searching the database
Your data matches 140 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000948
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St000948: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00065: Permutations —permutation poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St000948: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => ([],1)
=> ([],1)
=> 1
[1,0,1,0]
=> [2,1] => ([],2)
=> ([],2)
=> 0
[1,1,0,0]
=> [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,0,1,0,1,0]
=> [3,2,1] => ([],3)
=> ([],3)
=> 0
[1,0,1,1,0,0]
=> [2,3,1] => ([(1,2)],3)
=> ([(1,2)],3)
=> 0
[1,1,0,0,1,0]
=> [3,1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> 0
[1,1,0,1,0,0]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[1,1,1,0,0,0]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => ([],4)
=> ([],4)
=> 0
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => ([(2,3)],4)
=> ([(2,3)],4)
=> 0
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => ([(2,3)],4)
=> ([(2,3)],4)
=> 0
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => ([(2,3)],4)
=> ([(2,3)],4)
=> 0
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 0
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => ([],5)
=> ([],5)
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => ([(3,4)],5)
=> ([(3,4)],5)
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => ([(3,4)],5)
=> ([(3,4)],5)
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => ([(3,4)],5)
=> ([(3,4)],5)
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => ([(3,4)],5)
=> ([(3,4)],5)
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
Description
The chromatic discriminant of a graph.
The chromatic discriminant $\alpha(G)$ is the coefficient of the linear term of the chromatic polynomial $\chi(G,q)$.
According to [1], it equals the cardinality of any of the following sets:
(1) Acyclic orientations of G with unique sink at $q$,
(2) Maximum $G$-parking functions relative to $q$,
(3) Minimal $q$-critical states,
(4) Spanning trees of G without broken circuits,
(5) Conjugacy classes of Coxeter elements in the Coxeter group associated to $G$,
(6) Multilinear Lyndon heaps on $G$.
In addition, $\alpha(G)$ is also equal to the the dimension of the root space corresponding to the sum of all simple roots in the Kac-Moody Lie algebra associated to the graph.
Matching statistic: St000986
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000986: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000986: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => ([],1)
=> ([],1)
=> 1
[1,0,1,0]
=> [2,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[1,1,0,0]
=> [1,2] => ([],2)
=> ([],1)
=> 1
[1,0,1,0,1,0]
=> [3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,0,1,1,0,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 0
[1,1,0,0,1,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 0
[1,1,0,1,0,0]
=> [2,1,3] => ([(1,2)],3)
=> ([(1,2)],3)
=> 1
[1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> ([],1)
=> 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 0
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> 0
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 0
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ([(1,2)],3)
=> 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ([],1)
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> 1
Description
The multiplicity of the eigenvalue zero of the adjacency matrix of the graph.
Matching statistic: St001353
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001353: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001353: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 1
[1,0,1,0]
=> [1,1] => [2] => ([],2)
=> 0
[1,1,0,0]
=> [2] => [1] => ([],1)
=> 1
[1,0,1,0,1,0]
=> [1,1,1] => [3] => ([],3)
=> 0
[1,0,1,1,0,0]
=> [1,2] => [1,1] => ([(0,1)],2)
=> 0
[1,1,0,0,1,0]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 0
[1,1,0,1,0,0]
=> [3] => [1] => ([],1)
=> 1
[1,1,1,0,0,0]
=> [3] => [1] => ([],1)
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => ([],4)
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 0
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3] => [1,1] => ([(0,1)],2)
=> 0
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,1] => ([(0,1)],2)
=> 0
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,2] => ([(1,2)],3)
=> 0
[1,1,0,0,1,1,0,0]
=> [2,2] => [2] => ([],2)
=> 0
[1,1,0,1,0,0,1,0]
=> [3,1] => [1,1] => ([(0,1)],2)
=> 0
[1,1,0,1,0,1,0,0]
=> [4] => [1] => ([],1)
=> 1
[1,1,0,1,1,0,0,0]
=> [4] => [1] => ([],1)
=> 1
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1] => ([(0,1)],2)
=> 0
[1,1,1,0,0,1,0,0]
=> [4] => [1] => ([],1)
=> 1
[1,1,1,0,1,0,0,0]
=> [4] => [1] => ([],1)
=> 1
[1,1,1,1,0,0,0,0]
=> [4] => [1] => ([],1)
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => ([],5)
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [2,1] => ([(0,2),(1,2)],3)
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [2,1] => ([(0,2),(1,2)],3)
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,2] => ([(1,2)],3)
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [1,1] => ([(0,1)],2)
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [1,1] => ([(0,1)],2)
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [1,1] => ([(0,1)],2)
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [1,1] => ([(0,1)],2)
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,1] => ([(0,1)],2)
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,3] => ([(2,3)],4)
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [1,1] => ([(0,1)],2)
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1] => ([(0,1)],2)
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => ([(1,2)],3)
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [1,1] => ([(0,1)],2)
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [1,1] => ([(0,1)],2)
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [1] => ([],1)
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [1] => ([],1)
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [1,1] => ([(0,1)],2)
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [1] => ([],1)
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [1] => ([],1)
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [1] => ([],1)
=> 1
Description
The number of prime nodes in the modular decomposition of a graph.
Matching statistic: St001356
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001356: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00133: Integer compositions —delta morphism⟶ Integer compositions
Mp00184: Integer compositions —to threshold graph⟶ Graphs
St001356: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => ([],1)
=> 1
[1,0,1,0]
=> [1,1] => [2] => ([],2)
=> 0
[1,1,0,0]
=> [2] => [1] => ([],1)
=> 1
[1,0,1,0,1,0]
=> [1,1,1] => [3] => ([],3)
=> 0
[1,0,1,1,0,0]
=> [1,2] => [1,1] => ([(0,1)],2)
=> 0
[1,1,0,0,1,0]
=> [2,1] => [1,1] => ([(0,1)],2)
=> 0
[1,1,0,1,0,0]
=> [3] => [1] => ([],1)
=> 1
[1,1,1,0,0,0]
=> [3] => [1] => ([],1)
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [4] => ([],4)
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1] => ([(0,2),(1,2)],3)
=> 0
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3] => [1,1] => ([(0,1)],2)
=> 0
[1,0,1,1,1,0,0,0]
=> [1,3] => [1,1] => ([(0,1)],2)
=> 0
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [1,2] => ([(1,2)],3)
=> 0
[1,1,0,0,1,1,0,0]
=> [2,2] => [2] => ([],2)
=> 0
[1,1,0,1,0,0,1,0]
=> [3,1] => [1,1] => ([(0,1)],2)
=> 0
[1,1,0,1,0,1,0,0]
=> [4] => [1] => ([],1)
=> 1
[1,1,0,1,1,0,0,0]
=> [4] => [1] => ([],1)
=> 1
[1,1,1,0,0,0,1,0]
=> [3,1] => [1,1] => ([(0,1)],2)
=> 0
[1,1,1,0,0,1,0,0]
=> [4] => [1] => ([],1)
=> 1
[1,1,1,0,1,0,0,0]
=> [4] => [1] => ([],1)
=> 1
[1,1,1,1,0,0,0,0]
=> [4] => [1] => ([],1)
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [5] => ([],5)
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [2,1] => ([(0,2),(1,2)],3)
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [2,1] => ([(0,2),(1,2)],3)
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [1,2] => ([(1,2)],3)
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [1,1] => ([(0,1)],2)
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [1,1] => ([(0,1)],2)
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [1,1] => ([(0,1)],2)
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [1,1] => ([(0,1)],2)
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [1,1] => ([(0,1)],2)
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [1,3] => ([(2,3)],4)
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [1,1] => ([(0,1)],2)
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [1,1] => ([(0,1)],2)
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [1,2] => ([(1,2)],3)
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [1,1] => ([(0,1)],2)
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [1,1] => ([(0,1)],2)
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [1] => ([],1)
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [1] => ([],1)
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [1,1] => ([(0,1)],2)
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [1] => ([],1)
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [1] => ([],1)
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [1] => ([],1)
=> 1
Description
The number of vertices in prime modules of a graph.
Matching statistic: St001796
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St001796: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00065: Permutations —permutation poset⟶ Posets
Mp00074: Posets —to graph⟶ Graphs
St001796: Graphs ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => ([],1)
=> ([],1)
=> 1
[1,0,1,0]
=> [2,1] => ([],2)
=> ([],2)
=> 0
[1,1,0,0]
=> [1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1
[1,0,1,0,1,0]
=> [3,2,1] => ([],3)
=> ([],3)
=> 0
[1,0,1,1,0,0]
=> [2,3,1] => ([(1,2)],3)
=> ([(1,2)],3)
=> 0
[1,1,0,0,1,0]
=> [3,1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> 0
[1,1,0,1,0,0]
=> [2,1,3] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1
[1,1,1,0,0,0]
=> [1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(1,2)],3)
=> 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => ([],4)
=> ([],4)
=> 0
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => ([(2,3)],4)
=> ([(2,3)],4)
=> 0
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => ([(2,3)],4)
=> ([(2,3)],4)
=> 0
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => ([(2,3)],4)
=> ([(2,3)],4)
=> 0
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,3),(1,2)],4)
=> 0
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> 0
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(1,2),(2,3)],4)
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => ([],5)
=> ([],5)
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => ([(3,4)],5)
=> ([(3,4)],5)
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => ([(3,4)],5)
=> ([(3,4)],5)
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => ([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => ([(3,4)],5)
=> ([(3,4)],5)
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => ([(2,3),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => ([(3,4)],5)
=> ([(3,4)],5)
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => ([(1,4),(2,3)],5)
=> ([(1,4),(2,3)],5)
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => ([(0,3),(1,4),(4,2)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => ([(0,4),(1,4),(2,3)],5)
=> ([(0,1),(2,4),(3,4)],5)
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,4),(2,3),(3,4)],5)
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1
Description
The absolute value of the quotient of the Tutte polynomial of the graph at (1,1) and (-1,-1).
Matching statistic: St000297
(load all 26 compositions to match this statistic)
(load all 26 compositions to match this statistic)
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
Mp00109: Permutations —descent word⟶ Binary words
St000297: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00109: Permutations —descent word⟶ Binary words
St000297: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => => ? = 1
[1,0,1,0]
=> [1,2] => 0 => 0
[1,1,0,0]
=> [2,1] => 1 => 1
[1,0,1,0,1,0]
=> [1,2,3] => 00 => 0
[1,0,1,1,0,0]
=> [1,3,2] => 01 => 0
[1,1,0,0,1,0]
=> [2,1,3] => 10 => 1
[1,1,0,1,0,0]
=> [2,3,1] => 01 => 0
[1,1,1,0,0,0]
=> [3,1,2] => 10 => 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 000 => 0
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 001 => 0
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 010 => 0
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 001 => 0
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => 010 => 0
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 100 => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 101 => 1
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 010 => 0
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 001 => 0
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => 010 => 0
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => 100 => 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => 101 => 1
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => 010 => 0
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => 100 => 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 0000 => 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => 0001 => 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => 0010 => 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => 0001 => 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => 0010 => 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => 0100 => 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => 0101 => 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => 0010 => 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => 0001 => 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => 0010 => 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => 0100 => 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => 0101 => 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => 0010 => 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => 0100 => 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 1000 => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => 1001 => 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => 1010 => 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => 1001 => 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => 1010 => 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 0100 => 0
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => 0101 => 0
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 0010 => 0
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => 0001 => 0
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => 0010 => 0
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => 0100 => 0
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => 0101 => 0
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => 0010 => 0
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => 0100 => 0
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => 1000 => 1
Description
The number of leading ones in a binary word.
Matching statistic: St000390
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00114: Permutations —connectivity set⟶ Binary words
St000390: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00114: Permutations —connectivity set⟶ Binary words
St000390: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => => ? = 1
[1,0,1,0]
=> [2,1] => 0 => 0
[1,1,0,0]
=> [1,2] => 1 => 1
[1,0,1,0,1,0]
=> [3,2,1] => 00 => 0
[1,0,1,1,0,0]
=> [2,3,1] => 00 => 0
[1,1,0,0,1,0]
=> [3,1,2] => 00 => 0
[1,1,0,1,0,0]
=> [2,1,3] => 01 => 1
[1,1,1,0,0,0]
=> [1,2,3] => 11 => 1
[1,0,1,0,1,0,1,0]
=> [4,3,2,1] => 000 => 0
[1,0,1,0,1,1,0,0]
=> [3,4,2,1] => 000 => 0
[1,0,1,1,0,0,1,0]
=> [4,2,3,1] => 000 => 0
[1,0,1,1,0,1,0,0]
=> [3,2,4,1] => 000 => 0
[1,0,1,1,1,0,0,0]
=> [2,3,4,1] => 000 => 0
[1,1,0,0,1,0,1,0]
=> [4,3,1,2] => 000 => 0
[1,1,0,0,1,1,0,0]
=> [3,4,1,2] => 000 => 0
[1,1,0,1,0,0,1,0]
=> [4,2,1,3] => 000 => 0
[1,1,0,1,0,1,0,0]
=> [3,2,1,4] => 001 => 1
[1,1,0,1,1,0,0,0]
=> [2,3,1,4] => 001 => 1
[1,1,1,0,0,0,1,0]
=> [4,1,2,3] => 000 => 0
[1,1,1,0,0,1,0,0]
=> [3,1,2,4] => 001 => 1
[1,1,1,0,1,0,0,0]
=> [2,1,3,4] => 011 => 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => 111 => 1
[1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1] => 0000 => 0
[1,0,1,0,1,0,1,1,0,0]
=> [4,5,3,2,1] => 0000 => 0
[1,0,1,0,1,1,0,0,1,0]
=> [5,3,4,2,1] => 0000 => 0
[1,0,1,0,1,1,0,1,0,0]
=> [4,3,5,2,1] => 0000 => 0
[1,0,1,0,1,1,1,0,0,0]
=> [3,4,5,2,1] => 0000 => 0
[1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,3,1] => 0000 => 0
[1,0,1,1,0,0,1,1,0,0]
=> [4,5,2,3,1] => 0000 => 0
[1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,4,1] => 0000 => 0
[1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,5,1] => 0000 => 0
[1,0,1,1,0,1,1,0,0,0]
=> [3,4,2,5,1] => 0000 => 0
[1,0,1,1,1,0,0,0,1,0]
=> [5,2,3,4,1] => 0000 => 0
[1,0,1,1,1,0,0,1,0,0]
=> [4,2,3,5,1] => 0000 => 0
[1,0,1,1,1,0,1,0,0,0]
=> [3,2,4,5,1] => 0000 => 0
[1,0,1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 0000 => 0
[1,1,0,0,1,0,1,0,1,0]
=> [5,4,3,1,2] => 0000 => 0
[1,1,0,0,1,0,1,1,0,0]
=> [4,5,3,1,2] => 0000 => 0
[1,1,0,0,1,1,0,0,1,0]
=> [5,3,4,1,2] => 0000 => 0
[1,1,0,0,1,1,0,1,0,0]
=> [4,3,5,1,2] => 0000 => 0
[1,1,0,0,1,1,1,0,0,0]
=> [3,4,5,1,2] => 0000 => 0
[1,1,0,1,0,0,1,0,1,0]
=> [5,4,2,1,3] => 0000 => 0
[1,1,0,1,0,0,1,1,0,0]
=> [4,5,2,1,3] => 0000 => 0
[1,1,0,1,0,1,0,0,1,0]
=> [5,3,2,1,4] => 0000 => 0
[1,1,0,1,0,1,0,1,0,0]
=> [4,3,2,1,5] => 0001 => 1
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,2,1,5] => 0001 => 1
[1,1,0,1,1,0,0,0,1,0]
=> [5,2,3,1,4] => 0000 => 0
[1,1,0,1,1,0,0,1,0,0]
=> [4,2,3,1,5] => 0001 => 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,2,4,1,5] => 0001 => 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,3,4,1,5] => 0001 => 1
[1,1,1,0,0,0,1,0,1,0]
=> [5,4,1,2,3] => 0000 => 0
Description
The number of runs of ones in a binary word.
Matching statistic: St000745
(load all 29 compositions to match this statistic)
(load all 29 compositions to match this statistic)
Mp00201: Dyck paths —Ringel⟶ Permutations
Mp00059: Permutations —Robinson-Schensted insertion tableau⟶ Standard tableaux
St000745: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00059: Permutations —Robinson-Schensted insertion tableau⟶ Standard tableaux
St000745: Standard tableaux ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [2,1] => [[1],[2]]
=> 2 = 1 + 1
[1,0,1,0]
=> [3,1,2] => [[1,2],[3]]
=> 1 = 0 + 1
[1,1,0,0]
=> [2,3,1] => [[1,3],[2]]
=> 2 = 1 + 1
[1,0,1,0,1,0]
=> [4,1,2,3] => [[1,2,3],[4]]
=> 1 = 0 + 1
[1,0,1,1,0,0]
=> [3,1,4,2] => [[1,2],[3,4]]
=> 1 = 0 + 1
[1,1,0,0,1,0]
=> [2,4,1,3] => [[1,3],[2,4]]
=> 2 = 1 + 1
[1,1,0,1,0,0]
=> [4,3,1,2] => [[1,2],[3],[4]]
=> 1 = 0 + 1
[1,1,1,0,0,0]
=> [2,3,4,1] => [[1,3,4],[2]]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => [[1,2,3,4],[5]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => [[1,2,3],[4,5]]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => [[1,2,4],[3,5]]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0]
=> [5,1,4,2,3] => [[1,2,3],[4],[5]]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => [[1,2,5],[3,4]]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => [[1,3,4],[2,5]]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => [[1,3,5],[2,4]]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0]
=> [5,3,1,2,4] => [[1,2,4],[3],[5]]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0]
=> [5,4,1,2,3] => [[1,2,3],[4],[5]]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0]
=> [4,3,1,5,2] => [[1,2],[3,5],[4]]
=> 1 = 0 + 1
[1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => [[1,3,4],[2,5]]
=> 2 = 1 + 1
[1,1,1,0,0,1,0,0]
=> [2,5,4,1,3] => [[1,3],[2,4],[5]]
=> 2 = 1 + 1
[1,1,1,0,1,0,0,0]
=> [5,3,4,1,2] => [[1,2],[3,4],[5]]
=> 1 = 0 + 1
[1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => [[1,3,4,5],[2]]
=> 2 = 1 + 1
[1,0,1,0,1,0,1,0,1,0]
=> [6,1,2,3,4,5] => [[1,2,3,4,5],[6]]
=> 1 = 0 + 1
[1,0,1,0,1,0,1,1,0,0]
=> [5,1,2,3,6,4] => [[1,2,3,4],[5,6]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,0,1,0]
=> [4,1,2,6,3,5] => [[1,2,3,5],[4,6]]
=> 1 = 0 + 1
[1,0,1,0,1,1,0,1,0,0]
=> [6,1,2,5,3,4] => [[1,2,3,4],[5],[6]]
=> 1 = 0 + 1
[1,0,1,0,1,1,1,0,0,0]
=> [4,1,2,5,6,3] => [[1,2,3,6],[4,5]]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,0,1,0]
=> [3,1,6,2,4,5] => [[1,2,4,5],[3,6]]
=> 1 = 0 + 1
[1,0,1,1,0,0,1,1,0,0]
=> [3,1,5,2,6,4] => [[1,2,4],[3,5,6]]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,0,1,0]
=> [6,1,4,2,3,5] => [[1,2,3,5],[4],[6]]
=> 1 = 0 + 1
[1,0,1,1,0,1,0,1,0,0]
=> [6,1,5,2,3,4] => [[1,2,3,4],[5],[6]]
=> 1 = 0 + 1
[1,0,1,1,0,1,1,0,0,0]
=> [5,1,4,2,6,3] => [[1,2,3],[4,6],[5]]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,0,1,0]
=> [3,1,4,6,2,5] => [[1,2,5],[3,4,6]]
=> 1 = 0 + 1
[1,0,1,1,1,0,0,1,0,0]
=> [3,1,6,5,2,4] => [[1,2,4],[3,5],[6]]
=> 1 = 0 + 1
[1,0,1,1,1,0,1,0,0,0]
=> [6,1,4,5,2,3] => [[1,2,3],[4,5],[6]]
=> 1 = 0 + 1
[1,0,1,1,1,1,0,0,0,0]
=> [3,1,4,5,6,2] => [[1,2,5,6],[3,4]]
=> 1 = 0 + 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => [[1,3,4,5],[2,6]]
=> 2 = 1 + 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => [[1,3,4],[2,5,6]]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => [[1,3,5],[2,4,6]]
=> 2 = 1 + 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,6,1,5,3,4] => [[1,3,4],[2,5],[6]]
=> 2 = 1 + 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => [[1,3,5,6],[2,4]]
=> 2 = 1 + 1
[1,1,0,1,0,0,1,0,1,0]
=> [6,3,1,2,4,5] => [[1,2,4,5],[3],[6]]
=> 1 = 0 + 1
[1,1,0,1,0,0,1,1,0,0]
=> [5,3,1,2,6,4] => [[1,2,4],[3,6],[5]]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,0,1,0]
=> [6,4,1,2,3,5] => [[1,2,3,5],[4],[6]]
=> 1 = 0 + 1
[1,1,0,1,0,1,0,1,0,0]
=> [5,6,1,2,3,4] => [[1,2,3,4],[5,6]]
=> 1 = 0 + 1
[1,1,0,1,0,1,1,0,0,0]
=> [5,4,1,2,6,3] => [[1,2,3],[4,6],[5]]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,3,1,6,2,5] => [[1,2,5],[3,6],[4]]
=> 1 = 0 + 1
[1,1,0,1,1,0,0,1,0,0]
=> [6,3,1,5,2,4] => [[1,2,4],[3,5],[6]]
=> 1 = 0 + 1
[1,1,0,1,1,0,1,0,0,0]
=> [6,4,1,5,2,3] => [[1,2,3],[4,5],[6]]
=> 1 = 0 + 1
[1,1,0,1,1,1,0,0,0,0]
=> [4,3,1,5,6,2] => [[1,2,6],[3,5],[4]]
=> 1 = 0 + 1
[1,1,0,0,1,1,0,1,1,0,1,0,0,0]
=> [2,8,1,6,3,7,4,5] => ?
=> ? = 1 + 1
Description
The index of the last row whose first entry is the row number in a standard Young tableau.
Matching statistic: St000877
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00069: Permutations —complement⟶ Permutations
Mp00109: Permutations —descent word⟶ Binary words
St000877: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00069: Permutations —complement⟶ Permutations
Mp00109: Permutations —descent word⟶ Binary words
St000877: Binary words ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => => ? = 1
[1,0,1,0]
=> [2,1] => [1,2] => 0 => 1
[1,1,0,0]
=> [1,2] => [2,1] => 1 => 0
[1,0,1,0,1,0]
=> [2,3,1] => [2,1,3] => 10 => 0
[1,0,1,1,0,0]
=> [2,1,3] => [2,3,1] => 01 => 1
[1,1,0,0,1,0]
=> [1,3,2] => [3,1,2] => 10 => 0
[1,1,0,1,0,0]
=> [3,1,2] => [1,3,2] => 01 => 1
[1,1,1,0,0,0]
=> [1,2,3] => [3,2,1] => 11 => 0
[1,0,1,0,1,0,1,0]
=> [2,3,4,1] => [3,2,1,4] => 110 => 0
[1,0,1,0,1,1,0,0]
=> [2,3,1,4] => [3,2,4,1] => 101 => 0
[1,0,1,1,0,0,1,0]
=> [2,1,4,3] => [3,4,1,2] => 010 => 1
[1,0,1,1,0,1,0,0]
=> [2,4,1,3] => [3,1,4,2] => 101 => 0
[1,0,1,1,1,0,0,0]
=> [2,1,3,4] => [3,4,2,1] => 011 => 1
[1,1,0,0,1,0,1,0]
=> [1,3,4,2] => [4,2,1,3] => 110 => 0
[1,1,0,0,1,1,0,0]
=> [1,3,2,4] => [4,2,3,1] => 101 => 0
[1,1,0,1,0,0,1,0]
=> [3,1,4,2] => [2,4,1,3] => 010 => 1
[1,1,0,1,0,1,0,0]
=> [3,4,1,2] => [2,1,4,3] => 101 => 0
[1,1,0,1,1,0,0,0]
=> [3,1,2,4] => [2,4,3,1] => 011 => 1
[1,1,1,0,0,0,1,0]
=> [1,2,4,3] => [4,3,1,2] => 110 => 0
[1,1,1,0,0,1,0,0]
=> [1,4,2,3] => [4,1,3,2] => 101 => 0
[1,1,1,0,1,0,0,0]
=> [4,1,2,3] => [1,4,3,2] => 011 => 1
[1,1,1,1,0,0,0,0]
=> [1,2,3,4] => [4,3,2,1] => 111 => 0
[1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => [4,3,2,1,5] => 1110 => 0
[1,0,1,0,1,0,1,1,0,0]
=> [2,3,4,1,5] => [4,3,2,5,1] => 1101 => 0
[1,0,1,0,1,1,0,0,1,0]
=> [2,3,1,5,4] => [4,3,5,1,2] => 1010 => 0
[1,0,1,0,1,1,0,1,0,0]
=> [2,3,5,1,4] => [4,3,1,5,2] => 1101 => 0
[1,0,1,0,1,1,1,0,0,0]
=> [2,3,1,4,5] => [4,3,5,2,1] => 1011 => 0
[1,0,1,1,0,0,1,0,1,0]
=> [2,1,4,5,3] => [4,5,2,1,3] => 0110 => 1
[1,0,1,1,0,0,1,1,0,0]
=> [2,1,4,3,5] => [4,5,2,3,1] => 0101 => 1
[1,0,1,1,0,1,0,0,1,0]
=> [2,4,1,5,3] => [4,2,5,1,3] => 1010 => 0
[1,0,1,1,0,1,0,1,0,0]
=> [2,4,5,1,3] => [4,2,1,5,3] => 1101 => 0
[1,0,1,1,0,1,1,0,0,0]
=> [2,4,1,3,5] => [4,2,5,3,1] => 1011 => 0
[1,0,1,1,1,0,0,0,1,0]
=> [2,1,3,5,4] => [4,5,3,1,2] => 0110 => 1
[1,0,1,1,1,0,0,1,0,0]
=> [2,1,5,3,4] => [4,5,1,3,2] => 0101 => 1
[1,0,1,1,1,0,1,0,0,0]
=> [2,5,1,3,4] => [4,1,5,3,2] => 1011 => 0
[1,0,1,1,1,1,0,0,0,0]
=> [2,1,3,4,5] => [4,5,3,2,1] => 0111 => 1
[1,1,0,0,1,0,1,0,1,0]
=> [1,3,4,5,2] => [5,3,2,1,4] => 1110 => 0
[1,1,0,0,1,0,1,1,0,0]
=> [1,3,4,2,5] => [5,3,2,4,1] => 1101 => 0
[1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4] => [5,3,4,1,2] => 1010 => 0
[1,1,0,0,1,1,0,1,0,0]
=> [1,3,5,2,4] => [5,3,1,4,2] => 1101 => 0
[1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,4,5] => [5,3,4,2,1] => 1011 => 0
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => [3,5,2,1,4] => 0110 => 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,1,4,2,5] => [3,5,2,4,1] => 0101 => 1
[1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => [3,2,5,1,4] => 1010 => 0
[1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => [3,2,1,5,4] => 1101 => 0
[1,1,0,1,0,1,1,0,0,0]
=> [3,4,1,2,5] => [3,2,5,4,1] => 1011 => 0
[1,1,0,1,1,0,0,0,1,0]
=> [3,1,2,5,4] => [3,5,4,1,2] => 0110 => 1
[1,1,0,1,1,0,0,1,0,0]
=> [3,1,5,2,4] => [3,5,1,4,2] => 0101 => 1
[1,1,0,1,1,0,1,0,0,0]
=> [3,5,1,2,4] => [3,1,5,4,2] => 1011 => 0
[1,1,0,1,1,1,0,0,0,0]
=> [3,1,2,4,5] => [3,5,4,2,1] => 0111 => 1
[1,1,1,0,0,0,1,0,1,0]
=> [1,2,4,5,3] => [5,4,2,1,3] => 1110 => 0
Description
The depth of the binary word interpreted as a path.
This is the maximal value of the number of zeros minus the number of ones occurring in a prefix of the binary word, see [1, sec.9.1.2].
The number of binary words of length $n$ with depth $k$ is $\binom{n}{\lfloor\frac{(n+1) - (-1)^{n-k}(k+1)}{2}\rfloor}$, see [2].
Matching statistic: St000929
(load all 20 compositions to match this statistic)
(load all 20 compositions to match this statistic)
Mp00100: Dyck paths —touch composition⟶ Integer compositions
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00322: Integer partitions —Loehr-Warrington⟶ Integer partitions
St000929: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Mp00040: Integer compositions —to partition⟶ Integer partitions
Mp00322: Integer partitions —Loehr-Warrington⟶ Integer partitions
St000929: Integer partitions ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1]
=> [1]
=> ? = 1
[1,0,1,0]
=> [1,1] => [1,1]
=> [2]
=> 0
[1,1,0,0]
=> [2] => [2]
=> [1,1]
=> 1
[1,0,1,0,1,0]
=> [1,1,1] => [1,1,1]
=> [2,1]
=> 0
[1,0,1,1,0,0]
=> [1,2] => [2,1]
=> [3]
=> 0
[1,1,0,0,1,0]
=> [2,1] => [2,1]
=> [3]
=> 0
[1,1,0,1,0,0]
=> [3] => [3]
=> [1,1,1]
=> 1
[1,1,1,0,0,0]
=> [3] => [3]
=> [1,1,1]
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => [1,1,1,1]
=> [3,1]
=> 0
[1,0,1,0,1,1,0,0]
=> [1,1,2] => [2,1,1]
=> [2,2]
=> 0
[1,0,1,1,0,0,1,0]
=> [1,2,1] => [2,1,1]
=> [2,2]
=> 0
[1,0,1,1,0,1,0,0]
=> [1,3] => [3,1]
=> [2,1,1]
=> 0
[1,0,1,1,1,0,0,0]
=> [1,3] => [3,1]
=> [2,1,1]
=> 0
[1,1,0,0,1,0,1,0]
=> [2,1,1] => [2,1,1]
=> [2,2]
=> 0
[1,1,0,0,1,1,0,0]
=> [2,2] => [2,2]
=> [4]
=> 0
[1,1,0,1,0,0,1,0]
=> [3,1] => [3,1]
=> [2,1,1]
=> 0
[1,1,0,1,0,1,0,0]
=> [4] => [4]
=> [1,1,1,1]
=> 1
[1,1,0,1,1,0,0,0]
=> [4] => [4]
=> [1,1,1,1]
=> 1
[1,1,1,0,0,0,1,0]
=> [3,1] => [3,1]
=> [2,1,1]
=> 0
[1,1,1,0,0,1,0,0]
=> [4] => [4]
=> [1,1,1,1]
=> 1
[1,1,1,0,1,0,0,0]
=> [4] => [4]
=> [1,1,1,1]
=> 1
[1,1,1,1,0,0,0,0]
=> [4] => [4]
=> [1,1,1,1]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => [1,1,1,1,1]
=> [3,2]
=> 0
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => [2,1,1,1]
=> [3,1,1]
=> 0
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => [2,1,1,1]
=> [3,1,1]
=> 0
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => [3,1,1]
=> [4,1]
=> 0
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => [3,1,1]
=> [4,1]
=> 0
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => [2,1,1,1]
=> [3,1,1]
=> 0
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => [2,2,1]
=> [2,2,1]
=> 0
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => [3,1,1]
=> [4,1]
=> 0
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => [4,1]
=> [2,1,1,1]
=> 0
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => [4,1]
=> [2,1,1,1]
=> 0
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => [3,1,1]
=> [4,1]
=> 0
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => [4,1]
=> [2,1,1,1]
=> 0
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => [4,1]
=> [2,1,1,1]
=> 0
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => [4,1]
=> [2,1,1,1]
=> 0
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => [2,1,1,1]
=> [3,1,1]
=> 0
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => [2,2,1]
=> [2,2,1]
=> 0
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => [2,2,1]
=> [2,2,1]
=> 0
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => [3,2]
=> [5]
=> 0
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => [3,2]
=> [5]
=> 0
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => [3,1,1]
=> [4,1]
=> 0
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => [3,2]
=> [5]
=> 0
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => [4,1]
=> [2,1,1,1]
=> 0
[1,1,0,1,0,1,0,1,0,0]
=> [5] => [5]
=> [1,1,1,1,1]
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [5] => [5]
=> [1,1,1,1,1]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => [4,1]
=> [2,1,1,1]
=> 0
[1,1,0,1,1,0,0,1,0,0]
=> [5] => [5]
=> [1,1,1,1,1]
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [5] => [5]
=> [1,1,1,1,1]
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [5] => [5]
=> [1,1,1,1,1]
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => [3,1,1]
=> [4,1]
=> 0
Description
The constant term of the character polynomial of an integer partition.
The definition of the character polynomial can be found in [1]. Indeed, this constant term is $0$ for partitions $\lambda \neq 1^n$ and $1$ for $\lambda = 1^n$.
The following 130 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000932The number of occurrences of the pattern UDU in a Dyck path. St000326The position of the first one in a binary word after appending a 1 at the end. St000678The number of up steps after the last double rise of a Dyck path. St000504The cardinality of the first block of a set partition. St000989The number of final rises of a permutation. St001204Call a CNakayama algebra (a Nakayama algebra with a cyclic quiver) with Kupisch series $L=[c_0,c_1,...,c_{n−1}]$ such that $n=c_0 < c_i$ for all $i > 0$ a special CNakayama algebra. St000654The first descent of a permutation. St000990The first ascent of a permutation. St001498The normalised height of a Nakayama algebra with magnitude 1. St000382The first part of an integer composition. St001217The projective dimension of the indecomposable injective module I[n-2] in the corresponding Nakayama algebra with simples enumerated from 0 to n-1. St000383The last part of an integer composition. St000315The number of isolated vertices of a graph. St000541The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St000205Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000661The number of rises of length 3 of a Dyck path. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001141The number of occurrences of hills of size 3 in a Dyck path. St001175The size of a partition minus the hook length of the base cell. St001418Half of the global dimension of the stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001587Half of the largest even part of an integer partition. St001657The number of twos in an integer partition. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001939The number of parts that are equal to their multiplicity in the integer partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St000455The second largest eigenvalue of a graph if it is integral. St000153The number of adjacent cycles of a permutation. St000256The number of parts from which one can substract 2 and still get an integer partition. St000257The number of distinct parts of a partition that occur at least twice. St000480The number of lower covers of a partition in dominance order. St000481The number of upper covers of a partition in dominance order. St001022Number of simple modules with projective dimension 3 in the Nakayama algebra corresponding to the Dyck path. St001037The number of inner corners of the upper path of the parallelogram polyomino associated with the Dyck path. St001092The number of distinct even parts of a partition. St001113Number of indecomposable projective non-injective modules with reflexive Auslander-Reiten sequences in the corresponding Nakayama algebra. St001125The number of simple modules that satisfy the 2-regular condition in the corresponding Nakayama algebra. St001137Number of simple modules that are 3-regular in the corresponding Nakayama algebra. St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra. St001186Number of simple modules with grade at least 3 in the corresponding Nakayama algebra. St001230The number of simple modules with injective dimension equal to the dominant dimension equal to one and the dual property. St001276The number of 2-regular indecomposable modules in the corresponding Nakayama algebra. St000658The number of rises of length 2 of a Dyck path. St001035The convexity degree of the parallelogram polyomino associated with the Dyck path. St001139The number of occurrences of hills of size 2 in a Dyck path. St001593This is the number of standard Young tableaux of the given shifted shape. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001159Number of simple modules with dominant dimension equal to the global dimension in the corresponding Nakayama algebra. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St001095The number of non-isomorphic posets with precisely one further covering relation. St001195The global dimension of the algebra $A/AfA$ of the corresponding Nakayama algebra $A$ with minimal left faithful projective-injective module $Af$. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000225Difference between largest and smallest parts in a partition. St000506The number of standard desarrangement tableaux of shape equal to the given partition. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000940The number of characters of the symmetric group whose value on the partition is zero. St000941The number of characters of the symmetric group whose value on the partition is even. St000944The 3-degree of an integer partition. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001364The number of permutations whose cube equals a fixed permutation of given cycle type. St001383The BG-rank of an integer partition. St001561The value of the elementary symmetric function evaluated at 1. St001586The number of odd parts smaller than the largest even part in an integer partition. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St000864The number of circled entries of the shifted recording tableau of a permutation. St001061The number of indices that are both descents and recoils of a permutation. St000352The Elizalde-Pak rank of a permutation. St000237The number of small exceedances. St000096The number of spanning trees of a graph. St000456The monochromatic index of a connected graph. St001271The competition number of a graph. St001367The smallest number which does not occur as degree of a vertex in a graph. St001594The number of indecomposable projective modules in the Nakayama algebra corresponding to the Dyck path such that the UC-condition is satisfied. St001691The number of kings in a graph. St001135The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path. St001316The domatic number of a graph. St000061The number of nodes on the left branch of a binary tree. St000917The open packing number of a graph. St001948The number of augmented double ascents of a permutation. St001185The number of indecomposable injective modules of grade at least 2 in the corresponding Nakayama algebra. St001221The number of simple modules in the corresponding LNakayama algebra that have 2 dimensional second Extension group with the regular module. St001222Number of simple modules in the corresponding LNakayama algebra that have a unique 2-extension with the regular module. St000234The number of global ascents of a permutation. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St000542The number of left-to-right-minima of a permutation. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000754The Grundy value for the game of removing nestings in a perfect matching. St001877Number of indecomposable injective modules with projective dimension 2. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001568The smallest positive integer that does not appear twice in the partition. St000546The number of global descents of a permutation. St001403The number of vertical separators in a permutation. St000282The size of the preimage of the map 'to poset' from Ordered trees to Posets. St001174The Gorenstein dimension of the algebra $A/I$ when $I$ is the tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001640The number of ascent tops in the permutation such that all smaller elements appear before. St001049The smallest label in the subtree not containing 1 in the decreasing labelled binary unordered tree associated with the perfect matching. St001570The minimal number of edges to add to make a graph Hamiltonian. St000260The radius of a connected graph. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000261The edge connectivity of a graph. St000262The vertex connectivity of a graph. St000310The minimal degree of a vertex of a graph. St000056The decomposition (or block) number of a permutation. St000286The number of connected components of the complement of a graph. St000314The number of left-to-right-maxima of a permutation. St001184Number of indecomposable injective modules with grade at least 1 in the corresponding Nakayama algebra. St001201The grade of the simple module $S_0$ in the special CNakayama algebra corresponding to the Dyck path. St001257The dominant dimension of the double dual of A/J when A is the corresponding Nakayama algebra with Jacobson radical J. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St001803The maximal overlap of the cylindrical tableau associated with a tableau. St000850The number of 1/2-balanced pairs in a poset. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St000392The length of the longest run of ones in a binary word. St000534The number of 2-rises of a permutation. St000215The number of adjacencies of a permutation, zero appended. St000733The row containing the largest entry of a standard tableau. St001465The number of adjacent transpositions in the cycle decomposition of a permutation. St000689The maximal n such that the minimal generator-cogenerator module in the LNakayama algebra of a Dyck path is n-rigid. St001816Eigenvalues of the top-to-random operator acting on a simple module.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!