searching the database
Your data matches 80 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
(click to perform a complete search on your data)
Matching statistic: St000787
St000787: Perfect matchings ⟶ ℤResult quality: 100% ●values known / values provided: 100%●distinct values known / distinct values provided: 100%
Values
[(1,2)]
=> 0
[(1,2),(3,4)]
=> 0
[(1,3),(2,4)]
=> 1
[(1,4),(2,3)]
=> 0
[(1,2),(3,4),(5,6)]
=> 0
[(1,3),(2,4),(5,6)]
=> 1
[(1,4),(2,3),(5,6)]
=> 0
[(1,5),(2,3),(4,6)]
=> 1
[(1,6),(2,3),(4,5)]
=> 0
[(1,6),(2,4),(3,5)]
=> 1
[(1,5),(2,4),(3,6)]
=> 2
[(1,4),(2,5),(3,6)]
=> 1
[(1,3),(2,5),(4,6)]
=> 2
[(1,2),(3,5),(4,6)]
=> 1
[(1,2),(3,6),(4,5)]
=> 0
[(1,3),(2,6),(4,5)]
=> 1
[(1,4),(2,6),(3,5)]
=> 2
[(1,5),(2,6),(3,4)]
=> 1
[(1,6),(2,5),(3,4)]
=> 0
[(1,2),(3,4),(5,6),(7,8)]
=> 0
[(1,3),(2,4),(5,6),(7,8)]
=> 1
[(1,4),(2,3),(5,6),(7,8)]
=> 0
[(1,5),(2,3),(4,6),(7,8)]
=> 1
[(1,6),(2,3),(4,5),(7,8)]
=> 0
[(1,7),(2,3),(4,5),(6,8)]
=> 1
[(1,8),(2,3),(4,5),(6,7)]
=> 0
[(1,8),(2,4),(3,5),(6,7)]
=> 1
[(1,7),(2,4),(3,5),(6,8)]
=> 2
[(1,6),(2,4),(3,5),(7,8)]
=> 1
[(1,5),(2,4),(3,6),(7,8)]
=> 2
[(1,4),(2,5),(3,6),(7,8)]
=> 1
[(1,3),(2,5),(4,6),(7,8)]
=> 2
[(1,2),(3,5),(4,6),(7,8)]
=> 1
[(1,2),(3,6),(4,5),(7,8)]
=> 0
[(1,3),(2,6),(4,5),(7,8)]
=> 1
[(1,4),(2,6),(3,5),(7,8)]
=> 2
[(1,5),(2,6),(3,4),(7,8)]
=> 1
[(1,6),(2,5),(3,4),(7,8)]
=> 0
[(1,7),(2,5),(3,4),(6,8)]
=> 1
[(1,8),(2,5),(3,4),(6,7)]
=> 0
[(1,8),(2,6),(3,4),(5,7)]
=> 1
[(1,7),(2,6),(3,4),(5,8)]
=> 2
[(1,6),(2,7),(3,4),(5,8)]
=> 1
[(1,5),(2,7),(3,4),(6,8)]
=> 2
[(1,4),(2,7),(3,5),(6,8)]
=> 3
[(1,3),(2,7),(4,5),(6,8)]
=> 2
[(1,2),(3,7),(4,5),(6,8)]
=> 1
[(1,2),(3,8),(4,5),(6,7)]
=> 0
[(1,3),(2,8),(4,5),(6,7)]
=> 1
[(1,4),(2,8),(3,5),(6,7)]
=> 2
Description
The number of flips required to make a perfect matching noncrossing.
A crossing in a perfect matching is a pair of arcs {a,b} and {c,d} such that a<c<b<d. Replacing any such pair by either {a,c} and {b,d} or by {a,d}, {b,c} produces a perfect matching with fewer crossings.
This statistic is the minimal number of such flips required to turn a given matching into a noncrossing matching.
Matching statistic: St000444
Mp00150: Perfect matchings —to Dyck path⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St000444: Dyck paths ⟶ ℤResult quality: 75% ●values known / values provided: 75%●distinct values known / distinct values provided: 80%
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
St000444: Dyck paths ⟶ ℤResult quality: 75% ●values known / values provided: 75%●distinct values known / distinct values provided: 80%
Values
[(1,2)]
=> [1,0]
=> []
=> []
=> ? = 0
[(1,2),(3,4)]
=> [1,0,1,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,1}
[(1,3),(2,4)]
=> [1,1,0,0]
=> []
=> []
=> ? ∊ {0,0,1}
[(1,4),(2,3)]
=> [1,1,0,0]
=> []
=> []
=> ? ∊ {0,0,1}
[(1,2),(3,4),(5,6)]
=> [1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[(1,3),(2,4),(5,6)]
=> [1,1,0,0,1,0]
=> [2]
=> [1,0,1,0]
=> 1
[(1,4),(2,3),(5,6)]
=> [1,1,0,0,1,0]
=> [2]
=> [1,0,1,0]
=> 1
[(1,5),(2,3),(4,6)]
=> [1,1,0,1,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1}
[(1,6),(2,3),(4,5)]
=> [1,1,0,1,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1}
[(1,6),(2,4),(3,5)]
=> [1,1,1,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1}
[(1,5),(2,4),(3,6)]
=> [1,1,1,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1}
[(1,4),(2,5),(3,6)]
=> [1,1,1,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1}
[(1,3),(2,5),(4,6)]
=> [1,1,0,1,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1}
[(1,2),(3,5),(4,6)]
=> [1,0,1,1,0,0]
=> [1,1]
=> [1,1,0,0]
=> 2
[(1,2),(3,6),(4,5)]
=> [1,0,1,1,0,0]
=> [1,1]
=> [1,1,0,0]
=> 2
[(1,3),(2,6),(4,5)]
=> [1,1,0,1,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1}
[(1,4),(2,6),(3,5)]
=> [1,1,1,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1}
[(1,5),(2,6),(3,4)]
=> [1,1,1,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1}
[(1,6),(2,5),(3,4)]
=> [1,1,1,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1}
[(1,2),(3,4),(5,6),(7,8)]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3
[(1,3),(2,4),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 3
[(1,4),(2,3),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 3
[(1,5),(2,3),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 2
[(1,6),(2,3),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 2
[(1,7),(2,3),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[(1,8),(2,3),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[(1,8),(2,4),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> 1
[(1,7),(2,4),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> 1
[(1,6),(2,4),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> 1
[(1,5),(2,4),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> 1
[(1,4),(2,5),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> 1
[(1,3),(2,5),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 2
[(1,2),(3,5),(4,6),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
[(1,2),(3,6),(4,5),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
[(1,3),(2,6),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 2
[(1,4),(2,6),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> 1
[(1,5),(2,6),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> 1
[(1,6),(2,5),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> 1
[(1,7),(2,5),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> 1
[(1,8),(2,5),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> 1
[(1,8),(2,6),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,7),(2,6),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,6),(2,7),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,5),(2,7),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> 1
[(1,4),(2,7),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> 1
[(1,3),(2,7),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[(1,2),(3,7),(4,5),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
[(1,2),(3,8),(4,5),(6,7)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
[(1,3),(2,8),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[(1,4),(2,8),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> 1
[(1,5),(2,8),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> 1
[(1,6),(2,8),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,7),(2,8),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,8),(2,7),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,8),(2,7),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,7),(2,8),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,6),(2,8),(3,5),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,5),(2,8),(3,6),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,4),(2,8),(3,6),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,3),(2,8),(4,6),(5,7)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 2
[(1,2),(3,8),(4,6),(5,7)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[(1,2),(3,7),(4,6),(5,8)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[(1,3),(2,7),(4,6),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 2
[(1,4),(2,7),(3,6),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,5),(2,7),(3,6),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,6),(2,7),(3,5),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,7),(2,6),(3,5),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,8),(2,6),(3,5),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,8),(2,5),(3,6),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,7),(2,5),(3,6),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,6),(2,5),(3,7),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,5),(2,6),(3,7),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,4),(2,6),(3,7),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,3),(2,6),(4,7),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 2
[(1,2),(3,6),(4,7),(5,8)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[(1,2),(3,5),(4,7),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
[(1,3),(2,5),(4,7),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[(1,4),(2,5),(3,7),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> 1
[(1,5),(2,4),(3,7),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> 1
[(1,6),(2,4),(3,7),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,7),(2,4),(3,6),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,8),(2,4),(3,6),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,8),(2,3),(4,6),(5,7)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 2
[(1,7),(2,3),(4,6),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 2
[(1,6),(2,3),(4,7),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 2
[(1,5),(2,3),(4,7),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 2
[(1,4),(2,3),(5,7),(6,8)]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> 3
[(1,3),(2,4),(5,7),(6,8)]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> 3
[(1,8),(2,4),(3,7),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,7),(2,4),(3,8),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,6),(2,4),(3,8),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,4),(2,6),(3,8),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,5),(2,6),(3,8),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,6),(2,5),(3,8),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,7),(2,5),(3,8),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,8),(2,5),(3,7),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,8),(2,6),(3,7),(4,5)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,7),(2,6),(3,8),(4,5)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,6),(2,7),(3,8),(4,5)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
[(1,5),(2,7),(3,8),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,3,3,3}
Description
The length of the maximal rise of a Dyck path.
Matching statistic: St000937
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00150: Perfect matchings —to Dyck path⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000937: Integer partitions ⟶ ℤResult quality: 40% ●values known / values provided: 40%●distinct values known / distinct values provided: 80%
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000937: Integer partitions ⟶ ℤResult quality: 40% ●values known / values provided: 40%●distinct values known / distinct values provided: 80%
Values
[(1,2)]
=> [1,0]
=> []
=> ?
=> ? = 0
[(1,2),(3,4)]
=> [1,0,1,0]
=> [1]
=> []
=> ? ∊ {0,0,1}
[(1,3),(2,4)]
=> [1,1,0,0]
=> []
=> ?
=> ? ∊ {0,0,1}
[(1,4),(2,3)]
=> [1,1,0,0]
=> []
=> ?
=> ? ∊ {0,0,1}
[(1,2),(3,4),(5,6)]
=> [1,0,1,0,1,0]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,3),(2,4),(5,6)]
=> [1,1,0,0,1,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,4),(2,3),(5,6)]
=> [1,1,0,0,1,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,5),(2,3),(4,6)]
=> [1,1,0,1,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,6),(2,3),(4,5)]
=> [1,1,0,1,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,6),(2,4),(3,5)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,5),(2,4),(3,6)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,4),(2,5),(3,6)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,3),(2,5),(4,6)]
=> [1,1,0,1,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,2),(3,5),(4,6)]
=> [1,0,1,1,0,0]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,2),(3,6),(4,5)]
=> [1,0,1,1,0,0]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,3),(2,6),(4,5)]
=> [1,1,0,1,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,4),(2,6),(3,5)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,5),(2,6),(3,4)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,6),(2,5),(3,4)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,2),(3,4),(5,6),(7,8)]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [2,1]
=> 1
[(1,3),(2,4),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> [2]
=> 2
[(1,4),(2,3),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> [2]
=> 2
[(1,5),(2,3),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,3),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,3),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,3),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,4),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,4),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,4),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,4),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,5),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,3),(2,5),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,2),(3,5),(4,6),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,1]
=> 1
[(1,2),(3,6),(4,5),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,1]
=> 1
[(1,3),(2,6),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,6),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,6),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,5),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,5),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,5),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,6),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,6),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,7),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,7),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,7),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,3),(2,7),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,2),(3,7),(4,5),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,1]
=> 1
[(1,2),(3,8),(4,5),(6,7)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,1]
=> 1
[(1,3),(2,8),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,8),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,8),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,8),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,8),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,7),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,7),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,8),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,8),(3,5),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,2),(3,8),(4,6),(5,7)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 1
[(1,2),(3,7),(4,6),(5,8)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 1
[(1,2),(3,6),(4,7),(5,8)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 1
[(1,2),(3,5),(4,7),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,1]
=> 1
[(1,4),(2,3),(5,7),(6,8)]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [2]
=> 2
[(1,3),(2,4),(5,7),(6,8)]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [2]
=> 2
[(1,2),(3,4),(5,7),(6,8)]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [2,1]
=> 1
[(1,2),(3,4),(5,8),(6,7)]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [2,1]
=> 1
[(1,3),(2,4),(5,8),(6,7)]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [2]
=> 2
[(1,4),(2,3),(5,8),(6,7)]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [2]
=> 2
[(1,2),(3,5),(4,8),(6,7)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,1]
=> 1
[(1,2),(3,6),(4,8),(5,7)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 1
[(1,2),(3,7),(4,8),(5,6)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 1
[(1,2),(3,8),(4,7),(5,6)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 1
[(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [3,2,1]
=> 2
[(1,3),(2,4),(5,6),(7,8),(9,10)]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [3,2]
=> 4
[(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [3,2]
=> 4
[(1,5),(2,3),(4,6),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [3,1]
=> 2
[(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [3,1]
=> 2
[(1,7),(2,3),(4,5),(6,8),(9,10)]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [2,1]
=> 1
[(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [2,1]
=> 1
[(1,9),(2,3),(4,5),(6,7),(8,10)]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [2,1]
=> 1
[(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [2,1]
=> 1
[(1,10),(2,4),(3,5),(6,7),(8,9)]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [2]
=> 2
[(1,9),(2,4),(3,5),(6,7),(8,10)]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [2]
=> 2
[(1,8),(2,4),(3,5),(6,7),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [2]
=> 2
[(1,7),(2,4),(3,5),(6,8),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [2]
=> 2
[(1,6),(2,4),(3,5),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [3]
=> 3
[(1,5),(2,4),(3,6),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [3]
=> 3
[(1,4),(2,5),(3,6),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [3]
=> 3
[(1,3),(2,5),(4,6),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [3,1]
=> 2
[(1,2),(3,5),(4,6),(7,8),(9,10)]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [3,1,1]
=> 2
[(1,2),(3,6),(4,5),(7,8),(9,10)]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [3,1,1]
=> 2
[(1,3),(2,6),(4,5),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [3,1]
=> 2
[(1,4),(2,6),(3,5),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [3]
=> 3
[(1,5),(2,6),(3,4),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [3]
=> 3
[(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [3]
=> 3
[(1,7),(2,5),(3,4),(6,8),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [2]
=> 2
[(1,8),(2,5),(3,4),(6,7),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [2]
=> 2
[(1,9),(2,5),(3,4),(6,7),(8,10)]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [2]
=> 2
[(1,10),(2,5),(3,4),(6,7),(8,9)]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [2]
=> 2
[(1,5),(2,7),(3,4),(6,8),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [2]
=> 2
[(1,4),(2,7),(3,5),(6,8),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [2]
=> 2
Description
The number of positive values of the symmetric group character corresponding to the partition.
For example, the character values of the irreducible representation S(2,2) are 2 on the conjugacy classes (4) and (2,2), 0 on the conjugacy classes (3,1) and (1,1,1,1), and −1 on the conjugacy class (2,1,1). Therefore, the statistic on the partition (2,2) is 2.
Matching statistic: St000939
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00150: Perfect matchings —to Dyck path⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000939: Integer partitions ⟶ ℤResult quality: 40% ●values known / values provided: 40%●distinct values known / distinct values provided: 80%
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000939: Integer partitions ⟶ ℤResult quality: 40% ●values known / values provided: 40%●distinct values known / distinct values provided: 80%
Values
[(1,2)]
=> [1,0]
=> []
=> ?
=> ? = 0
[(1,2),(3,4)]
=> [1,0,1,0]
=> [1]
=> []
=> ? ∊ {0,0,1}
[(1,3),(2,4)]
=> [1,1,0,0]
=> []
=> ?
=> ? ∊ {0,0,1}
[(1,4),(2,3)]
=> [1,1,0,0]
=> []
=> ?
=> ? ∊ {0,0,1}
[(1,2),(3,4),(5,6)]
=> [1,0,1,0,1,0]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,3),(2,4),(5,6)]
=> [1,1,0,0,1,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,4),(2,3),(5,6)]
=> [1,1,0,0,1,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,5),(2,3),(4,6)]
=> [1,1,0,1,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,6),(2,3),(4,5)]
=> [1,1,0,1,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,6),(2,4),(3,5)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,5),(2,4),(3,6)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,4),(2,5),(3,6)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,3),(2,5),(4,6)]
=> [1,1,0,1,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,2),(3,5),(4,6)]
=> [1,0,1,1,0,0]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,2),(3,6),(4,5)]
=> [1,0,1,1,0,0]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,3),(2,6),(4,5)]
=> [1,1,0,1,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,4),(2,6),(3,5)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,5),(2,6),(3,4)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,6),(2,5),(3,4)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,2),(3,4),(5,6),(7,8)]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [2,1]
=> 1
[(1,3),(2,4),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> [2]
=> 1
[(1,4),(2,3),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> [2]
=> 1
[(1,5),(2,3),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,3),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,3),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,3),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,4),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,4),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,4),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,4),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,5),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,3),(2,5),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,2),(3,5),(4,6),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,1]
=> 2
[(1,2),(3,6),(4,5),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,1]
=> 2
[(1,3),(2,6),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,6),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,6),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,5),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,5),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,5),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,6),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,6),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,7),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,7),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,7),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,3),(2,7),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,2),(3,7),(4,5),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,1]
=> 2
[(1,2),(3,8),(4,5),(6,7)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,1]
=> 2
[(1,3),(2,8),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,8),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,8),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,8),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,8),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,7),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,7),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,8),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,8),(3,5),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,2),(3,8),(4,6),(5,7)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 2
[(1,2),(3,7),(4,6),(5,8)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 2
[(1,2),(3,6),(4,7),(5,8)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 2
[(1,2),(3,5),(4,7),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,1]
=> 2
[(1,4),(2,3),(5,7),(6,8)]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [2]
=> 1
[(1,3),(2,4),(5,7),(6,8)]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [2]
=> 1
[(1,2),(3,4),(5,7),(6,8)]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [2,1]
=> 1
[(1,2),(3,4),(5,8),(6,7)]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [2,1]
=> 1
[(1,3),(2,4),(5,8),(6,7)]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [2]
=> 1
[(1,4),(2,3),(5,8),(6,7)]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [2]
=> 1
[(1,2),(3,5),(4,8),(6,7)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,1]
=> 2
[(1,2),(3,6),(4,8),(5,7)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 2
[(1,2),(3,7),(4,8),(5,6)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 2
[(1,2),(3,8),(4,7),(5,6)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 2
[(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [3,2,1]
=> 3
[(1,3),(2,4),(5,6),(7,8),(9,10)]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [3,2]
=> 3
[(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [3,2]
=> 3
[(1,5),(2,3),(4,6),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [3,1]
=> 2
[(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [3,1]
=> 2
[(1,7),(2,3),(4,5),(6,8),(9,10)]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [2,1]
=> 1
[(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [2,1]
=> 1
[(1,9),(2,3),(4,5),(6,7),(8,10)]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [2,1]
=> 1
[(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [2,1]
=> 1
[(1,10),(2,4),(3,5),(6,7),(8,9)]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [2]
=> 1
[(1,9),(2,4),(3,5),(6,7),(8,10)]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [2]
=> 1
[(1,8),(2,4),(3,5),(6,7),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [2]
=> 1
[(1,7),(2,4),(3,5),(6,8),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [2]
=> 1
[(1,6),(2,4),(3,5),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [3]
=> 2
[(1,5),(2,4),(3,6),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [3]
=> 2
[(1,4),(2,5),(3,6),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [3]
=> 2
[(1,3),(2,5),(4,6),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [3,1]
=> 2
[(1,2),(3,5),(4,6),(7,8),(9,10)]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [3,1,1]
=> 4
[(1,2),(3,6),(4,5),(7,8),(9,10)]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [3,1,1]
=> 4
[(1,3),(2,6),(4,5),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [3,1]
=> 2
[(1,4),(2,6),(3,5),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [3]
=> 2
[(1,5),(2,6),(3,4),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [3]
=> 2
[(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [3]
=> 2
[(1,7),(2,5),(3,4),(6,8),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [2]
=> 1
[(1,8),(2,5),(3,4),(6,7),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [2]
=> 1
[(1,9),(2,5),(3,4),(6,7),(8,10)]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [2]
=> 1
[(1,10),(2,5),(3,4),(6,7),(8,9)]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [2]
=> 1
[(1,5),(2,7),(3,4),(6,8),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [2]
=> 1
[(1,4),(2,7),(3,5),(6,8),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [2]
=> 1
Description
The number of characters of the symmetric group whose value on the partition is positive.
Matching statistic: St000993
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00150: Perfect matchings —to Dyck path⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000993: Integer partitions ⟶ ℤResult quality: 40% ●values known / values provided: 40%●distinct values known / distinct values provided: 60%
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000993: Integer partitions ⟶ ℤResult quality: 40% ●values known / values provided: 40%●distinct values known / distinct values provided: 60%
Values
[(1,2)]
=> [1,0]
=> []
=> ?
=> ? = 0
[(1,2),(3,4)]
=> [1,0,1,0]
=> [1]
=> []
=> ? ∊ {0,0,1}
[(1,3),(2,4)]
=> [1,1,0,0]
=> []
=> ?
=> ? ∊ {0,0,1}
[(1,4),(2,3)]
=> [1,1,0,0]
=> []
=> ?
=> ? ∊ {0,0,1}
[(1,2),(3,4),(5,6)]
=> [1,0,1,0,1,0]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,3),(2,4),(5,6)]
=> [1,1,0,0,1,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,4),(2,3),(5,6)]
=> [1,1,0,0,1,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,5),(2,3),(4,6)]
=> [1,1,0,1,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,6),(2,3),(4,5)]
=> [1,1,0,1,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,6),(2,4),(3,5)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,5),(2,4),(3,6)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,4),(2,5),(3,6)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,3),(2,5),(4,6)]
=> [1,1,0,1,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,2),(3,5),(4,6)]
=> [1,0,1,1,0,0]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,2),(3,6),(4,5)]
=> [1,0,1,1,0,0]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,3),(2,6),(4,5)]
=> [1,1,0,1,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,4),(2,6),(3,5)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,5),(2,6),(3,4)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,6),(2,5),(3,4)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,2),(3,4),(5,6),(7,8)]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [2,1]
=> 1
[(1,3),(2,4),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> [2]
=> 1
[(1,4),(2,3),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> [2]
=> 1
[(1,5),(2,3),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,3),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,3),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,3),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,4),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,4),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,4),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,4),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,5),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,3),(2,5),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,2),(3,5),(4,6),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,1]
=> 2
[(1,2),(3,6),(4,5),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,1]
=> 2
[(1,3),(2,6),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,6),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,6),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,5),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,5),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,5),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,6),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,6),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,7),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,7),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,7),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,3),(2,7),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,2),(3,7),(4,5),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,1]
=> 2
[(1,2),(3,8),(4,5),(6,7)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,1]
=> 2
[(1,3),(2,8),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,8),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,8),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,8),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,8),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,7),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,7),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,8),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,8),(3,5),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,2),(3,8),(4,6),(5,7)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 2
[(1,2),(3,7),(4,6),(5,8)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 2
[(1,2),(3,6),(4,7),(5,8)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 2
[(1,2),(3,5),(4,7),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,1]
=> 2
[(1,4),(2,3),(5,7),(6,8)]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [2]
=> 1
[(1,3),(2,4),(5,7),(6,8)]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [2]
=> 1
[(1,2),(3,4),(5,7),(6,8)]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [2,1]
=> 1
[(1,2),(3,4),(5,8),(6,7)]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [2,1]
=> 1
[(1,3),(2,4),(5,8),(6,7)]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [2]
=> 1
[(1,4),(2,3),(5,8),(6,7)]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [2]
=> 1
[(1,2),(3,5),(4,8),(6,7)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,1]
=> 2
[(1,2),(3,6),(4,8),(5,7)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 2
[(1,2),(3,7),(4,8),(5,6)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 2
[(1,2),(3,8),(4,7),(5,6)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 2
[(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [3,2,1]
=> 1
[(1,3),(2,4),(5,6),(7,8),(9,10)]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [3,2]
=> 1
[(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [3,2]
=> 1
[(1,5),(2,3),(4,6),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [3,1]
=> 1
[(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [3,1]
=> 1
[(1,7),(2,3),(4,5),(6,8),(9,10)]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [2,1]
=> 1
[(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [2,1]
=> 1
[(1,9),(2,3),(4,5),(6,7),(8,10)]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [2,1]
=> 1
[(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [2,1]
=> 1
[(1,10),(2,4),(3,5),(6,7),(8,9)]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [2]
=> 1
[(1,9),(2,4),(3,5),(6,7),(8,10)]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [2]
=> 1
[(1,8),(2,4),(3,5),(6,7),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [2]
=> 1
[(1,7),(2,4),(3,5),(6,8),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [2]
=> 1
[(1,6),(2,4),(3,5),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [3]
=> 1
[(1,5),(2,4),(3,6),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [3]
=> 1
[(1,4),(2,5),(3,6),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [3]
=> 1
[(1,3),(2,5),(4,6),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [3,1]
=> 1
[(1,2),(3,5),(4,6),(7,8),(9,10)]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [3,1,1]
=> 1
[(1,2),(3,6),(4,5),(7,8),(9,10)]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [3,1,1]
=> 1
[(1,3),(2,6),(4,5),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [3,1]
=> 1
[(1,4),(2,6),(3,5),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [3]
=> 1
[(1,5),(2,6),(3,4),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [3]
=> 1
[(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [3]
=> 1
[(1,7),(2,5),(3,4),(6,8),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [2]
=> 1
[(1,8),(2,5),(3,4),(6,7),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [2]
=> 1
[(1,9),(2,5),(3,4),(6,7),(8,10)]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [2]
=> 1
[(1,10),(2,5),(3,4),(6,7),(8,9)]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [2]
=> 1
[(1,5),(2,7),(3,4),(6,8),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [2]
=> 1
[(1,4),(2,7),(3,5),(6,8),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [2]
=> 1
Description
The multiplicity of the largest part of an integer partition.
Matching statistic: St001568
(load all 3 compositions to match this statistic)
(load all 3 compositions to match this statistic)
Mp00150: Perfect matchings —to Dyck path⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001568: Integer partitions ⟶ ℤResult quality: 40% ●values known / values provided: 40%●distinct values known / distinct values provided: 40%
Mp00027: Dyck paths —to partition⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St001568: Integer partitions ⟶ ℤResult quality: 40% ●values known / values provided: 40%●distinct values known / distinct values provided: 40%
Values
[(1,2)]
=> [1,0]
=> []
=> ?
=> ? = 0
[(1,2),(3,4)]
=> [1,0,1,0]
=> [1]
=> []
=> ? ∊ {0,0,1}
[(1,3),(2,4)]
=> [1,1,0,0]
=> []
=> ?
=> ? ∊ {0,0,1}
[(1,4),(2,3)]
=> [1,1,0,0]
=> []
=> ?
=> ? ∊ {0,0,1}
[(1,2),(3,4),(5,6)]
=> [1,0,1,0,1,0]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,3),(2,4),(5,6)]
=> [1,1,0,0,1,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,4),(2,3),(5,6)]
=> [1,1,0,0,1,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,5),(2,3),(4,6)]
=> [1,1,0,1,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,6),(2,3),(4,5)]
=> [1,1,0,1,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,6),(2,4),(3,5)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,5),(2,4),(3,6)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,4),(2,5),(3,6)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,3),(2,5),(4,6)]
=> [1,1,0,1,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,2),(3,5),(4,6)]
=> [1,0,1,1,0,0]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,2),(3,6),(4,5)]
=> [1,0,1,1,0,0]
=> [1,1]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,3),(2,6),(4,5)]
=> [1,1,0,1,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,4),(2,6),(3,5)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,5),(2,6),(3,4)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,6),(2,5),(3,4)]
=> [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,2),(3,4),(5,6),(7,8)]
=> [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [2,1]
=> 1
[(1,3),(2,4),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> [2]
=> 1
[(1,4),(2,3),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [3,2]
=> [2]
=> 1
[(1,5),(2,3),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,3),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,3),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,3),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,4),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,4),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,4),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,4),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,5),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,3),(2,5),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,2),(3,5),(4,6),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,1]
=> 2
[(1,2),(3,6),(4,5),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,1]
=> 2
[(1,3),(2,6),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,6),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,6),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,5),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,5),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,5),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,6),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,6),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,7),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,7),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,7),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,3),(2,7),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,2),(3,7),(4,5),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,1]
=> 2
[(1,2),(3,8),(4,5),(6,7)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,1]
=> 2
[(1,3),(2,8),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,8),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,8),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,8),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,8),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,7),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,7),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,8),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,8),(3,5),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,2),(3,8),(4,6),(5,7)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 2
[(1,2),(3,7),(4,6),(5,8)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 2
[(1,2),(3,6),(4,7),(5,8)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 2
[(1,2),(3,5),(4,7),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,1]
=> 2
[(1,4),(2,3),(5,7),(6,8)]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [2]
=> 1
[(1,3),(2,4),(5,7),(6,8)]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [2]
=> 1
[(1,2),(3,4),(5,7),(6,8)]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [2,1]
=> 1
[(1,2),(3,4),(5,8),(6,7)]
=> [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [2,1]
=> 1
[(1,3),(2,4),(5,8),(6,7)]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [2]
=> 1
[(1,4),(2,3),(5,8),(6,7)]
=> [1,1,0,0,1,1,0,0]
=> [2,2]
=> [2]
=> 1
[(1,2),(3,5),(4,8),(6,7)]
=> [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,1]
=> 2
[(1,2),(3,6),(4,8),(5,7)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 2
[(1,2),(3,7),(4,8),(5,6)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 2
[(1,2),(3,8),(4,7),(5,6)]
=> [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 2
[(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [3,2,1]
=> 1
[(1,3),(2,4),(5,6),(7,8),(9,10)]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [3,2]
=> 1
[(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [3,2]
=> 1
[(1,5),(2,3),(4,6),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [3,1]
=> 1
[(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [3,1]
=> 1
[(1,7),(2,3),(4,5),(6,8),(9,10)]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [2,1]
=> 1
[(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [2,1]
=> 1
[(1,9),(2,3),(4,5),(6,7),(8,10)]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [2,1]
=> 1
[(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [2,1]
=> 1
[(1,10),(2,4),(3,5),(6,7),(8,9)]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [2]
=> 1
[(1,9),(2,4),(3,5),(6,7),(8,10)]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [2]
=> 1
[(1,8),(2,4),(3,5),(6,7),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [2]
=> 1
[(1,7),(2,4),(3,5),(6,8),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [2]
=> 1
[(1,6),(2,4),(3,5),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [3]
=> 1
[(1,5),(2,4),(3,6),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [3]
=> 1
[(1,4),(2,5),(3,6),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [3]
=> 1
[(1,3),(2,5),(4,6),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [3,1]
=> 1
[(1,2),(3,5),(4,6),(7,8),(9,10)]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [3,1,1]
=> 2
[(1,2),(3,6),(4,5),(7,8),(9,10)]
=> [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [3,1,1]
=> 2
[(1,3),(2,6),(4,5),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [3,1]
=> 1
[(1,4),(2,6),(3,5),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [3]
=> 1
[(1,5),(2,6),(3,4),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [3]
=> 1
[(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [4,3]
=> [3]
=> 1
[(1,7),(2,5),(3,4),(6,8),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [2]
=> 1
[(1,8),(2,5),(3,4),(6,7),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [2]
=> 1
[(1,9),(2,5),(3,4),(6,7),(8,10)]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [2]
=> 1
[(1,10),(2,5),(3,4),(6,7),(8,9)]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,2]
=> [2]
=> 1
[(1,5),(2,7),(3,4),(6,8),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [2]
=> 1
[(1,4),(2,7),(3,5),(6,8),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [4,2]
=> [2]
=> 1
Description
The smallest positive integer that does not appear twice in the partition.
Matching statistic: St000260
(load all 5 compositions to match this statistic)
(load all 5 compositions to match this statistic)
Mp00150: Perfect matchings —to Dyck path⟶ Dyck paths
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 35% ●values known / values provided: 35%●distinct values known / distinct values provided: 60%
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000260: Graphs ⟶ ℤResult quality: 35% ●values known / values provided: 35%●distinct values known / distinct values provided: 60%
Values
[(1,2)]
=> [1,0]
=> [1] => ([],1)
=> 0
[(1,2),(3,4)]
=> [1,0,1,0]
=> [2,1] => ([(0,1)],2)
=> 1
[(1,3),(2,4)]
=> [1,1,0,0]
=> [1,2] => ([],2)
=> ? ∊ {0,0}
[(1,4),(2,3)]
=> [1,1,0,0]
=> [1,2] => ([],2)
=> ? ∊ {0,0}
[(1,2),(3,4),(5,6)]
=> [1,0,1,0,1,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[(1,3),(2,4),(5,6)]
=> [1,1,0,0,1,0]
=> [1,3,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2}
[(1,4),(2,3),(5,6)]
=> [1,1,0,0,1,0]
=> [1,3,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2}
[(1,5),(2,3),(4,6)]
=> [1,1,0,1,0,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[(1,6),(2,3),(4,5)]
=> [1,1,0,1,0,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[(1,6),(2,4),(3,5)]
=> [1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2}
[(1,5),(2,4),(3,6)]
=> [1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2}
[(1,4),(2,5),(3,6)]
=> [1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2}
[(1,3),(2,5),(4,6)]
=> [1,1,0,1,0,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[(1,2),(3,5),(4,6)]
=> [1,0,1,1,0,0]
=> [2,1,3] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2}
[(1,2),(3,6),(4,5)]
=> [1,0,1,1,0,0]
=> [2,1,3] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2}
[(1,3),(2,6),(4,5)]
=> [1,1,0,1,0,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[(1,4),(2,6),(3,5)]
=> [1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2}
[(1,5),(2,6),(3,4)]
=> [1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2}
[(1,6),(2,5),(3,4)]
=> [1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2}
[(1,2),(3,4),(5,6),(7,8)]
=> [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,3),(2,4),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,3),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,3),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2
[(1,6),(2,3),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2
[(1,7),(2,3),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[(1,8),(2,3),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[(1,8),(2,4),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,4),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,4),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,4),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,5),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,3),(2,5),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2
[(1,2),(3,5),(4,6),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,2),(3,6),(4,5),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,3),(2,6),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 2
[(1,4),(2,6),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,6),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,5),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,5),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,5),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,6),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,7),(2,6),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,6),(2,7),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,5),(2,7),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,7),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,3),(2,7),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[(1,2),(3,7),(4,5),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 2
[(1,2),(3,8),(4,5),(6,7)]
=> [1,0,1,1,0,1,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 2
[(1,3),(2,8),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[(1,4),(2,8),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,8),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,8),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,7),(2,8),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,8),(2,7),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,8),(2,7),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,8),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,8),(3,5),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,8),(3,6),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,8),(3,6),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,3),(2,8),(4,6),(5,7)]
=> [1,1,0,1,1,0,0,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,2),(3,8),(4,6),(5,7)]
=> [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,2),(3,7),(4,6),(5,8)]
=> [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,3),(2,7),(4,6),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,7),(3,6),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,5),(2,7),(3,6),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,7),(3,5),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,6),(3,5),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,6),(3,5),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,5),(3,6),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,5),(3,6),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,5),(3,7),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,6),(3,7),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,6),(3,7),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,3),(2,6),(4,7),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,2),(3,6),(4,7),(5,8)]
=> [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,2),(3,5),(4,7),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 2
[(1,3),(2,5),(4,7),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[(1,4),(2,5),(3,7),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,4),(3,7),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,4),(3,7),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,7),(2,4),(3,6),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,8),(2,4),(3,6),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,5),(2,3),(4,7),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[(1,5),(2,3),(4,8),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[(1,8),(2,4),(3,7),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,7),(2,4),(3,8),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,6),(2,4),(3,8),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,3),(2,5),(4,8),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[(1,2),(3,5),(4,8),(6,7)]
=> [1,0,1,1,0,1,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 2
[(1,4),(2,6),(3,8),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,4),(2,7),(3,8),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,4),(2,8),(3,7),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[(1,5),(2,3),(4,6),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
[(1,7),(2,3),(4,5),(6,8),(9,10)]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[(1,9),(2,3),(4,5),(6,7),(8,10)]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 2
[(1,3),(2,5),(4,6),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 2
Description
The radius of a connected graph.
This is the minimum eccentricity of any vertex.
Matching statistic: St000456
(load all 2 compositions to match this statistic)
(load all 2 compositions to match this statistic)
Mp00150: Perfect matchings —to Dyck path⟶ Dyck paths
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000456: Graphs ⟶ ℤResult quality: 34% ●values known / values provided: 34%●distinct values known / distinct values provided: 60%
Mp00129: Dyck paths —to 321-avoiding permutation (Billey-Jockusch-Stanley)⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000456: Graphs ⟶ ℤResult quality: 34% ●values known / values provided: 34%●distinct values known / distinct values provided: 60%
Values
[(1,2)]
=> [1,0]
=> [1] => ([],1)
=> ? = 0
[(1,2),(3,4)]
=> [1,0,1,0]
=> [2,1] => ([(0,1)],2)
=> 1
[(1,3),(2,4)]
=> [1,1,0,0]
=> [1,2] => ([],2)
=> ? ∊ {0,0}
[(1,4),(2,3)]
=> [1,1,0,0]
=> [1,2] => ([],2)
=> ? ∊ {0,0}
[(1,2),(3,4),(5,6)]
=> [1,0,1,0,1,0]
=> [2,3,1] => ([(0,2),(1,2)],3)
=> 1
[(1,3),(2,4),(5,6)]
=> [1,1,0,0,1,0]
=> [1,3,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2}
[(1,4),(2,3),(5,6)]
=> [1,1,0,0,1,0]
=> [1,3,2] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2}
[(1,5),(2,3),(4,6)]
=> [1,1,0,1,0,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[(1,6),(2,3),(4,5)]
=> [1,1,0,1,0,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[(1,6),(2,4),(3,5)]
=> [1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2}
[(1,5),(2,4),(3,6)]
=> [1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2}
[(1,4),(2,5),(3,6)]
=> [1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2}
[(1,3),(2,5),(4,6)]
=> [1,1,0,1,0,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[(1,2),(3,5),(4,6)]
=> [1,0,1,1,0,0]
=> [2,1,3] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2}
[(1,2),(3,6),(4,5)]
=> [1,0,1,1,0,0]
=> [2,1,3] => ([(1,2)],3)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2}
[(1,3),(2,6),(4,5)]
=> [1,1,0,1,0,0]
=> [3,1,2] => ([(0,2),(1,2)],3)
=> 1
[(1,4),(2,6),(3,5)]
=> [1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2}
[(1,5),(2,6),(3,4)]
=> [1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2}
[(1,6),(2,5),(3,4)]
=> [1,1,1,0,0,0]
=> [1,2,3] => ([],3)
=> ? ∊ {0,0,0,0,0,1,1,2,2,2}
[(1,2),(3,4),(5,6),(7,8)]
=> [1,0,1,0,1,0,1,0]
=> [2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,3),(2,4),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,3),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [1,3,4,2] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,3),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 1
[(1,6),(2,3),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 1
[(1,7),(2,3),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[(1,8),(2,3),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[(1,8),(2,4),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,4),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,4),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,4),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,5),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,3),(2,5),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 1
[(1,2),(3,5),(4,6),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,2),(3,6),(4,5),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [2,1,4,3] => ([(0,3),(1,2)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,3),(2,6),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> 1
[(1,4),(2,6),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,6),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,5),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [1,2,4,3] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,5),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,5),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,6),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,7),(2,6),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,6),(2,7),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,5),(2,7),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,7),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,3),(2,7),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[(1,2),(3,7),(4,5),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 1
[(1,2),(3,8),(4,5),(6,7)]
=> [1,0,1,1,0,1,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 1
[(1,3),(2,8),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[(1,4),(2,8),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,8),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,8),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,7),(2,8),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,8),(2,7),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,8),(2,7),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,8),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,8),(3,5),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,8),(3,6),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,8),(3,6),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,3),(2,8),(4,6),(5,7)]
=> [1,1,0,1,1,0,0,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,2),(3,8),(4,6),(5,7)]
=> [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,2),(3,7),(4,6),(5,8)]
=> [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,3),(2,7),(4,6),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,7),(3,6),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,5),(2,7),(3,6),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,7),(3,5),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,6),(3,5),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,6),(3,5),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,5),(3,6),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,5),(3,6),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,5),(3,7),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,6),(3,7),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> [1,2,3,4] => ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,6),(3,7),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,3),(2,6),(4,7),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [3,1,2,4] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,2),(3,6),(4,7),(5,8)]
=> [1,0,1,1,1,0,0,0]
=> [2,1,3,4] => ([(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,2),(3,5),(4,7),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 1
[(1,3),(2,5),(4,7),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[(1,4),(2,5),(3,7),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [1,4,2,3] => ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,4),(3,7),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,7),(2,4),(3,6),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,8),(2,4),(3,6),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,5),(2,3),(4,7),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[(1,5),(2,3),(4,8),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[(1,8),(2,4),(3,7),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,7),(2,4),(3,8),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,6),(2,4),(3,8),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,3),(2,5),(4,8),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> 2
[(1,2),(3,5),(4,8),(6,7)]
=> [1,0,1,1,0,1,0,0]
=> [2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> 1
[(1,4),(2,6),(3,8),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,4),(2,7),(3,8),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,4),(2,8),(3,7),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> 1
[(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [1,0,1,0,1,0,1,0,1,0]
=> [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 1
[(1,5),(2,3),(4,6),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[(1,7),(2,3),(4,5),(6,8),(9,10)]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [1,1,0,1,0,1,0,0,1,0]
=> [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> 2
[(1,9),(2,3),(4,5),(6,7),(8,10)]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 3
[(1,10),(2,3),(4,5),(6,7),(8,9)]
=> [1,1,0,1,0,1,0,1,0,0]
=> [3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> 3
[(1,3),(2,5),(4,6),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
[(1,3),(2,6),(4,5),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> 1
Description
The monochromatic index of a connected graph.
This is the maximal number of colours such that there is a colouring of the edges where any two vertices can be joined by a monochromatic path.
For example, a circle graph other than the triangle can be coloured with at most two colours: one edge blue, all the others red.
Matching statistic: St001491
Mp00150: Perfect matchings —to Dyck path⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00114: Permutations —connectivity set⟶ Binary words
St001491: Binary words ⟶ ℤResult quality: 26% ●values known / values provided: 26%●distinct values known / distinct values provided: 100%
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
Mp00114: Permutations —connectivity set⟶ Binary words
St001491: Binary words ⟶ ℤResult quality: 26% ●values known / values provided: 26%●distinct values known / distinct values provided: 100%
Values
[(1,2)]
=> [1,0]
=> [1] => => ? = 0
[(1,2),(3,4)]
=> [1,0,1,0]
=> [1,2] => 1 => 1
[(1,3),(2,4)]
=> [1,1,0,0]
=> [2,1] => 0 => ? ∊ {0,0}
[(1,4),(2,3)]
=> [1,1,0,0]
=> [2,1] => 0 => ? ∊ {0,0}
[(1,2),(3,4),(5,6)]
=> [1,0,1,0,1,0]
=> [1,2,3] => 11 => 2
[(1,3),(2,4),(5,6)]
=> [1,1,0,0,1,0]
=> [2,1,3] => 01 => 1
[(1,4),(2,3),(5,6)]
=> [1,1,0,0,1,0]
=> [2,1,3] => 01 => 1
[(1,5),(2,3),(4,6)]
=> [1,1,0,1,0,0]
=> [2,3,1] => 00 => ? ∊ {0,0,0,0,0,1,1,1,2,2}
[(1,6),(2,3),(4,5)]
=> [1,1,0,1,0,0]
=> [2,3,1] => 00 => ? ∊ {0,0,0,0,0,1,1,1,2,2}
[(1,6),(2,4),(3,5)]
=> [1,1,1,0,0,0]
=> [3,2,1] => 00 => ? ∊ {0,0,0,0,0,1,1,1,2,2}
[(1,5),(2,4),(3,6)]
=> [1,1,1,0,0,0]
=> [3,2,1] => 00 => ? ∊ {0,0,0,0,0,1,1,1,2,2}
[(1,4),(2,5),(3,6)]
=> [1,1,1,0,0,0]
=> [3,2,1] => 00 => ? ∊ {0,0,0,0,0,1,1,1,2,2}
[(1,3),(2,5),(4,6)]
=> [1,1,0,1,0,0]
=> [2,3,1] => 00 => ? ∊ {0,0,0,0,0,1,1,1,2,2}
[(1,2),(3,5),(4,6)]
=> [1,0,1,1,0,0]
=> [1,3,2] => 10 => 1
[(1,2),(3,6),(4,5)]
=> [1,0,1,1,0,0]
=> [1,3,2] => 10 => 1
[(1,3),(2,6),(4,5)]
=> [1,1,0,1,0,0]
=> [2,3,1] => 00 => ? ∊ {0,0,0,0,0,1,1,1,2,2}
[(1,4),(2,6),(3,5)]
=> [1,1,1,0,0,0]
=> [3,2,1] => 00 => ? ∊ {0,0,0,0,0,1,1,1,2,2}
[(1,5),(2,6),(3,4)]
=> [1,1,1,0,0,0]
=> [3,2,1] => 00 => ? ∊ {0,0,0,0,0,1,1,1,2,2}
[(1,6),(2,5),(3,4)]
=> [1,1,1,0,0,0]
=> [3,2,1] => 00 => ? ∊ {0,0,0,0,0,1,1,1,2,2}
[(1,2),(3,4),(5,6),(7,8)]
=> [1,0,1,0,1,0,1,0]
=> [1,2,3,4] => 111 => 3
[(1,3),(2,4),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 011 => 1
[(1,4),(2,3),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [2,1,3,4] => 011 => 1
[(1,5),(2,3),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 001 => 1
[(1,6),(2,3),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 001 => 1
[(1,7),(2,3),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,3),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,4),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,4),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,4),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 001 => 1
[(1,5),(2,4),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 001 => 1
[(1,4),(2,5),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 001 => 1
[(1,3),(2,5),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 001 => 1
[(1,2),(3,5),(4,6),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 101 => 2
[(1,2),(3,6),(4,5),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [1,3,2,4] => 101 => 2
[(1,3),(2,6),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [2,3,1,4] => 001 => 1
[(1,4),(2,6),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 001 => 1
[(1,5),(2,6),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 001 => 1
[(1,6),(2,5),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [3,2,1,4] => 001 => 1
[(1,7),(2,5),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,5),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,6),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,6),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,7),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,7),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,7),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,3),(2,7),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,2),(3,7),(4,5),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 100 => 1
[(1,2),(3,8),(4,5),(6,7)]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 100 => 1
[(1,3),(2,8),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,8),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,8),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [3,2,4,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,8),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,8),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,7),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,7),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,8),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,8),(3,5),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,8),(3,6),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,8),(3,6),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,3),(2,8),(4,6),(5,7)]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,2),(3,8),(4,6),(5,7)]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 100 => 1
[(1,2),(3,7),(4,6),(5,8)]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 100 => 1
[(1,3),(2,7),(4,6),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,7),(3,6),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,7),(3,6),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,7),(3,5),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,6),(3,5),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,6),(3,5),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,5),(3,6),(4,7)]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,5),(3,6),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,5),(3,7),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,6),(3,7),(4,8)]
=> [1,1,1,1,0,0,0,0]
=> [4,3,2,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,6),(3,7),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [4,2,3,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,3),(2,6),(4,7),(5,8)]
=> [1,1,0,1,1,0,0,0]
=> [2,4,3,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,2),(3,6),(4,7),(5,8)]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 100 => 1
[(1,2),(3,5),(4,7),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 100 => 1
[(1,3),(2,5),(4,7),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [2,3,4,1] => 000 => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,3),(5,7),(6,8)]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 010 => 1
[(1,3),(2,4),(5,7),(6,8)]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 010 => 1
[(1,2),(3,4),(5,7),(6,8)]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 110 => 1
[(1,2),(3,4),(5,8),(6,7)]
=> [1,0,1,0,1,1,0,0]
=> [1,2,4,3] => 110 => 1
[(1,3),(2,4),(5,8),(6,7)]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 010 => 1
[(1,4),(2,3),(5,8),(6,7)]
=> [1,1,0,0,1,1,0,0]
=> [2,1,4,3] => 010 => 1
[(1,2),(3,5),(4,8),(6,7)]
=> [1,0,1,1,0,1,0,0]
=> [1,3,4,2] => 100 => 1
[(1,2),(3,6),(4,8),(5,7)]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 100 => 1
[(1,2),(3,7),(4,8),(5,6)]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 100 => 1
[(1,2),(3,8),(4,7),(5,6)]
=> [1,0,1,1,1,0,0,0]
=> [1,4,3,2] => 100 => 1
[(1,2),(3,4),(5,6),(7,8),(9,10)]
=> [1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => 1111 => 4
[(1,3),(2,4),(5,6),(7,8),(9,10)]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 0111 => 2
[(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => 0111 => 2
[(1,5),(2,3),(4,6),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 0011 => 1
[(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 0011 => 1
[(1,7),(2,3),(4,5),(6,8),(9,10)]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 0001 => 1
[(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => 0001 => 1
[(1,8),(2,4),(3,5),(6,7),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => 0001 => 1
[(1,7),(2,4),(3,5),(6,8),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [3,2,4,1,5] => 0001 => 1
[(1,6),(2,4),(3,5),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 0011 => 1
[(1,5),(2,4),(3,6),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 0011 => 1
[(1,4),(2,5),(3,6),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [3,2,1,4,5] => 0011 => 1
[(1,3),(2,5),(4,6),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => 0011 => 1
Description
The number of indecomposable projective-injective modules in the algebra corresponding to a subset.
Let An=K[x]/(xn).
We associate to a nonempty subset S of an (n-1)-set the module MS, which is the direct sum of An-modules with indecomposable non-projective direct summands of dimension i when i is in S (note that such modules have vector space dimension at most n-1). Then the corresponding algebra associated to S is the stable endomorphism ring of MS. We decode the subset as a binary word so that for example the subset S={1,3} of {1,2,3} is decoded as 101.
Matching statistic: St000284
Mp00150: Perfect matchings —to Dyck path⟶ Dyck paths
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St000284: Integer partitions ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 40%
Mp00233: Dyck paths —skew partition⟶ Skew partitions
Mp00183: Skew partitions —inner shape⟶ Integer partitions
St000284: Integer partitions ⟶ ℤResult quality: 16% ●values known / values provided: 16%●distinct values known / distinct values provided: 40%
Values
[(1,2)]
=> [1,0]
=> [[1],[]]
=> []
=> ? = 0
[(1,2),(3,4)]
=> [1,0,1,0]
=> [[1,1],[]]
=> []
=> ? ∊ {0,0,1}
[(1,3),(2,4)]
=> [1,1,0,0]
=> [[2],[]]
=> []
=> ? ∊ {0,0,1}
[(1,4),(2,3)]
=> [1,1,0,0]
=> [[2],[]]
=> []
=> ? ∊ {0,0,1}
[(1,2),(3,4),(5,6)]
=> [1,0,1,0,1,0]
=> [[1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,3),(2,4),(5,6)]
=> [1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,4),(2,3),(5,6)]
=> [1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,5),(2,3),(4,6)]
=> [1,1,0,1,0,0]
=> [[3],[]]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,6),(2,3),(4,5)]
=> [1,1,0,1,0,0]
=> [[3],[]]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,6),(2,4),(3,5)]
=> [1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,5),(2,4),(3,6)]
=> [1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,4),(2,5),(3,6)]
=> [1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,3),(2,5),(4,6)]
=> [1,1,0,1,0,0]
=> [[3],[]]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,2),(3,5),(4,6)]
=> [1,0,1,1,0,0]
=> [[2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,2),(3,6),(4,5)]
=> [1,0,1,1,0,0]
=> [[2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,3),(2,6),(4,5)]
=> [1,1,0,1,0,0]
=> [[3],[]]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,4),(2,6),(3,5)]
=> [1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,5),(2,6),(3,4)]
=> [1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,6),(2,5),(3,4)]
=> [1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,2,2,2}
[(1,2),(3,4),(5,6),(7,8)]
=> [1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,3),(2,4),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> 1
[(1,4),(2,3),(5,6),(7,8)]
=> [1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> 1
[(1,5),(2,3),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> 1
[(1,6),(2,3),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> 1
[(1,7),(2,3),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,3),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,4),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,4),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,4),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,4),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,5),(3,6),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,3),(2,5),(4,6),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> 1
[(1,2),(3,5),(4,6),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,2),(3,6),(4,5),(7,8)]
=> [1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,3),(2,6),(4,5),(7,8)]
=> [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> 1
[(1,4),(2,6),(3,5),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,6),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,5),(3,4),(7,8)]
=> [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,5),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,5),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,6),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,6),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,7),(3,4),(5,8)]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,7),(3,4),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,7),(3,5),(6,8)]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,3),(2,7),(4,5),(6,8)]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,2),(3,7),(4,5),(6,8)]
=> [1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,2),(3,8),(4,5),(6,7)]
=> [1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,3),(2,8),(4,5),(6,7)]
=> [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,4),(2,8),(3,5),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,5),(2,8),(3,4),(6,7)]
=> [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,6),(2,8),(3,4),(5,7)]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,8),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,7),(3,4),(5,6)]
=> [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,8),(2,7),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,7),(2,8),(3,5),(4,6)]
=> [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3}
[(1,3),(2,4),(5,6),(7,8),(9,10)]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 1
[(1,4),(2,3),(5,6),(7,8),(9,10)]
=> [1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 1
[(1,5),(2,3),(4,6),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> 4
[(1,6),(2,3),(4,5),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> 4
[(1,7),(2,3),(4,5),(6,8),(9,10)]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> 1
[(1,8),(2,3),(4,5),(6,7),(9,10)]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> 1
[(1,8),(2,4),(3,5),(6,7),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 1
[(1,7),(2,4),(3,5),(6,8),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 1
[(1,6),(2,4),(3,5),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 1
[(1,5),(2,4),(3,6),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 1
[(1,4),(2,5),(3,6),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 1
[(1,3),(2,5),(4,6),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> 4
[(1,2),(3,5),(4,6),(7,8),(9,10)]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
[(1,2),(3,6),(4,5),(7,8),(9,10)]
=> [1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> 1
[(1,3),(2,6),(4,5),(7,8),(9,10)]
=> [1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> 4
[(1,4),(2,6),(3,5),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 1
[(1,5),(2,6),(3,4),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 1
[(1,6),(2,5),(3,4),(7,8),(9,10)]
=> [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 1
[(1,7),(2,5),(3,4),(6,8),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 1
[(1,8),(2,5),(3,4),(6,7),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 1
[(1,5),(2,7),(3,4),(6,8),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 1
[(1,4),(2,7),(3,5),(6,8),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 1
[(1,3),(2,7),(4,5),(6,8),(9,10)]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> 1
[(1,2),(3,7),(4,5),(6,8),(9,10)]
=> [1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [2]
=> 1
[(1,2),(3,8),(4,5),(6,7),(9,10)]
=> [1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [2]
=> 1
[(1,3),(2,8),(4,5),(6,7),(9,10)]
=> [1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> 1
[(1,4),(2,8),(3,5),(6,7),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 1
[(1,5),(2,8),(3,4),(6,7),(9,10)]
=> [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 1
[(1,8),(2,7),(3,5),(4,6),(9,10)]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 1
[(1,7),(2,8),(3,5),(4,6),(9,10)]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 1
[(1,6),(2,8),(3,5),(4,7),(9,10)]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 1
[(1,5),(2,8),(3,6),(4,7),(9,10)]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 1
[(1,3),(2,8),(4,6),(5,7),(9,10)]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> 4
[(1,3),(2,7),(4,6),(5,8),(9,10)]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> 4
[(1,5),(2,7),(3,6),(4,8),(9,10)]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 1
[(1,6),(2,7),(3,5),(4,8),(9,10)]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 1
[(1,7),(2,6),(3,5),(4,8),(9,10)]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 1
[(1,8),(2,6),(3,5),(4,7),(9,10)]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 1
[(1,8),(2,5),(3,6),(4,7),(9,10)]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 1
[(1,7),(2,5),(3,6),(4,8),(9,10)]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 1
[(1,6),(2,5),(3,7),(4,8),(9,10)]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 1
[(1,5),(2,6),(3,7),(4,8),(9,10)]
=> [1,1,1,1,0,0,0,0,1,0]
=> [[3,3,3],[2]]
=> [2]
=> 1
[(1,3),(2,6),(4,7),(5,8),(9,10)]
=> [1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> 4
[(1,2),(3,5),(4,7),(6,8),(9,10)]
=> [1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [2]
=> 1
Description
The Plancherel distribution on integer partitions.
This is defined as the distribution induced by the RSK shape of the uniform distribution on permutations. In other words, this is the size of the preimage of the map 'Robinson-Schensted tableau shape' from permutations to integer partitions.
Equivalently, this is given by the square of the number of standard Young tableaux of the given shape.
The following 70 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000668The least common multiple of the parts of the partition. St000681The Grundy value of Chomp on Ferrers diagrams. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000708The product of the parts of an integer partition. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000933The number of multipartitions of sizes given by an integer partition. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001128The exponens consonantiae of a partition. St000259The diameter of a connected graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St000373The number of weak exceedences of a permutation that are also mid-points of a decreasing subsequence of length 3. St001394The genus of a permutation. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001153The number of blocks with even minimum in a set partition. St000454The largest eigenvalue of a graph if it is integral. St000356The number of occurrences of the pattern 13-2. St000371The number of mid points of decreasing subsequences of length 3 in a permutation. St001115The number of even descents of a permutation. St001031The height of the bicoloured Motzkin path associated with the Dyck path. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St001693The excess length of a longest path consisting of elements and blocks of a set partition. St000742The number of big ascents of a permutation after prepending zero. St000647The number of big descents of a permutation. St000891The number of distinct diagonal sums of a permutation matrix. St000884The number of isolated descents of a permutation. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001644The dimension of a graph. St001085The number of occurrences of the vincular pattern |21-3 in a permutation. St000035The number of left outer peaks of a permutation. St000648The number of 2-excedences of a permutation. St000871The number of very big ascents of a permutation. St001083The number of boxed occurrences of 132 in a permutation. St001738The minimal order of a graph which is not an induced subgraph of the given graph. St001051The depth of the label 1 in the decreasing labelled unordered tree associated with the set partition. St001050The number of terminal closers of a set partition. St001877Number of indecomposable injective modules with projective dimension 2. St000451The length of the longest pattern of the form k 1 2. St000731The number of double exceedences of a permutation. St001330The hat guessing number of a graph. St000214The number of adjacencies of a permutation. St000215The number of adjacencies of a permutation, zero appended. St000223The number of nestings in the permutation. St001052The length of the exterior of a permutation. St000022The number of fixed points of a permutation. St001200The number of simple modules in eAe with projective dimension at most 2 in the corresponding Nakayama algebra A with minimal faithful projective-injective module eA. St000665The number of rafts of a permutation. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000374The number of exclusive right-to-left minima of a permutation. St000007The number of saliances of the permutation. St000534The number of 2-rises of a permutation. St000028The number of stack-sorts needed to sort a permutation. St000372The number of mid points of increasing subsequences of length 3 in a permutation. St001687The number of distinct positions of the pattern letter 2 in occurrences of 213 in a permutation. St000031The number of cycles in the cycle decomposition of a permutation. St001096The size of the overlap set of a permutation. St000366The number of double descents of a permutation. St000994The number of cycle peaks and the number of cycle valleys of a permutation. St000996The number of exclusive left-to-right maxima of a permutation. St001801Half the number of preimage-image pairs of different parity in a permutation. St000624The normalized sum of the minimal distances to a greater element. St000883The number of longest increasing subsequences of a permutation. St000243The number of cyclic valleys and cyclic peaks of a permutation.
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!