searching the database
Your data matches 172 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000667
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
St000667: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> 1
[2]
=> 2
[1,1]
=> 1
[3]
=> 3
[2,1]
=> 1
[1,1,1]
=> 1
[4]
=> 4
[3,1]
=> 1
[2,2]
=> 2
[2,1,1]
=> 1
[1,1,1,1]
=> 1
[5]
=> 5
[4,1]
=> 1
[3,2]
=> 1
[3,1,1]
=> 1
[2,2,1]
=> 1
[2,1,1,1]
=> 1
[1,1,1,1,1]
=> 1
[6]
=> 6
[5,1]
=> 1
[4,2]
=> 2
[4,1,1]
=> 1
[3,3]
=> 3
[3,2,1]
=> 1
[3,1,1,1]
=> 1
[2,2,2]
=> 2
[2,2,1,1]
=> 1
[2,1,1,1,1]
=> 1
[1,1,1,1,1,1]
=> 1
[7]
=> 7
[6,1]
=> 1
[5,2]
=> 1
[5,1,1]
=> 1
[4,3]
=> 1
[4,2,1]
=> 1
[4,1,1,1]
=> 1
[3,3,1]
=> 1
[3,2,2]
=> 1
[3,2,1,1]
=> 1
[3,1,1,1,1]
=> 1
[2,2,2,1]
=> 1
[2,2,1,1,1]
=> 1
[2,1,1,1,1,1]
=> 1
[1,1,1,1,1,1,1]
=> 1
Description
The greatest common divisor of the parts of the partition.
Matching statistic: St001051
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00151: Permutations —to cycle type⟶ Set partitions
St001051: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00081: Standard tableaux —reading word permutation⟶ Permutations
Mp00151: Permutations —to cycle type⟶ Set partitions
St001051: Set partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1]
=> [[1]]
=> [1] => {{1}}
=> 1
[2]
=> [[1,2]]
=> [1,2] => {{1},{2}}
=> 2
[1,1]
=> [[1],[2]]
=> [2,1] => {{1,2}}
=> 1
[3]
=> [[1,2,3]]
=> [1,2,3] => {{1},{2},{3}}
=> 3
[2,1]
=> [[1,2],[3]]
=> [3,1,2] => {{1,2,3}}
=> 1
[1,1,1]
=> [[1],[2],[3]]
=> [3,2,1] => {{1,3},{2}}
=> 1
[4]
=> [[1,2,3,4]]
=> [1,2,3,4] => {{1},{2},{3},{4}}
=> 4
[3,1]
=> [[1,2,3],[4]]
=> [4,1,2,3] => {{1,2,3,4}}
=> 1
[2,2]
=> [[1,2],[3,4]]
=> [3,4,1,2] => {{1,3},{2,4}}
=> 2
[2,1,1]
=> [[1,2],[3],[4]]
=> [4,3,1,2] => {{1,2,3,4}}
=> 1
[1,1,1,1]
=> [[1],[2],[3],[4]]
=> [4,3,2,1] => {{1,4},{2,3}}
=> 1
[5]
=> [[1,2,3,4,5]]
=> [1,2,3,4,5] => {{1},{2},{3},{4},{5}}
=> 5
[4,1]
=> [[1,2,3,4],[5]]
=> [5,1,2,3,4] => {{1,2,3,4,5}}
=> 1
[3,2]
=> [[1,2,3],[4,5]]
=> [4,5,1,2,3] => {{1,2,3,4,5}}
=> 1
[3,1,1]
=> [[1,2,3],[4],[5]]
=> [5,4,1,2,3] => {{1,3,5},{2,4}}
=> 1
[2,2,1]
=> [[1,2],[3,4],[5]]
=> [5,3,4,1,2] => {{1,2,3,4,5}}
=> 1
[2,1,1,1]
=> [[1,2],[3],[4],[5]]
=> [5,4,3,1,2] => {{1,2,4,5},{3}}
=> 1
[1,1,1,1,1]
=> [[1],[2],[3],[4],[5]]
=> [5,4,3,2,1] => {{1,5},{2,4},{3}}
=> 1
[6]
=> [[1,2,3,4,5,6]]
=> [1,2,3,4,5,6] => {{1},{2},{3},{4},{5},{6}}
=> 6
[5,1]
=> [[1,2,3,4,5],[6]]
=> [6,1,2,3,4,5] => {{1,2,3,4,5,6}}
=> 1
[4,2]
=> [[1,2,3,4],[5,6]]
=> [5,6,1,2,3,4] => {{1,3,5},{2,4,6}}
=> 2
[4,1,1]
=> [[1,2,3,4],[5],[6]]
=> [6,5,1,2,3,4] => {{1,2,3,4,5,6}}
=> 1
[3,3]
=> [[1,2,3],[4,5,6]]
=> [4,5,6,1,2,3] => {{1,4},{2,5},{3,6}}
=> 3
[3,2,1]
=> [[1,2,3],[4,5],[6]]
=> [6,4,5,1,2,3] => {{1,2,3,4,5,6}}
=> 1
[3,1,1,1]
=> [[1,2,3],[4],[5],[6]]
=> [6,5,4,1,2,3] => {{1,3,4,6},{2,5}}
=> 1
[2,2,2]
=> [[1,2],[3,4],[5,6]]
=> [5,6,3,4,1,2] => {{1,5},{2,6},{3},{4}}
=> 2
[2,2,1,1]
=> [[1,2],[3,4],[5],[6]]
=> [6,5,3,4,1,2] => {{1,2,5,6},{3},{4}}
=> 1
[2,1,1,1,1]
=> [[1,2],[3],[4],[5],[6]]
=> [6,5,4,3,1,2] => {{1,2,5,6},{3,4}}
=> 1
[1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6]]
=> [6,5,4,3,2,1] => {{1,6},{2,5},{3,4}}
=> 1
[7]
=> [[1,2,3,4,5,6,7]]
=> [1,2,3,4,5,6,7] => {{1},{2},{3},{4},{5},{6},{7}}
=> 7
[6,1]
=> [[1,2,3,4,5,6],[7]]
=> [7,1,2,3,4,5,6] => {{1,2,3,4,5,6,7}}
=> 1
[5,2]
=> [[1,2,3,4,5],[6,7]]
=> [6,7,1,2,3,4,5] => {{1,2,3,4,5,6,7}}
=> 1
[5,1,1]
=> [[1,2,3,4,5],[6],[7]]
=> [7,6,1,2,3,4,5] => {{1,3,5,7},{2,4,6}}
=> 1
[4,3]
=> [[1,2,3,4],[5,6,7]]
=> [5,6,7,1,2,3,4] => {{1,2,3,4,5,6,7}}
=> 1
[4,2,1]
=> [[1,2,3,4],[5,6],[7]]
=> [7,5,6,1,2,3,4] => {{1,4,7},{2,5},{3,6}}
=> 1
[4,1,1,1]
=> [[1,2,3,4],[5],[6],[7]]
=> [7,6,5,1,2,3,4] => {{1,4,7},{2,3,5,6}}
=> 1
[3,3,1]
=> [[1,2,3],[4,5,6],[7]]
=> [7,4,5,6,1,2,3] => {{1,3,5,7},{2,4,6}}
=> 1
[3,2,2]
=> [[1,2,3],[4,5],[6,7]]
=> [6,7,4,5,1,2,3] => {{1,2,3,4,5,6,7}}
=> 1
[3,2,1,1]
=> [[1,2,3],[4,5],[6],[7]]
=> [7,6,4,5,1,2,3] => {{1,3,4,5,7},{2,6}}
=> 1
[3,1,1,1,1]
=> [[1,2,3],[4],[5],[6],[7]]
=> [7,6,5,4,1,2,3] => {{1,3,5,7},{2,6},{4}}
=> 1
[2,2,2,1]
=> [[1,2],[3,4],[5,6],[7]]
=> [7,5,6,3,4,1,2] => {{1,2,3,4,5,6,7}}
=> 1
[2,2,1,1,1]
=> [[1,2],[3,4],[5],[6],[7]]
=> [7,6,5,3,4,1,2] => {{1,2,6,7},{3,4,5}}
=> 1
[2,1,1,1,1,1]
=> [[1,2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,1,2] => {{1,2,6,7},{3,5},{4}}
=> 1
[1,1,1,1,1,1,1]
=> [[1],[2],[3],[4],[5],[6],[7]]
=> [7,6,5,4,3,2,1] => {{1,7},{2,6},{3,5},{4}}
=> 1
Description
The depth of the label 1 in the decreasing labelled unordered tree associated with the set partition.
The bijection between set partitions of $\{1,\dots,n\}$ into $k$ blocks and trees with $n+1-k$ leaves is described in Theorem 1 of [1].
Matching statistic: St001000
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
St001000: Dyck paths ⟶ ℤResult quality: 57% ●values known / values provided: 68%●distinct values known / distinct values provided: 57%
Mp00099: Dyck paths —bounce path⟶ Dyck paths
Mp00132: Dyck paths —switch returns and last double rise⟶ Dyck paths
St001000: Dyck paths ⟶ ℤResult quality: 57% ●values known / values provided: 68%●distinct values known / distinct values provided: 57%
Values
[1]
=> [1,0,1,0]
=> [1,0,1,0]
=> [1,0,1,0]
=> 1
[2]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> [1,1,0,0,1,0]
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,0,1,0]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> [1,0,1,0,1,0]
=> 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> 3
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,0,0]
=> 2
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> 4
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> ? ∊ {1,5}
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,0,1,0,1,0]
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,0,1,0]
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,0]
=> 1
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> ? ∊ {1,5}
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,2,6}
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> ? ∊ {1,1,2,6}
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> [1,0,1,0,1,0,1,0]
=> 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> 3
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> ? ∊ {1,1,2,6}
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> ? ∊ {1,1,2,6}
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,7}
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0,1,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,7}
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,7}
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,7}
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,7}
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> 1
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,7}
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,0,1,0,1,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,7}
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,7}
Description
Number of indecomposable modules with projective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path.
Matching statistic: St000260
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 66%●distinct values known / distinct values provided: 14%
Mp00102: Dyck paths —rise composition⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 14% ●values known / values provided: 66%●distinct values known / distinct values provided: 14%
Values
[1]
=> [1,0,1,0]
=> [1,1] => ([(0,1)],2)
=> 1
[2]
=> [1,1,0,0,1,0]
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [1,2] => ([(1,2)],3)
=> ? = 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 1
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [1,3] => ([(2,3)],4)
=> ? = 3
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {2,4}
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ? ∊ {2,4}
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {1,5}
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ? ∊ {1,5}
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6,1] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7)
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,6}
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {2,2,3,6}
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,3,6}
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,6] => ([(5,6)],7)
=> ? ∊ {2,2,3,6}
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [7,1] => ([(0,7),(1,7),(2,7),(3,7),(4,7),(5,7),(6,7)],8)
=> ? ∊ {1,1,1,1,7}
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [5,1,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,7}
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,1,1,7}
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,1,7}
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,5,1] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,7] => ([(6,7)],8)
=> ? ∊ {1,1,1,1,7}
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
Matching statistic: St000781
(load all 14 compositions to match this statistic)
(load all 14 compositions to match this statistic)
Mp00179: Integer partitions —to skew partition⟶ Skew partitions
Mp00189: Skew partitions —rotate⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St000781: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 64%●distinct values known / distinct values provided: 14%
Mp00189: Skew partitions —rotate⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St000781: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 64%●distinct values known / distinct values provided: 14%
Values
[1]
=> [[1],[]]
=> [[1],[]]
=> []
=> ? = 1
[2]
=> [[2],[]]
=> [[2],[]]
=> []
=> ? ∊ {1,2}
[1,1]
=> [[1,1],[]]
=> [[1,1],[]]
=> []
=> ? ∊ {1,2}
[3]
=> [[3],[]]
=> [[3],[]]
=> []
=> ? ∊ {1,3}
[2,1]
=> [[2,1],[]]
=> [[2,2],[1]]
=> [1]
=> 1
[1,1,1]
=> [[1,1,1],[]]
=> [[1,1,1],[]]
=> []
=> ? ∊ {1,3}
[4]
=> [[4],[]]
=> [[4],[]]
=> []
=> ? ∊ {1,2,4}
[3,1]
=> [[3,1],[]]
=> [[3,3],[2]]
=> [2]
=> 1
[2,2]
=> [[2,2],[]]
=> [[2,2],[]]
=> []
=> ? ∊ {1,2,4}
[2,1,1]
=> [[2,1,1],[]]
=> [[2,2,2],[1,1]]
=> [1,1]
=> 1
[1,1,1,1]
=> [[1,1,1,1],[]]
=> [[1,1,1,1],[]]
=> []
=> ? ∊ {1,2,4}
[5]
=> [[5],[]]
=> [[5],[]]
=> []
=> ? ∊ {1,5}
[4,1]
=> [[4,1],[]]
=> [[4,4],[3]]
=> [3]
=> 1
[3,2]
=> [[3,2],[]]
=> [[3,3],[1]]
=> [1]
=> 1
[3,1,1]
=> [[3,1,1],[]]
=> [[3,3,3],[2,2]]
=> [2,2]
=> 1
[2,2,1]
=> [[2,2,1],[]]
=> [[2,2,2],[1]]
=> [1]
=> 1
[2,1,1,1]
=> [[2,1,1,1],[]]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 1
[1,1,1,1,1]
=> [[1,1,1,1,1],[]]
=> [[1,1,1,1,1],[]]
=> []
=> ? ∊ {1,5}
[6]
=> [[6],[]]
=> [[6],[]]
=> []
=> ? ∊ {2,2,3,6}
[5,1]
=> [[5,1],[]]
=> [[5,5],[4]]
=> [4]
=> 1
[4,2]
=> [[4,2],[]]
=> [[4,4],[2]]
=> [2]
=> 1
[4,1,1]
=> [[4,1,1],[]]
=> [[4,4,4],[3,3]]
=> [3,3]
=> 1
[3,3]
=> [[3,3],[]]
=> [[3,3],[]]
=> []
=> ? ∊ {2,2,3,6}
[3,2,1]
=> [[3,2,1],[]]
=> [[3,3,3],[2,1]]
=> [2,1]
=> 1
[3,1,1,1]
=> [[3,1,1,1],[]]
=> [[3,3,3,3],[2,2,2]]
=> [2,2,2]
=> 1
[2,2,2]
=> [[2,2,2],[]]
=> [[2,2,2],[]]
=> []
=> ? ∊ {2,2,3,6}
[2,2,1,1]
=> [[2,2,1,1],[]]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 1
[2,1,1,1,1]
=> [[2,1,1,1,1],[]]
=> [[2,2,2,2,2],[1,1,1,1]]
=> [1,1,1,1]
=> 1
[1,1,1,1,1,1]
=> [[1,1,1,1,1,1],[]]
=> [[1,1,1,1,1,1],[]]
=> []
=> ? ∊ {2,2,3,6}
[7]
=> [[7],[]]
=> [[7],[]]
=> []
=> ? ∊ {1,7}
[6,1]
=> [[6,1],[]]
=> [[6,6],[5]]
=> [5]
=> 1
[5,2]
=> [[5,2],[]]
=> [[5,5],[3]]
=> [3]
=> 1
[5,1,1]
=> [[5,1,1],[]]
=> [[5,5,5],[4,4]]
=> [4,4]
=> 1
[4,3]
=> [[4,3],[]]
=> [[4,4],[1]]
=> [1]
=> 1
[4,2,1]
=> [[4,2,1],[]]
=> [[4,4,4],[3,2]]
=> [3,2]
=> 1
[4,1,1,1]
=> [[4,1,1,1],[]]
=> [[4,4,4,4],[3,3,3]]
=> [3,3,3]
=> 1
[3,3,1]
=> [[3,3,1],[]]
=> [[3,3,3],[2]]
=> [2]
=> 1
[3,2,2]
=> [[3,2,2],[]]
=> [[3,3,3],[1,1]]
=> [1,1]
=> 1
[3,2,1,1]
=> [[3,2,1,1],[]]
=> [[3,3,3,3],[2,2,1]]
=> [2,2,1]
=> 1
[3,1,1,1,1]
=> [[3,1,1,1,1],[]]
=> [[3,3,3,3,3],[2,2,2,2]]
=> [2,2,2,2]
=> 1
[2,2,2,1]
=> [[2,2,2,1],[]]
=> [[2,2,2,2],[1]]
=> [1]
=> 1
[2,2,1,1,1]
=> [[2,2,1,1,1],[]]
=> [[2,2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 1
[2,1,1,1,1,1]
=> [[2,1,1,1,1,1],[]]
=> [[2,2,2,2,2,2],[1,1,1,1,1]]
=> [1,1,1,1,1]
=> 1
[1,1,1,1,1,1,1]
=> [[1,1,1,1,1,1,1],[]]
=> [[1,1,1,1,1,1,1],[]]
=> []
=> ? ∊ {1,7}
Description
The number of proper colouring schemes of a Ferrers diagram.
A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1].
This statistic is the number of distinct such integer partitions that occur.
Matching statistic: St000706
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000706: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 61%●distinct values known / distinct values provided: 14%
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000706: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 61%●distinct values known / distinct values provided: 14%
Values
[1]
=> [1,0]
=> [1,0]
=> []
=> ? = 1
[2]
=> [1,0,1,0]
=> [1,1,0,0]
=> []
=> ? ∊ {1,2}
[1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1]
=> ? ∊ {1,2}
[3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> ? = 3
[2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2]
=> 1
[1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> 1
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {2,4}
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 1
[2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1]
=> ? ∊ {2,4}
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> 1
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 1
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 5
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 1
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> 1
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> 1
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> 1
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 1
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {2,2,3,6}
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5]
=> 1
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 1
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [5,4]
=> 1
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 1
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> 1
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [5,4,3]
=> 1
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> ? ∊ {2,2,3,6}
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> 1
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2]
=> ? ∊ {2,2,3,6}
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> ? ∊ {2,2,3,6}
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,7}
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6]
=> 1
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 1
[5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [6,5]
=> 1
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> 1
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [5,3]
=> 1
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [6,5,4]
=> ? ∊ {1,1,1,1,1,7}
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> 1
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 1
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> [5,4,2]
=> 1
[3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3]
=> ? ∊ {1,1,1,1,1,7}
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> 1
[2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1]
=> ? ∊ {1,1,1,1,1,7}
[2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2]
=> ? ∊ {1,1,1,1,1,7}
[1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1]
=> ? ∊ {1,1,1,1,1,7}
Description
The product of the factorials of the multiplicities of an integer partition.
Matching statistic: St000993
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000993: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 61%●distinct values known / distinct values provided: 14%
Mp00222: Dyck paths —peaks-to-valleys⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000993: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 61%●distinct values known / distinct values provided: 14%
Values
[1]
=> [1,0]
=> [1,0]
=> []
=> ? = 1
[2]
=> [1,0,1,0]
=> [1,1,0,0]
=> []
=> ? ∊ {1,2}
[1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1]
=> ? ∊ {1,2}
[3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> []
=> ? = 3
[2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,0,1,0]
=> [2]
=> 1
[1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,0,1,0]
=> [2,1]
=> 1
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> []
=> ? ∊ {2,4}
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> 1
[2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,1,0,0]
=> [1]
=> ? ∊ {2,4}
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> 1
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> 1
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> []
=> ? = 5
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> 1
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> 1
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> 1
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> 1
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> 1
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> 1
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> []
=> ? ∊ {2,2,3,6}
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [5]
=> 1
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> 1
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0]
=> [5,4]
=> 1
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> 1
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> 1
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0]
=> [5,4,3]
=> 1
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> ? ∊ {2,2,3,6}
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> 1
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2]
=> ? ∊ {2,2,3,6}
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> ? ∊ {2,2,3,6}
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> []
=> ? ∊ {1,1,1,1,1,7}
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [6]
=> 1
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [4]
=> 1
[5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,0,0,0,0,1,0,1,0]
=> [6,5]
=> 1
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> 1
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,0,1,0,0,1,0]
=> [5,3]
=> 1
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0,1,0,1,0]
=> [6,5,4]
=> ? ∊ {1,1,1,1,1,7}
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> 1
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> 1
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0,1,0]
=> [5,4,2]
=> 1
[3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,0,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3]
=> ? ∊ {1,1,1,1,1,7}
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,1,0,0,0,1,0]
=> [4,1]
=> 1
[2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1]
=> ? ∊ {1,1,1,1,1,7}
[2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2]
=> ? ∊ {1,1,1,1,1,7}
[1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [6,5,4,3,2,1]
=> ? ∊ {1,1,1,1,1,7}
Description
The multiplicity of the largest part of an integer partition.
Matching statistic: St000689
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
Mp00118: Dyck paths —swap returns and last descent⟶ Dyck paths
St000689: Dyck paths ⟶ ℤResult quality: 61% ●values known / values provided: 61%●distinct values known / distinct values provided: 71%
Mp00296: Dyck paths —Knuth-Krattenthaler⟶ Dyck paths
Mp00118: Dyck paths —swap returns and last descent⟶ Dyck paths
St000689: Dyck paths ⟶ ℤResult quality: 61% ●values known / values provided: 61%●distinct values known / distinct values provided: 71%
Values
[1]
=> [1,0]
=> [1,0]
=> [1,0]
=> 0 = 1 - 1
[2]
=> [1,0,1,0]
=> [1,1,0,0]
=> [1,0,1,0]
=> 1 = 2 - 1
[1,1]
=> [1,1,0,0]
=> [1,0,1,0]
=> [1,1,0,0]
=> 0 = 1 - 1
[3]
=> [1,0,1,0,1,0]
=> [1,1,1,0,0,0]
=> [1,0,1,0,1,0]
=> 2 = 3 - 1
[2,1]
=> [1,0,1,1,0,0]
=> [1,1,0,1,0,0]
=> [1,1,0,0,1,0]
=> 0 = 1 - 1
[1,1,1]
=> [1,1,0,1,0,0]
=> [1,0,1,1,0,0]
=> [1,0,1,1,0,0]
=> 0 = 1 - 1
[4]
=> [1,0,1,0,1,0,1,0]
=> [1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,0]
=> 3 = 4 - 1
[3,1]
=> [1,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [1,0,1,1,0,0,1,0]
=> 0 = 1 - 1
[2,2]
=> [1,1,1,0,0,0]
=> [1,1,0,0,1,0]
=> [1,1,0,1,0,0]
=> 1 = 2 - 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [1,1,0,0,1,0,1,0]
=> 0 = 1 - 1
[1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> [1,0,1,1,1,0,0,0]
=> [1,0,1,0,1,1,0,0]
=> 0 = 1 - 1
[5]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0]
=> 4 = 5 - 1
[4,1]
=> [1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0]
=> 0 = 1 - 1
[3,2]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
[3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0]
=> 0 = 1 - 1
[2,2,1]
=> [1,1,1,0,0,1,0,0]
=> [1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,0]
=> 0 = 1 - 1
[2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0]
=> 0 = 1 - 1
[1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0]
=> 0 = 1 - 1
[6]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,1,1,2,3,6} - 1
[5,1]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0]
=> ? ∊ {1,1,1,2,3,6} - 1
[4,2]
=> [1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [1,0,1,1,1,0,0,0,1,0]
=> 0 = 1 - 1
[4,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {1,1,1,2,3,6} - 1
[3,3]
=> [1,1,1,0,1,0,0,0]
=> [1,1,0,0,1,1,0,0]
=> [1,1,0,0,1,1,0,0]
=> 0 = 1 - 1
[3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> 0 = 1 - 1
[3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0]
=> ? ∊ {1,1,1,2,3,6} - 1
[2,2,2]
=> [1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> 0 = 1 - 1
[2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> [1,1,0,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> 1 = 2 - 1
[2,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,1,1,2,3,6} - 1
[1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,1,2,3,6} - 1
[7]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,7} - 1
[6,1]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,1,1,0,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,1,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,7} - 1
[5,2]
=> [1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [1,0,1,0,1,1,1,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,7} - 1
[5,1,1]
=> [1,0,1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,1,1,0,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,1,0,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,7} - 1
[4,3]
=> [1,0,1,1,1,0,1,0,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,0,0,1,0,1,0]
=> 0 = 1 - 1
[4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [1,0,1,1,1,0,0,1,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,7} - 1
[4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,1,1,0,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,1,0,0,1,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,7} - 1
[3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> [1,1,0,0,1,1,0,1,0,0]
=> 0 = 1 - 1
[3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,0,0,0,0,1,0]
=> 0 = 1 - 1
[3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,7} - 1
[3,1,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,1,0,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,7} - 1
[2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> 0 = 1 - 1
[2,2,1,1,1]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [1,1,0,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,7} - 1
[2,1,1,1,1,1]
=> [1,0,1,1,0,1,0,1,0,1,0,1,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [1,1,0,0,1,0,1,0,1,0,1,0,1,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,7} - 1
[1,1,1,1,1,1,1]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [1,0,1,0,1,0,1,0,1,0,1,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,7} - 1
Description
The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid.
The correspondence between LNakayama algebras and Dyck paths is explained in [[St000684]]. A module $M$ is $n$-rigid, if $\operatorname{Ext}^i(M,M)=0$ for $1\leq i\leq n$.
This statistic gives the maximal $n$ such that the minimal generator-cogenerator module $A \oplus D(A)$ of the LNakayama algebra $A$ corresponding to a Dyck path is $n$-rigid.
An application is to check for maximal $n$-orthogonal objects in the module category in the sense of [2].
Matching statistic: St001901
(load all 12 compositions to match this statistic)
(load all 12 compositions to match this statistic)
Mp00043: Integer partitions —to Dyck path⟶ Dyck paths
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St001901: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 59%●distinct values known / distinct values provided: 14%
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St001901: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 59%●distinct values known / distinct values provided: 14%
Values
[1]
=> [1,0,1,0]
=> [[1,1],[]]
=> []
=> ? = 1
[2]
=> [1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> 1
[1,1]
=> [1,0,1,1,0,0]
=> [[2,1],[]]
=> []
=> ? = 2
[3]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> 1
[2,1]
=> [1,0,1,0,1,0]
=> [[1,1,1],[]]
=> []
=> ? ∊ {1,3}
[1,1,1]
=> [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> []
=> ? ∊ {1,3}
[4]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 1
[3,1]
=> [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> 1
[2,2]
=> [1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> 1
[2,1,1]
=> [1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> []
=> ? ∊ {2,4}
[1,1,1,1]
=> [1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> ? ∊ {2,4}
[5]
=> [1,1,1,1,1,0,0,0,0,0,1,0]
=> [[3,3,3,3],[2]]
=> [2]
=> 1
[4,1]
=> [1,1,1,0,1,0,0,0,1,0]
=> [[2,2,2,2],[1]]
=> [1]
=> 1
[3,2]
=> [1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> 1
[3,1,1]
=> [1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> 1
[2,2,1]
=> [1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> []
=> ? ∊ {1,1,5}
[2,1,1,1]
=> [1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> []
=> ? ∊ {1,1,5}
[1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,0,0,0,0]
=> [[3,3,3,1],[]]
=> []
=> ? ∊ {1,1,5}
[6]
=> [1,1,1,1,1,1,0,0,0,0,0,0,1,0]
=> [[4,4,4,4],[3]]
=> [3]
=> 1
[5,1]
=> [1,1,1,1,0,1,0,0,0,0,1,0]
=> [[4,4,4],[3]]
=> [3]
=> 1
[4,2]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 1
[4,1,1]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> 1
[3,3]
=> [1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> [1]
=> 1
[3,2,1]
=> [1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> []
=> ? ∊ {2,2,3,6}
[3,1,1,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> []
=> ? ∊ {2,2,3,6}
[2,2,2]
=> [1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> 1
[2,2,1,1]
=> [1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [1]
=> 1
[2,1,1,1,1]
=> [1,0,1,1,1,1,0,1,0,0,0,0]
=> [[4,4,1],[]]
=> []
=> ? ∊ {2,2,3,6}
[1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,0,0,0,0,0,0]
=> [[4,4,4,1],[]]
=> []
=> ? ∊ {2,2,3,6}
[7]
=> [1,1,1,1,1,1,1,0,0,0,0,0,0,0,1,0]
=> [[4,4,4,4,4],[3]]
=> [3]
=> 1
[6,1]
=> [1,1,1,1,1,0,1,0,0,0,0,0,1,0]
=> [[3,3,3,3,3],[2]]
=> [2]
=> 1
[5,2]
=> [1,1,1,1,0,0,1,0,0,0,1,0]
=> [[3,3,3,3],[2,1]]
=> [2,1]
=> 1
[5,1,1]
=> [1,1,1,0,1,1,0,0,0,0,1,0]
=> [[3,3,3,2],[2]]
=> [2]
=> 1
[4,3]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 1
[4,2,1]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> 1
[4,1,1,1]
=> [1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> 1
[3,3,1]
=> [1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [2]
=> 1
[3,2,2]
=> [1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> [1]
=> 1
[3,2,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> []
=> ? ∊ {1,1,1,1,7}
[3,1,1,1,1]
=> [1,0,1,1,1,1,0,0,1,0,0,0]
=> [[3,3,3,1],[1]]
=> [1]
=> 1
[2,2,2,1]
=> [1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> []
=> ? ∊ {1,1,1,1,7}
[2,2,1,1,1]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2,1],[]]
=> []
=> ? ∊ {1,1,1,1,7}
[2,1,1,1,1,1]
=> [1,0,1,1,1,1,1,0,1,0,0,0,0,0]
=> [[3,3,3,3,1],[]]
=> []
=> ? ∊ {1,1,1,1,7}
[1,1,1,1,1,1,1]
=> [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0]
=> [[4,4,4,4,1],[]]
=> []
=> ? ∊ {1,1,1,1,7}
Description
The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition.
Matching statistic: St001934
(load all 8 compositions to match this statistic)
(load all 8 compositions to match this statistic)
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001934: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 57%●distinct values known / distinct values provided: 14%
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001934: Integer partitions ⟶ ℤResult quality: 14% ●values known / values provided: 57%●distinct values known / distinct values provided: 14%
Values
[1]
=> []
=> ?
=> ? = 1
[2]
=> []
=> ?
=> ? ∊ {1,2}
[1,1]
=> [1]
=> []
=> ? ∊ {1,2}
[3]
=> []
=> ?
=> ? ∊ {1,3}
[2,1]
=> [1]
=> []
=> ? ∊ {1,3}
[1,1,1]
=> [1,1]
=> [1]
=> 1
[4]
=> []
=> ?
=> ? ∊ {1,2,4}
[3,1]
=> [1]
=> []
=> ? ∊ {1,2,4}
[2,2]
=> [2]
=> []
=> ? ∊ {1,2,4}
[2,1,1]
=> [1,1]
=> [1]
=> 1
[1,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[5]
=> []
=> ?
=> ? ∊ {1,1,5}
[4,1]
=> [1]
=> []
=> ? ∊ {1,1,5}
[3,2]
=> [2]
=> []
=> ? ∊ {1,1,5}
[3,1,1]
=> [1,1]
=> [1]
=> 1
[2,2,1]
=> [2,1]
=> [1]
=> 1
[2,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[6]
=> []
=> ?
=> ? ∊ {2,2,3,6}
[5,1]
=> [1]
=> []
=> ? ∊ {2,2,3,6}
[4,2]
=> [2]
=> []
=> ? ∊ {2,2,3,6}
[4,1,1]
=> [1,1]
=> [1]
=> 1
[3,3]
=> [3]
=> []
=> ? ∊ {2,2,3,6}
[3,2,1]
=> [2,1]
=> [1]
=> 1
[3,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[2,2,2]
=> [2,2]
=> [2]
=> 1
[2,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[2,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[1,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[7]
=> []
=> ?
=> ? ∊ {1,1,1,7}
[6,1]
=> [1]
=> []
=> ? ∊ {1,1,1,7}
[5,2]
=> [2]
=> []
=> ? ∊ {1,1,1,7}
[5,1,1]
=> [1,1]
=> [1]
=> 1
[4,3]
=> [3]
=> []
=> ? ∊ {1,1,1,7}
[4,2,1]
=> [2,1]
=> [1]
=> 1
[4,1,1,1]
=> [1,1,1]
=> [1,1]
=> 1
[3,3,1]
=> [3,1]
=> [1]
=> 1
[3,2,2]
=> [2,2]
=> [2]
=> 1
[3,2,1,1]
=> [2,1,1]
=> [1,1]
=> 1
[3,1,1,1,1]
=> [1,1,1,1]
=> [1,1,1]
=> 1
[2,2,2,1]
=> [2,2,1]
=> [2,1]
=> 1
[2,2,1,1,1]
=> [2,1,1,1]
=> [1,1,1]
=> 1
[2,1,1,1,1,1]
=> [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,1,1,1,1,1,1]
=> [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
Description
The number of monotone factorisations of genus zero of a permutation of given cycle type.
A monotone factorisation of genus zero of a permutation $\pi\in\mathfrak S_n$ with $\ell$ cycles, including fixed points, is a tuple of $r = n - \ell$ transpositions
$$
(a_1, b_1),\dots,(a_r, b_r)
$$
with $b_1 \leq \dots \leq b_r$ and $a_i < b_i$ for all $i$, whose product, in this order, is $\pi$.
For example, the cycle $(2,3,1)$ has the two factorizations $(2,3)(1,3)$ and $(1,2)(2,3)$.
The following 162 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000003The number of standard Young tableaux of the partition. St000049The number of set partitions whose sorted block sizes correspond to the partition. St000159The number of distinct parts of the integer partition. St000182The number of permutations whose cycle type is the given integer partition. St000183The side length of the Durfee square of an integer partition. St000212The number of standard Young tableaux for an integer partition such that no two consecutive entries appear in the same row. St000275Number of permutations whose sorted list of non zero multiplicities of the Lehmer code is the given partition. St000278The size of the preimage of the map 'to partition' from Integer compositions to Integer partitions. St000321The number of integer partitions of n that are dominated by an integer partition. St000326The position of the first one in a binary word after appending a 1 at the end. St000345The number of refinements of a partition. St000517The Kreweras number of an integer partition. St000533The minimum of the number of parts and the size of the first part of an integer partition. St000618The number of self-evacuating tableaux of given shape. St000628The balance of a binary word. St000655The length of the minimal rise of a Dyck path. St000705The number of semistandard tableaux on a given integer partition of n with maximal entry n. St000783The side length of the largest staircase partition fitting into a partition. St000847The number of standard Young tableaux whose descent set is the binary word. St000897The number of different multiplicities of parts of an integer partition. St000913The number of ways to refine the partition into singletons. St000935The number of ordered refinements of an integer partition. St000964Gives the dimension of Ext^g(D(A),A) of the corresponding LNakayama algebra, when g denotes the global dimension of that algebra. St000965The sum of the dimension of Ext^i(D(A),A) for i=1,. St000999Number of indecomposable projective module with injective dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001006Number of simple modules with projective dimension equal to the global dimension of the Nakayama algebra corresponding to the Dyck path. St001009Number of indecomposable injective modules with projective dimension g when g is the global dimension of the Nakayama algebra corresponding to the Dyck path. St001011Number of simple modules of projective dimension 2 in the Nakayama algebra corresponding to the Dyck path. St001013Number of indecomposable injective modules with codominant dimension equal to the global dimension in the Nakayama algebra corresponding to the Dyck path. St001063Numbers of 3-torsionfree simple modules in the corresponding Nakayama algebra. St001064Number of simple modules in the corresponding Nakayama algebra that are 3-syzygy modules. St001129The product of the squares of the parts of a partition. St001188The number of simple modules $S$ with grade $\inf \{ i \geq 0 | Ext^i(S,A) \neq 0 \}$ at least two in the Nakayama algebra $A$ corresponding to the Dyck path. St001191Number of simple modules $S$ with $Ext_A^i(S,A)=0$ for all $i=0,1,...,g-1$ in the corresponding Nakayama algebra $A$ with global dimension $g$. St001192The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$. St001196The global dimension of $A$ minus the global dimension of $eAe$ for the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001212The number of simple modules in the corresponding Nakayama algebra that have non-zero second Ext-group with the regular module. St001215Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St001244The number of simple modules of projective dimension one that are not 1-regular for the Nakayama algebra associated to a Dyck path. St001256Number of simple reflexive modules that are 2-stable reflexive. St001289The vector space dimension of the n-fold tensor product of D(A), where n is maximal such that this n-fold tensor product is nonzero. St001385The number of conjugacy classes of subgroups with connected subgroups of sizes prescribed by an integer partition. St001432The order dimension of the partition. St001481The minimal height of a peak of a Dyck path. St001487The number of inner corners of a skew partition. St001490The number of connected components of a skew partition. St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St001507The sum of projective dimension of simple modules with even projective dimension divided by 2 in the LNakayama algebra corresponding to Dyck paths. St001597The Frobenius rank of a skew partition. St001711The number of permutations such that conjugation with a permutation of given cycle type yields the squared permutation. St001722The number of minimal chains with small intervals between a binary word and the top element. St001780The order of promotion on the set of standard tableaux of given shape. St001786The number of total orderings of the north steps of a Dyck path such that steps after the k-th east step are not among the first k positions in the order. St001804The minimal height of the rectangular inner shape in a cylindrical tableau associated to a tableau. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001924The number of cells in an integer partition whose arm and leg length coincide. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001568The smallest positive integer that does not appear twice in the partition. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001389The number of partitions of the same length below the given integer partition. St001571The Cartan determinant of the integer partition. St000181The number of connected components of the Hasse diagram for the poset. St000284The Plancherel distribution on integer partitions. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000735The last entry on the main diagonal of a standard tableau. St000901The cube of the number of standard Young tableaux with shape given by the partition. St001128The exponens consonantiae of a partition. St001599The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001627The number of coloured connected graphs such that the multiplicities of colours are given by a partition. St001763The Hurwitz number of an integer partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St001938The number of transitive monotone factorizations of genus zero of a permutation of given cycle type. St001967The coefficient of the monomial corresponding to the integer partition in a certain power series. St001968The coefficient of the monomial corresponding to the integer partition in a certain power series. St000900The minimal number of repetitions of a part in an integer composition. St000902 The minimal number of repetitions of an integer composition. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000954Number of times the corresponding LNakayama algebra has $Ext^i(D(A),A)=0$ for $i>0$. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000650The number of 3-rises of a permutation. St000454The largest eigenvalue of a graph if it is integral. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000668The least common multiple of the parts of the partition. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000770The major index of an integer partition when read from bottom to top. St000782The indicator function of whether a given perfect matching is an L & P matching. St000815The number of semistandard Young tableaux of partition weight of given shape. St000929The constant term of the character polynomial of an integer partition. St000933The number of multipartitions of sizes given by an integer partition. St000942The number of critical left to right maxima of the parking functions. St001904The length of the initial strictly increasing segment of a parking function. St001937The size of the center of a parking function. St001330The hat guessing number of a graph. St000456The monochromatic index of a connected graph. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001407The number of minimal entries in a semistandard tableau. St001408The number of maximal entries in a semistandard tableau. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001645The pebbling number of a connected graph. St001526The Loewy length of the Auslander-Reiten translate of the regular module as a bimodule of the Nakayama algebra corresponding to the Dyck path. St001556The number of inversions of the third entry of a permutation. St000352The Elizalde-Pak rank of a permutation. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000681The Grundy value of Chomp on Ferrers diagrams. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000007The number of saliances of the permutation. St000054The first entry of the permutation. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St001816Eigenvalues of the top-to-random operator acting on a simple module. St000090The variation of a composition. St000091The descent variation of a composition. St000492The rob statistic of a set partition. St000498The lcs statistic of a set partition. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St000577The number of occurrences of the pattern {{1},{2}} such that 1 is a maximal element. St000581The number of occurrences of the pattern {{1,3},{2}} such that 1 is minimal, 2 is maximal. St000597The number of occurrences of the pattern {{1},{2,3}} such that 2 is minimal, (2,3) are consecutive in a block. St000654The first descent of a permutation. St000695The number of blocks in the first part of the atomic decomposition of a set partition. St001151The number of blocks with odd minimum. St001582The grades of the simple modules corresponding to the points in the poset of the symmetric group under the Bruhat order. St001583The projective dimension of the simple module corresponding to the point in the poset of the symmetric group under bruhat order. St001896The number of right descents of a signed permutations. St001946The number of descents in a parking function. St001960The number of descents of a permutation minus one if its first entry is not one. St000075The orbit size of a standard tableau under promotion. St000089The absolute variation of a composition. St000365The number of double ascents of a permutation. St000383The last part of an integer composition. St000542The number of left-to-right-minima of a permutation. St000562The number of internal points of a set partition. St000589The number of occurrences of the pattern {{1},{2,3}} such that 1 is maximal, (2,3) are consecutive in a block. St000606The number of occurrences of the pattern {{1},{2,3}} such that 1,3 are maximal, (2,3) are consecutive in a block. St000611The number of occurrences of the pattern {{1},{2,3}} such that 1 is maximal. St000709The number of occurrences of 14-2-3 or 14-3-2. St000801The number of occurrences of the vincular pattern |312 in a permutation. St000802The number of occurrences of the vincular pattern |321 in a permutation. St000839The largest opener of a set partition. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001551The number of restricted non-inversions between exceedances where the rightmost exceedance is linked. St001784The minimum of the smallest closer and the second element of the block containing 1 in a set partition. St001867The number of alignments of type EN of a signed permutation. St001868The number of alignments of type NE of a signed permutation. St000230Sum of the minimal elements of the blocks of a set partition. St001375The pancake length of a permutation. St001516The number of cyclic bonds of a permutation.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!