,1] => [2,1] => [2]
=> []
=> ? ∊ {1,1,1,1,1,2}
[1,2,3,4] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,3,2,4] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[1,3,4,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[1,4,2,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,4,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,1,3,4] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,1,4,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,3,1,4] => [2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,3,4,1] => [2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,4,1,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,4,3,1] => [2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,1,2,4] => [3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,1,4,2] => [3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,2,1,4] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,2,4,1] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,4,1,2] => [3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,4,2,1] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,1,2,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[4,1,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,2,1,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,2,3,1] => [2,3,1] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,3,1,2] => [3,1,2] => [3]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,3,2,1] => [3,2,1] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[1,2,3,4,5] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,5] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,2,4,5,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,2,5,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,5,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,3,2,5,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,3,4,2,5] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,3,4,5,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,3,5,2,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,3,5,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,4,2,3,5] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,4,2,5,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,4,3,2,5] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,4,5,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,4,5,3,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[1,5,2,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,5,2,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,5,3,2,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,5,3,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,5,4,2,3] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,5,4,3,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,4,5] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,3,5,4] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,4,3,5] => [2,1,4,3] => [2,2]
=> [2]
=> 1
[2,1,4,5,3] => [2,1,4,3] => [2,2]
=> [2]
=> 1
[2,1,5,3,4] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,5,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 1
[2,3,1,4,5] => [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,3,1,5,4] => [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,3,4,1,5] => [2,3,4,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,3,4,5,1] => [2,3,4,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,3,5,1,4] => [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,3,5,4,1] => [2,3,4,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,1,3,5] => [2,4,1,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,1,5,3] => [2,4,1,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,3,1,5] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,3,5,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,5,1,3] => [2,4,1,3] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,5,3,1] => [2,4,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,1,3,4] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,5,1,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 1
[2,5,3,1,4] => [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,3,4,1] => [2,3,4,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,2,1,4,5] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,2,1,5,4] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,2,5,1,4] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,4,1,2,5] => [3,4,1,2] => [2,2]
=> [2]
=> 1
[3,4,1,5,2] => [3,4,1,2] => [2,2]
=> [2]
=> 1
[3,4,5,1,2] => [3,4,1,2] => [2,2]
=> [2]
=> 1
[3,5,2,1,4] => [3,2,1,4] => [2,1,1]
=> [1,1]
=> 1
[3,5,4,1,2] => [3,4,1,2] => [2,2]
=> [2]
=> 1
[4,2,3,1,5] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,2,3,5,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,2,5,3,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,3,2,1,5] => [4,3,2,1] => [2,2]
=> [2]
=> 1
[4,3,2,5,1] => [4,3,2,1] => [2,2]
=> [2]
=> 1
[4,3,5,2,1] => [4,3,2,1] => [2,2]
=> [2]
=> 1
[4,5,2,3,1] => [4,2,3,1] => [2,1,1]
=> [1,1]
=> 1
[4,5,3,2,1] => [4,3,2,1] => [2,2]
=> [2]
=> 1
[5,1,2,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[5,1,2,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[5,1,3,2,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[5,1,4,3,2] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> 1
[5,2,1,3,4] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[5,2,1,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 1
Description
The cube of the number of standard Young tableaux with shape given by the partition.
Matching statistic: St000284
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00159: Permutations —Demazure product with inverse⟶ Permutations
Mp00204: Permutations —LLPS⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000284: Integer partitions ⟶ ℤResult quality: 27% ●values known / values provided: 48%●distinct values known / distinct values provided: 27%
Mp00204: Permutations —LLPS⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000284: Integer partitions ⟶ ℤResult quality: 27% ●values known / values provided: 48%●distinct values known / distinct values provided: 27%
Values
[1,2] => [1,2] => [1,1]
=> [1]
=> ? ∊ {1,1}
[2,1] => [2,1] => [2]
=> []
=> ? ∊ {1,1}
[1,2,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,3,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,2}
[2,1,3] => [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,1,1,1,2}
[2,3,1] => [3,2,1] => [3]
=> []
=> ? ∊ {1,1,1,1,2}
[3,1,2] => [3,2,1] => [3]
=> []
=> ? ∊ {1,1,1,1,2}
[3,2,1] => [3,2,1] => [3]
=> []
=> ? ∊ {1,1,1,1,2}
[1,2,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,3,2,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,3,4,2] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[1,4,2,3] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[1,4,3,2] => [1,4,3,2] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,1,3,4] => [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[2,1,4,3] => [2,1,4,3] => [2,2]
=> [2]
=> 1
[2,3,1,4] => [3,2,1,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,3,4,1] => [4,2,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,4,1,3] => [3,4,1,2] => [2,1,1]
=> [1,1]
=> 1
[2,4,3,1] => [4,3,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,1,2,4] => [3,2,1,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,1,4,2] => [4,2,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,2,1,4] => [3,2,1,4] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,2,4,1] => [4,2,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,4,1,2] => [4,3,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,4,2,1] => [4,3,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,1,2,3] => [4,2,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,1,3,2] => [4,2,3,1] => [3,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,2,1,3] => [4,3,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,2,3,1] => [4,3,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,3,1,2] => [4,3,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,3,2,1] => [4,3,2,1] => [4]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[1,2,3,4,5] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,2,3,5,4] => [1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,3,5] => [1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,2,4,5,3] => [1,2,5,4,3] => [3,1,1]
=> [1,1]
=> 1
[1,2,5,3,4] => [1,2,5,4,3] => [3,1,1]
=> [1,1]
=> 1
[1,2,5,4,3] => [1,2,5,4,3] => [3,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => [1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,3,2,5,4] => [1,3,2,5,4] => [2,2,1]
=> [2,1]
=> 4
[1,3,4,2,5] => [1,4,3,2,5] => [3,1,1]
=> [1,1]
=> 1
[1,3,4,5,2] => [1,5,3,4,2] => [3,1,1]
=> [1,1]
=> 1
[1,3,5,2,4] => [1,4,5,2,3] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,3,5,4,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,4,2,3,5] => [1,4,3,2,5] => [3,1,1]
=> [1,1]
=> 1
[1,4,2,5,3] => [1,5,3,4,2] => [3,1,1]
=> [1,1]
=> 1
[1,4,3,2,5] => [1,4,3,2,5] => [3,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => [1,5,3,4,2] => [3,1,1]
=> [1,1]
=> 1
[1,4,5,2,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,4,5,3,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,5,2,3,4] => [1,5,3,4,2] => [3,1,1]
=> [1,1]
=> 1
[1,5,2,4,3] => [1,5,3,4,2] => [3,1,1]
=> [1,1]
=> 1
[1,5,3,2,4] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,5,3,4,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,5,4,2,3] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,5,4,3,2] => [1,5,4,3,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,1,3,4,5] => [2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[2,1,3,5,4] => [2,1,3,5,4] => [2,2,1]
=> [2,1]
=> 4
[2,1,4,3,5] => [2,1,4,3,5] => [2,2,1]
=> [2,1]
=> 4
[2,1,4,5,3] => [2,1,5,4,3] => [3,2]
=> [2]
=> 1
[2,1,5,3,4] => [2,1,5,4,3] => [3,2]
=> [2]
=> 1
[2,1,5,4,3] => [2,1,5,4,3] => [3,2]
=> [2]
=> 1
[2,3,1,4,5] => [3,2,1,4,5] => [3,1,1]
=> [1,1]
=> 1
[2,3,1,5,4] => [3,2,1,5,4] => [3,2]
=> [2]
=> 1
[2,3,4,1,5] => [4,2,3,1,5] => [3,1,1]
=> [1,1]
=> 1
[2,3,4,5,1] => [5,2,3,4,1] => [3,1,1]
=> [1,1]
=> 1
[2,3,5,1,4] => [4,2,5,1,3] => [3,1,1]
=> [1,1]
=> 1
[2,3,5,4,1] => [5,2,4,3,1] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,1,3,5] => [3,4,1,2,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[2,4,1,5,3] => [3,5,1,4,2] => [3,1,1]
=> [1,1]
=> 1
[2,4,3,1,5] => [4,3,2,1,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,3,5,1] => [5,3,2,4,1] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,5,1,3] => [4,5,3,1,2] => [3,1,1]
=> [1,1]
=> 1
[2,4,5,3,1] => [5,4,3,2,1] => [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,1,3,4] => [3,5,1,4,2] => [3,1,1]
=> [1,1]
=> 1
[2,5,1,4,3] => [3,5,1,4,2] => [3,1,1]
=> [1,1]
=> 1
[2,5,3,1,4] => [4,5,3,1,2] => [3,1,1]
=> [1,1]
=> 1
[2,5,3,4,1] => [5,4,3,2,1] => [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,4,1,3] => [4,5,3,1,2] => [3,1,1]
=> [1,1]
=> 1
[2,5,4,3,1] => [5,4,3,2,1] => [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,1,2,4,5] => [3,2,1,4,5] => [3,1,1]
=> [1,1]
=> 1
[3,1,2,5,4] => [3,2,1,5,4] => [3,2]
=> [2]
=> 1
[3,1,4,2,5] => [4,2,3,1,5] => [3,1,1]
=> [1,1]
=> 1
[3,1,4,5,2] => [5,2,3,4,1] => [3,1,1]
=> [1,1]
=> 1
[3,1,5,2,4] => [4,2,5,1,3] => [3,1,1]
=> [1,1]
=> 1
[3,1,5,4,2] => [5,2,4,3,1] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,2,1,4,5] => [3,2,1,4,5] => [3,1,1]
=> [1,1]
=> 1
[3,2,1,5,4] => [3,2,1,5,4] => [3,2]
=> [2]
=> 1
[3,2,4,1,5] => [4,2,3,1,5] => [3,1,1]
=> [1,1]
=> 1
[3,2,5,4,1] => [5,2,4,3,1] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,4,1,2,5] => [4,3,2,1,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,4,1,5,2] => [5,3,2,4,1] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,4,2,1,5] => [4,3,2,1,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,4,2,5,1] => [5,3,2,4,1] => [4,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,4,5,1,2] => [5,4,3,2,1] => [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,4,5,2,1] => [5,4,3,2,1] => [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,5,1,4,2] => [5,4,3,2,1] => [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,5,2,4,1] => [5,4,3,2,1] => [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,5,4,1,2] => [5,4,3,2,1] => [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,5,4,2,1] => [5,4,3,2,1] => [5]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
Description
The Plancherel distribution on integer partitions.
This is defined as the distribution induced by the RSK shape of the uniform distribution on permutations. In other words, this is the size of the preimage of the map 'Robinson-Schensted tableau shape' from permutations to integer partitions.
Equivalently, this is given by the square of the number of standard Young tableaux of the given shape.
Matching statistic: St000454
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Values
[1,2] => ([],2)
=> ([],2)
=> 0 = 1 - 1
[2,1] => ([(0,1)],2)
=> ([],1)
=> 0 = 1 - 1
[1,2,3] => ([],3)
=> ([],3)
=> 0 = 1 - 1
[1,3,2] => ([(1,2)],3)
=> ([],2)
=> 0 = 1 - 1
[2,1,3] => ([(1,2)],3)
=> ([],2)
=> 0 = 1 - 1
[2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,2} - 1
[3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,2} - 1
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> 0 = 1 - 1
[1,2,3,4] => ([],4)
=> ([],4)
=> 0 = 1 - 1
[1,2,4,3] => ([(2,3)],4)
=> ([],3)
=> 0 = 1 - 1
[1,3,2,4] => ([(2,3)],4)
=> ([],3)
=> 0 = 1 - 1
[1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,2,3,3,4,4,4} - 1
[1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,2,3,3,4,4,4} - 1
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> 0 = 1 - 1
[2,1,3,4] => ([(2,3)],4)
=> ([],3)
=> 0 = 1 - 1
[2,1,4,3] => ([(0,3),(1,2)],4)
=> ([],2)
=> 0 = 1 - 1
[2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,2,3,3,4,4,4} - 1
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,2,3,3,4,4,4} - 1
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,3,3,4,4,4} - 1
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,2,2,2,3,3,4,4,4} - 1
[3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,2,3,3,4,4,4} - 1
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,2,2,2,3,3,4,4,4} - 1
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> 0 = 1 - 1
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,2,2,2,3,3,4,4,4} - 1
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> 0 = 1 - 1
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 0 = 1 - 1
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,2,2,2,3,3,4,4,4} - 1
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,2,2,2,3,3,4,4,4} - 1
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,2,2,2,3,3,4,4,4} - 1
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 0 = 1 - 1
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 0 = 1 - 1
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 0 = 1 - 1
[1,2,3,4,5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[1,2,3,5,4] => ([(3,4)],5)
=> ([],4)
=> 0 = 1 - 1
[1,2,4,3,5] => ([(3,4)],5)
=> ([],4)
=> 0 = 1 - 1
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> 0 = 1 - 1
[1,3,2,4,5] => ([(3,4)],5)
=> ([],4)
=> 0 = 1 - 1
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([],3)
=> 0 = 1 - 1
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> 0 = 1 - 1
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> 0 = 1 - 1
[1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0 = 1 - 1
[1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0 = 1 - 1
[1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0 = 1 - 1
[1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0 = 1 - 1
[2,1,3,4,5] => ([(3,4)],5)
=> ([],4)
=> 0 = 1 - 1
[2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([],3)
=> 0 = 1 - 1
[2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([],3)
=> 0 = 1 - 1
[2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0 = 1 - 1
[2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[3,1,2,4,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[3,1,2,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[3,1,4,2,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24} - 1
[3,2,1,4,5] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> 0 = 1 - 1
[3,2,1,5,4] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0 = 1 - 1
[3,4,1,2,5] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> 0 = 1 - 1
[3,4,2,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0 = 1 - 1
[3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 0 = 1 - 1
[3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0 = 1 - 1
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0 = 1 - 1
[3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0 = 1 - 1
[3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 0 = 1 - 1
[3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0 = 1 - 1
[4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0 = 1 - 1
[4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0 = 1 - 1
[4,2,5,3,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 0 = 1 - 1
[4,3,1,2,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0 = 1 - 1
[4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> 0 = 1 - 1
Description
The largest eigenvalue of a graph if it is integral.
If a graph is d-regular, then its largest eigenvalue equals d. One can show that the largest eigenvalue always lies between the average degree and the maximal degree.
This statistic is undefined if the largest eigenvalue of the graph is not integral.
Matching statistic: St000618
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000618: Integer partitions ⟶ ℤResult quality: 9% ●values known / values provided: 44%●distinct values known / distinct values provided: 9%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000618: Integer partitions ⟶ ℤResult quality: 9% ●values known / values provided: 44%●distinct values known / distinct values provided: 9%
Values
[1,2] => [1,1]
=> [1]
=> []
=> ? ∊ {1,1}
[2,1] => [2]
=> []
=> ?
=> ? ∊ {1,1}
[1,2,3] => [1,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,2] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,2}
[2,1,3] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,2}
[2,3,1] => [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,2}
[3,1,2] => [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,2}
[3,2,1] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,2}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,4,2] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[1,4,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,3,1,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,3,4,1] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,4,1,3] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,4,3,1] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,1,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,1,4,2] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,4,1] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,4,1,2] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,4,2,1] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,1,2,3] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,1,3,2] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,2,1,3] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,3,1,2] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,3,2,1] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,3,5,2,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,2,5,3] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[1,4,5,3,2] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,4,2,3] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,1,4,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,1,5,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,3,1,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,3,1,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,3,4,1,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,3,4,5,1] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,3,5,1,4] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,3,5,4,1] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,1,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,1,5,3] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,4,3,5,1] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,5,1,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,5,3,1] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,1,3,4] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,1,4,3] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,3,1,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,5,4,1,3] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,4,3,1] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,1,2,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,1,2,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,1,4,2,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,1,4,5,2] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,5,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,4,1,2,5] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,5,1,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,1,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,1,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,3,1,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[4,2,3,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,5,1,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,3,2,1,5] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,5,3,1,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[5,1,3,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[5,2,1,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[5,2,3,1,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
Description
The number of self-evacuating tableaux of given shape.
This is the same as the number of standard domino tableaux of the given shape.
Matching statistic: St000781
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000781: Integer partitions ⟶ ℤResult quality: 9% ●values known / values provided: 44%●distinct values known / distinct values provided: 9%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000781: Integer partitions ⟶ ℤResult quality: 9% ●values known / values provided: 44%●distinct values known / distinct values provided: 9%
Values
[1,2] => [1,1]
=> [1]
=> []
=> ? ∊ {1,1}
[2,1] => [2]
=> []
=> ?
=> ? ∊ {1,1}
[1,2,3] => [1,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,2] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,2}
[2,1,3] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,2}
[2,3,1] => [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,2}
[3,1,2] => [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,2}
[3,2,1] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,2}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,4,2] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[1,4,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,3,1,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,3,4,1] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,4,1,3] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,4,3,1] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,1,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,1,4,2] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,4,1] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,4,1,2] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,4,2,1] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,1,2,3] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,1,3,2] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,2,1,3] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,3,1,2] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,3,2,1] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,3,5,2,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,2,5,3] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[1,4,5,3,2] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,4,2,3] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,1,4,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,1,5,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,3,1,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,3,1,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,3,4,1,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,3,4,5,1] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,3,5,1,4] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,3,5,4,1] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,1,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,1,5,3] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,4,3,5,1] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,5,1,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,5,3,1] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,1,3,4] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,1,4,3] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,3,1,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,5,4,1,3] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,4,3,1] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,1,2,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,1,2,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,1,4,2,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,1,4,5,2] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,5,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,4,1,2,5] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,5,1,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,1,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,1,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,3,1,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[4,2,3,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,5,1,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,3,2,1,5] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,5,3,1,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[5,1,3,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[5,2,1,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[5,2,3,1,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
Description
The number of proper colouring schemes of a Ferrers diagram.
A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1].
This statistic is the number of distinct such integer partitions that occur.
Matching statistic: St001364
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001364: Integer partitions ⟶ ℤResult quality: 27% ●values known / values provided: 44%●distinct values known / distinct values provided: 27%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001364: Integer partitions ⟶ ℤResult quality: 27% ●values known / values provided: 44%●distinct values known / distinct values provided: 27%
Values
[1,2] => [1,1]
=> [1]
=> []
=> ? ∊ {1,1}
[2,1] => [2]
=> []
=> ?
=> ? ∊ {1,1}
[1,2,3] => [1,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,2] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,2}
[2,1,3] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,2}
[2,3,1] => [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,2}
[3,1,2] => [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,2}
[3,2,1] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,2}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,4,2] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[1,4,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,3,1,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,3,4,1] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,4,1,3] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,4,3,1] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,1,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,1,4,2] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,4,1] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,4,1,2] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,4,2,1] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,1,2,3] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,1,3,2] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,2,1,3] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,3,1,2] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,3,2,1] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 3
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,3,5,2,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,2,5,3] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[1,4,5,3,2] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,4,2,3] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,1,4,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,1,5,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,3,1,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,3,1,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,3,4,1,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,3,4,5,1] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,3,5,1,4] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,3,5,4,1] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,1,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,1,5,3] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,4,3,5,1] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,5,1,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,5,3,1] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,1,3,4] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,1,4,3] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,3,1,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,5,4,1,3] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,4,3,1] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,1,2,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,1,2,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,1,4,2,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,1,4,5,2] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,5,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,4,1,2,5] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,5,1,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,1,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,1,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,3,1,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[4,2,3,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,5,1,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,3,2,1,5] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,5,3,1,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[5,1,3,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[5,2,1,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[5,2,3,1,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
Description
The number of permutations whose cube equals a fixed permutation of given cycle type.
For example, the permutation π=412365 has cycle type (4,2) and 234165 is the unique permutation whose cube is π.
Matching statistic: St001432
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001432: Integer partitions ⟶ ℤResult quality: 9% ●values known / values provided: 44%●distinct values known / distinct values provided: 9%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001432: Integer partitions ⟶ ℤResult quality: 9% ●values known / values provided: 44%●distinct values known / distinct values provided: 9%
Values
[1,2] => [1,1]
=> [1]
=> []
=> ? ∊ {1,1}
[2,1] => [2]
=> []
=> ?
=> ? ∊ {1,1}
[1,2,3] => [1,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,2] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,2}
[2,1,3] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,2}
[2,3,1] => [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,2}
[3,1,2] => [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,2}
[3,2,1] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,2}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,4,2] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[1,4,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,3,1,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,3,4,1] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,4,1,3] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,4,3,1] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,1,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,1,4,2] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,4,1] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,4,1,2] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,4,2,1] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,1,2,3] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,1,3,2] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,2,1,3] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,3,1,2] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,3,2,1] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,3,5,2,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,2,5,3] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[1,4,5,3,2] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,4,2,3] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,1,4,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,1,5,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,3,1,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,3,1,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,3,4,1,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,3,4,5,1] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,3,5,1,4] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,3,5,4,1] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,1,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,1,5,3] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,4,3,5,1] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,5,1,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,5,3,1] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,1,3,4] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,1,4,3] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,3,1,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,5,4,1,3] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,4,3,1] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,1,2,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,1,2,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,1,4,2,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,1,4,5,2] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,5,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,4,1,2,5] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,5,1,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,1,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,1,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,3,1,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[4,2,3,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,5,1,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,3,2,1,5] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,5,3,1,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[5,1,3,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[5,2,1,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[5,2,3,1,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
Description
The order dimension of the partition.
Given a partition λ, let I(λ) be the principal order ideal in the Young lattice generated by λ. The order dimension of a partition is defined as the order dimension of the poset I(λ).
Matching statistic: St001599
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001599: Integer partitions ⟶ ℤResult quality: 18% ●values known / values provided: 44%●distinct values known / distinct values provided: 18%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001599: Integer partitions ⟶ ℤResult quality: 18% ●values known / values provided: 44%●distinct values known / distinct values provided: 18%
Values
[1,2] => [1,1]
=> [1]
=> []
=> ? ∊ {1,1}
[2,1] => [2]
=> []
=> ?
=> ? ∊ {1,1}
[1,2,3] => [1,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,2] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,2}
[2,1,3] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,2}
[2,3,1] => [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,2}
[3,1,2] => [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,2}
[3,2,1] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,2}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,4,2] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[1,4,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,3,1,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,3,4,1] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,4,1,3] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,4,3,1] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,1,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,1,4,2] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,4,1] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,4,1,2] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,4,2,1] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,1,2,3] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,1,3,2] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,2,1,3] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,3,1,2] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,3,2,1] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,3,5,2,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,2,5,3] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[1,4,5,3,2] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,4,2,3] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,1,4,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,1,5,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,3,1,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,3,1,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,3,4,1,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,3,4,5,1] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,3,5,1,4] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,3,5,4,1] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,1,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,1,5,3] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,4,3,5,1] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,5,1,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,5,3,1] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,1,3,4] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,1,4,3] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,3,1,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,5,4,1,3] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,4,3,1] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,1,2,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,1,2,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,1,4,2,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,1,4,5,2] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,5,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,4,1,2,5] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,5,1,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,1,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,1,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,3,1,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[4,2,3,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,5,1,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,3,2,1,5] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,5,3,1,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[5,1,3,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[5,2,1,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[5,2,3,1,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
Description
The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees.
Matching statistic: St001602
Mp00108: Permutations —cycle type⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001602: Integer partitions ⟶ ℤResult quality: 36% ●values known / values provided: 44%●distinct values known / distinct values provided: 36%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001602: Integer partitions ⟶ ℤResult quality: 36% ●values known / values provided: 44%●distinct values known / distinct values provided: 36%
Values
[1,2] => [1,1]
=> [1]
=> []
=> ? ∊ {1,1}
[2,1] => [2]
=> []
=> ?
=> ? ∊ {1,1}
[1,2,3] => [1,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,2] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,2}
[2,1,3] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,2}
[2,3,1] => [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,2}
[3,1,2] => [3]
=> []
=> ?
=> ? ∊ {1,1,1,1,2}
[3,2,1] => [2,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,2}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,4,2] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[1,4,2,3] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[2,1,4,3] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,3,1,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,3,4,1] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,4,1,3] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[2,4,3,1] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,1,2,4] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,1,4,2] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,4,1] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,4,1,2] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[3,4,2,1] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,1,2,3] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,1,3,2] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,2,1,3] => [3,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1]
=> 1
[4,3,1,2] => [4]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[4,3,2,1] => [2,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,2,2,2,3,3,4,4,4}
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 4
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,3,4,5,2] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,3,5,2,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,2,5,3] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[1,4,5,3,2] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,5,2,3,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,5,4,2,3] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,1,4,5,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,1,5,3,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[2,3,1,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,3,1,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,3,4,1,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,3,4,5,1] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,3,5,1,4] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,3,5,4,1] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,1,3,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,1,5,3] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,4,3,5,1] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,5,1,3] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,4,5,3,1] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,1,3,4] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,1,4,3] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,3,1,4] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[2,5,4,1,3] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[2,5,4,3,1] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,1,2,4,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,1,2,5,4] => [3,2]
=> [2]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,1,4,2,5] => [4,1]
=> [1]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,1,4,5,2] => [5]
=> []
=> ?
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24,24}
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,2,5,4,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[3,4,1,2,5] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[3,5,1,4,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,1,3,2,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,1,3,5] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,3,1,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[4,2,3,5,1] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[4,2,5,1,3] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,3,2,1,5] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[4,5,3,1,2] => [2,2,1]
=> [2,1]
=> [1]
=> 1
[5,1,3,4,2] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[5,2,1,4,3] => [3,1,1]
=> [1,1]
=> [1]
=> 1
[5,2,3,1,4] => [3,1,1]
=> [1,1]
=> [1]
=> 1
Description
The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on endofunctions.
The following 70 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001780The order of promotion on the set of standard tableaux of given shape. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001924The number of cells in an integer partition whose arm and leg length coincide. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St001199The dominant dimension of eAe for the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St000260The radius of a connected graph. St001877Number of indecomposable injective modules with projective dimension 2. St001330The hat guessing number of a graph. St000456The monochromatic index of a connected graph. St001964The interval resolution global dimension of a poset. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001875The number of simple modules with projective dimension at most 1. St000741The Colin de Verdière graph invariant. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St001128The exponens consonantiae of a partition. St001845The number of join irreducibles minus the rank of a lattice. St001563The value of the power-sum symmetric function evaluated at 1. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St001846The number of elements which do not have a complement in the lattice. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St000259The diameter of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St000422The energy of a graph, if it is integral. St001633The number of simple modules with projective dimension two in the incidence algebra of the poset. St000181The number of connected components of the Hasse diagram for the poset. St000298The order dimension or Dushnik-Miller dimension of a poset. St000307The number of rowmotion orbits of a poset. St000908The length of the shortest maximal antichain in a poset. St001268The size of the largest ordinal summand in the poset. St001399The distinguishing number of a poset. St001510The number of self-evacuating linear extensions of a finite poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001533The largest coefficient of the Poincare polynomial of the poset cone. St001779The order of promotion on the set of linear extensions of a poset. St000632The jump number of the poset. St001301The first Betti number of the order complex associated with the poset. St001396Number of triples of incomparable elements in a finite poset. St001397Number of pairs of incomparable elements in a finite poset. St001398Number of subsets of size 3 of elements in a poset that form a "v". St001902The number of potential covers of a poset. St001472The permanent of the Coxeter matrix of the poset. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St001632The number of indecomposable injective modules I with dimExt1(I,A)=1 for the incidence algebra A of a poset. St000524The number of posets with the same order polynomial. St000525The number of posets with the same zeta polynomial. St000526The number of posets with combinatorially isomorphic order polytopes. St000633The size of the automorphism group of a poset. St000635The number of strictly order preserving maps of a poset into itself. St000640The rank of the largest boolean interval in a poset. St000910The number of maximal chains of minimal length in a poset. St000914The sum of the values of the Möbius function of a poset. St001105The number of greedy linear extensions of a poset. St001106The number of supergreedy linear extensions of a poset. St001890The maximum magnitude of the Möbius function of a poset. St000264The girth of a graph, which is not a tree. St000907The number of maximal antichains of minimal length in a poset.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!