Your data matches 97 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001390: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2] => 1 = 0 + 1
[2,1] => 2 = 1 + 1
[1,2,3] => 1 = 0 + 1
[1,3,2] => 1 = 0 + 1
[2,1,3] => 2 = 1 + 1
[2,3,1] => 2 = 1 + 1
[3,1,2] => 2 = 1 + 1
[3,2,1] => 3 = 2 + 1
[1,2,3,4] => 1 = 0 + 1
[1,2,4,3] => 1 = 0 + 1
[1,3,2,4] => 1 = 0 + 1
[1,3,4,2] => 1 = 0 + 1
[1,4,2,3] => 1 = 0 + 1
[1,4,3,2] => 1 = 0 + 1
[2,1,3,4] => 2 = 1 + 1
[2,1,4,3] => 2 = 1 + 1
[2,3,1,4] => 2 = 1 + 1
[2,3,4,1] => 2 = 1 + 1
[2,4,1,3] => 2 = 1 + 1
[2,4,3,1] => 3 = 2 + 1
[3,1,2,4] => 2 = 1 + 1
[3,1,4,2] => 2 = 1 + 1
[3,2,1,4] => 3 = 2 + 1
[3,2,4,1] => 3 = 2 + 1
[3,4,1,2] => 2 = 1 + 1
[3,4,2,1] => 3 = 2 + 1
[4,1,2,3] => 2 = 1 + 1
[4,1,3,2] => 2 = 1 + 1
[4,2,1,3] => 3 = 2 + 1
[4,2,3,1] => 3 = 2 + 1
[4,3,1,2] => 3 = 2 + 1
[4,3,2,1] => 4 = 3 + 1
[1,2,3,4,5] => 1 = 0 + 1
[1,2,3,5,4] => 1 = 0 + 1
[1,2,4,3,5] => 1 = 0 + 1
[1,2,4,5,3] => 1 = 0 + 1
[1,2,5,3,4] => 1 = 0 + 1
[1,2,5,4,3] => 1 = 0 + 1
[1,3,2,4,5] => 1 = 0 + 1
[1,3,2,5,4] => 1 = 0 + 1
[1,3,4,2,5] => 1 = 0 + 1
[1,3,4,5,2] => 1 = 0 + 1
[1,3,5,2,4] => 1 = 0 + 1
[1,3,5,4,2] => 1 = 0 + 1
[1,4,2,3,5] => 1 = 0 + 1
[1,4,2,5,3] => 1 = 0 + 1
[1,4,3,2,5] => 1 = 0 + 1
[1,4,3,5,2] => 1 = 0 + 1
[1,4,5,2,3] => 1 = 0 + 1
[1,4,5,3,2] => 1 = 0 + 1
Description
The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. For a given permutation $\pi$, this is the index of the row containing $\pi^{-1}(1)$ of the recording tableau of $\pi$ (obtained by [[Mp00070]]).
Matching statistic: St000541
Mp00254: Permutations Inverse fireworks mapPermutations
Mp00064: Permutations reversePermutations
Mp00149: Permutations Lehmer code rotationPermutations
St000541: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2] => [1,2] => [2,1] => [1,2] => 0
[2,1] => [2,1] => [1,2] => [2,1] => 1
[1,2,3] => [1,2,3] => [3,2,1] => [1,2,3] => 0
[1,3,2] => [1,3,2] => [2,3,1] => [3,1,2] => 1
[2,1,3] => [2,1,3] => [3,1,2] => [1,3,2] => 0
[2,3,1] => [1,3,2] => [2,3,1] => [3,1,2] => 1
[3,1,2] => [3,1,2] => [2,1,3] => [3,2,1] => 2
[3,2,1] => [3,2,1] => [1,2,3] => [2,3,1] => 1
[1,2,3,4] => [1,2,3,4] => [4,3,2,1] => [1,2,3,4] => 0
[1,2,4,3] => [1,2,4,3] => [3,4,2,1] => [4,1,2,3] => 1
[1,3,2,4] => [1,3,2,4] => [4,2,3,1] => [1,4,2,3] => 0
[1,3,4,2] => [1,2,4,3] => [3,4,2,1] => [4,1,2,3] => 1
[1,4,2,3] => [1,4,2,3] => [3,2,4,1] => [4,3,1,2] => 2
[1,4,3,2] => [1,4,3,2] => [2,3,4,1] => [3,4,1,2] => 1
[2,1,3,4] => [2,1,3,4] => [4,3,1,2] => [1,2,4,3] => 0
[2,1,4,3] => [2,1,4,3] => [3,4,1,2] => [4,1,3,2] => 1
[2,3,1,4] => [1,3,2,4] => [4,2,3,1] => [1,4,2,3] => 0
[2,3,4,1] => [1,2,4,3] => [3,4,2,1] => [4,1,2,3] => 1
[2,4,1,3] => [2,4,1,3] => [3,1,4,2] => [4,2,1,3] => 2
[2,4,3,1] => [1,4,3,2] => [2,3,4,1] => [3,4,1,2] => 1
[3,1,2,4] => [3,1,2,4] => [4,2,1,3] => [1,4,3,2] => 0
[3,1,4,2] => [2,1,4,3] => [3,4,1,2] => [4,1,3,2] => 1
[3,2,1,4] => [3,2,1,4] => [4,1,2,3] => [1,3,4,2] => 0
[3,2,4,1] => [2,1,4,3] => [3,4,1,2] => [4,1,3,2] => 1
[3,4,1,2] => [2,4,1,3] => [3,1,4,2] => [4,2,1,3] => 2
[3,4,2,1] => [1,4,3,2] => [2,3,4,1] => [3,4,1,2] => 1
[4,1,2,3] => [4,1,2,3] => [3,2,1,4] => [4,3,2,1] => 3
[4,1,3,2] => [4,1,3,2] => [2,3,1,4] => [3,4,2,1] => 2
[4,2,1,3] => [4,2,1,3] => [3,1,2,4] => [4,2,3,1] => 2
[4,2,3,1] => [4,1,3,2] => [2,3,1,4] => [3,4,2,1] => 2
[4,3,1,2] => [4,3,1,2] => [2,1,3,4] => [3,2,4,1] => 2
[4,3,2,1] => [4,3,2,1] => [1,2,3,4] => [2,3,4,1] => 1
[1,2,3,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => [1,2,3,4,5] => 0
[1,2,3,5,4] => [1,2,3,5,4] => [4,5,3,2,1] => [5,1,2,3,4] => 1
[1,2,4,3,5] => [1,2,4,3,5] => [5,3,4,2,1] => [1,5,2,3,4] => 0
[1,2,4,5,3] => [1,2,3,5,4] => [4,5,3,2,1] => [5,1,2,3,4] => 1
[1,2,5,3,4] => [1,2,5,3,4] => [4,3,5,2,1] => [5,4,1,2,3] => 2
[1,2,5,4,3] => [1,2,5,4,3] => [3,4,5,2,1] => [4,5,1,2,3] => 1
[1,3,2,4,5] => [1,3,2,4,5] => [5,4,2,3,1] => [1,2,5,3,4] => 0
[1,3,2,5,4] => [1,3,2,5,4] => [4,5,2,3,1] => [5,1,4,2,3] => 1
[1,3,4,2,5] => [1,2,4,3,5] => [5,3,4,2,1] => [1,5,2,3,4] => 0
[1,3,4,5,2] => [1,2,3,5,4] => [4,5,3,2,1] => [5,1,2,3,4] => 1
[1,3,5,2,4] => [1,3,5,2,4] => [4,2,5,3,1] => [5,3,1,2,4] => 2
[1,3,5,4,2] => [1,2,5,4,3] => [3,4,5,2,1] => [4,5,1,2,3] => 1
[1,4,2,3,5] => [1,4,2,3,5] => [5,3,2,4,1] => [1,5,4,2,3] => 0
[1,4,2,5,3] => [1,3,2,5,4] => [4,5,2,3,1] => [5,1,4,2,3] => 1
[1,4,3,2,5] => [1,4,3,2,5] => [5,2,3,4,1] => [1,4,5,2,3] => 0
[1,4,3,5,2] => [1,3,2,5,4] => [4,5,2,3,1] => [5,1,4,2,3] => 1
[1,4,5,2,3] => [1,3,5,2,4] => [4,2,5,3,1] => [5,3,1,2,4] => 2
[1,4,5,3,2] => [1,2,5,4,3] => [3,4,5,2,1] => [4,5,1,2,3] => 1
Description
The number of indices greater than or equal to 2 of a permutation such that all smaller indices appear to its right. For a permutation $\pi$ of length $n$, this is the number of indices $2 \leq j \leq n$ such that for all $1 \leq i < j$, the pair $(i,j)$ is an inversion of $\pi$.
Mp00254: Permutations Inverse fireworks mapPermutations
Mp00066: Permutations inversePermutations
Mp00236: Permutations Clarke-Steingrimsson-Zeng inversePermutations
St000007: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2] => [1,2] => [1,2] => [1,2] => 1 = 0 + 1
[2,1] => [2,1] => [2,1] => [2,1] => 2 = 1 + 1
[1,2,3] => [1,2,3] => [1,2,3] => [1,2,3] => 1 = 0 + 1
[1,3,2] => [1,3,2] => [1,3,2] => [1,3,2] => 2 = 1 + 1
[2,1,3] => [2,1,3] => [2,1,3] => [2,1,3] => 1 = 0 + 1
[2,3,1] => [1,3,2] => [1,3,2] => [1,3,2] => 2 = 1 + 1
[3,1,2] => [3,1,2] => [2,3,1] => [3,2,1] => 3 = 2 + 1
[3,2,1] => [3,2,1] => [3,2,1] => [2,3,1] => 2 = 1 + 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 1 = 0 + 1
[1,2,4,3] => [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 2 = 1 + 1
[1,3,2,4] => [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 1 = 0 + 1
[1,3,4,2] => [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 2 = 1 + 1
[1,4,2,3] => [1,4,2,3] => [1,3,4,2] => [1,4,3,2] => 3 = 2 + 1
[1,4,3,2] => [1,4,3,2] => [1,4,3,2] => [1,3,4,2] => 2 = 1 + 1
[2,1,3,4] => [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 1 = 0 + 1
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 2 = 1 + 1
[2,3,1,4] => [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 1 = 0 + 1
[2,3,4,1] => [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 2 = 1 + 1
[2,4,1,3] => [2,4,1,3] => [3,1,4,2] => [4,3,1,2] => 3 = 2 + 1
[2,4,3,1] => [1,4,3,2] => [1,4,3,2] => [1,3,4,2] => 2 = 1 + 1
[3,1,2,4] => [3,1,2,4] => [2,3,1,4] => [3,2,1,4] => 1 = 0 + 1
[3,1,4,2] => [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 2 = 1 + 1
[3,2,1,4] => [3,2,1,4] => [3,2,1,4] => [2,3,1,4] => 1 = 0 + 1
[3,2,4,1] => [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 2 = 1 + 1
[3,4,1,2] => [2,4,1,3] => [3,1,4,2] => [4,3,1,2] => 3 = 2 + 1
[3,4,2,1] => [1,4,3,2] => [1,4,3,2] => [1,3,4,2] => 2 = 1 + 1
[4,1,2,3] => [4,1,2,3] => [2,3,4,1] => [4,3,2,1] => 4 = 3 + 1
[4,1,3,2] => [4,1,3,2] => [2,4,3,1] => [3,4,2,1] => 3 = 2 + 1
[4,2,1,3] => [4,2,1,3] => [3,2,4,1] => [2,4,3,1] => 3 = 2 + 1
[4,2,3,1] => [4,1,3,2] => [2,4,3,1] => [3,4,2,1] => 3 = 2 + 1
[4,3,1,2] => [4,3,1,2] => [3,4,2,1] => [4,2,3,1] => 3 = 2 + 1
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => [3,2,4,1] => 2 = 1 + 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 1 = 0 + 1
[1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => 2 = 1 + 1
[1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => 1 = 0 + 1
[1,2,4,5,3] => [1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => 2 = 1 + 1
[1,2,5,3,4] => [1,2,5,3,4] => [1,2,4,5,3] => [1,2,5,4,3] => 3 = 2 + 1
[1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => 2 = 1 + 1
[1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 1 = 0 + 1
[1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => 2 = 1 + 1
[1,3,4,2,5] => [1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => 1 = 0 + 1
[1,3,4,5,2] => [1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => 2 = 1 + 1
[1,3,5,2,4] => [1,3,5,2,4] => [1,4,2,5,3] => [1,5,4,2,3] => 3 = 2 + 1
[1,3,5,4,2] => [1,2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => 2 = 1 + 1
[1,4,2,3,5] => [1,4,2,3,5] => [1,3,4,2,5] => [1,4,3,2,5] => 1 = 0 + 1
[1,4,2,5,3] => [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => 2 = 1 + 1
[1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => [1,3,4,2,5] => 1 = 0 + 1
[1,4,3,5,2] => [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => 2 = 1 + 1
[1,4,5,2,3] => [1,3,5,2,4] => [1,4,2,5,3] => [1,5,4,2,3] => 3 = 2 + 1
[1,4,5,3,2] => [1,2,5,4,3] => [1,2,5,4,3] => [1,2,4,5,3] => 2 = 1 + 1
Description
The number of saliances of the permutation. A saliance is a right-to-left maximum. This can be described as an occurrence of the mesh pattern $([1], {(1,1)})$, i.e., the upper right quadrant is shaded, see [1].
Matching statistic: St000542
Mp00254: Permutations Inverse fireworks mapPermutations
Mp00064: Permutations reversePermutations
Mp00149: Permutations Lehmer code rotationPermutations
St000542: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2] => [1,2] => [2,1] => [1,2] => 1 = 0 + 1
[2,1] => [2,1] => [1,2] => [2,1] => 2 = 1 + 1
[1,2,3] => [1,2,3] => [3,2,1] => [1,2,3] => 1 = 0 + 1
[1,3,2] => [1,3,2] => [2,3,1] => [3,1,2] => 2 = 1 + 1
[2,1,3] => [2,1,3] => [3,1,2] => [1,3,2] => 1 = 0 + 1
[2,3,1] => [1,3,2] => [2,3,1] => [3,1,2] => 2 = 1 + 1
[3,1,2] => [3,1,2] => [2,1,3] => [3,2,1] => 3 = 2 + 1
[3,2,1] => [3,2,1] => [1,2,3] => [2,3,1] => 2 = 1 + 1
[1,2,3,4] => [1,2,3,4] => [4,3,2,1] => [1,2,3,4] => 1 = 0 + 1
[1,2,4,3] => [1,2,4,3] => [3,4,2,1] => [4,1,2,3] => 2 = 1 + 1
[1,3,2,4] => [1,3,2,4] => [4,2,3,1] => [1,4,2,3] => 1 = 0 + 1
[1,3,4,2] => [1,2,4,3] => [3,4,2,1] => [4,1,2,3] => 2 = 1 + 1
[1,4,2,3] => [1,4,2,3] => [3,2,4,1] => [4,3,1,2] => 3 = 2 + 1
[1,4,3,2] => [1,4,3,2] => [2,3,4,1] => [3,4,1,2] => 2 = 1 + 1
[2,1,3,4] => [2,1,3,4] => [4,3,1,2] => [1,2,4,3] => 1 = 0 + 1
[2,1,4,3] => [2,1,4,3] => [3,4,1,2] => [4,1,3,2] => 2 = 1 + 1
[2,3,1,4] => [1,3,2,4] => [4,2,3,1] => [1,4,2,3] => 1 = 0 + 1
[2,3,4,1] => [1,2,4,3] => [3,4,2,1] => [4,1,2,3] => 2 = 1 + 1
[2,4,1,3] => [2,4,1,3] => [3,1,4,2] => [4,2,1,3] => 3 = 2 + 1
[2,4,3,1] => [1,4,3,2] => [2,3,4,1] => [3,4,1,2] => 2 = 1 + 1
[3,1,2,4] => [3,1,2,4] => [4,2,1,3] => [1,4,3,2] => 1 = 0 + 1
[3,1,4,2] => [2,1,4,3] => [3,4,1,2] => [4,1,3,2] => 2 = 1 + 1
[3,2,1,4] => [3,2,1,4] => [4,1,2,3] => [1,3,4,2] => 1 = 0 + 1
[3,2,4,1] => [2,1,4,3] => [3,4,1,2] => [4,1,3,2] => 2 = 1 + 1
[3,4,1,2] => [2,4,1,3] => [3,1,4,2] => [4,2,1,3] => 3 = 2 + 1
[3,4,2,1] => [1,4,3,2] => [2,3,4,1] => [3,4,1,2] => 2 = 1 + 1
[4,1,2,3] => [4,1,2,3] => [3,2,1,4] => [4,3,2,1] => 4 = 3 + 1
[4,1,3,2] => [4,1,3,2] => [2,3,1,4] => [3,4,2,1] => 3 = 2 + 1
[4,2,1,3] => [4,2,1,3] => [3,1,2,4] => [4,2,3,1] => 3 = 2 + 1
[4,2,3,1] => [4,1,3,2] => [2,3,1,4] => [3,4,2,1] => 3 = 2 + 1
[4,3,1,2] => [4,3,1,2] => [2,1,3,4] => [3,2,4,1] => 3 = 2 + 1
[4,3,2,1] => [4,3,2,1] => [1,2,3,4] => [2,3,4,1] => 2 = 1 + 1
[1,2,3,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => [1,2,3,4,5] => 1 = 0 + 1
[1,2,3,5,4] => [1,2,3,5,4] => [4,5,3,2,1] => [5,1,2,3,4] => 2 = 1 + 1
[1,2,4,3,5] => [1,2,4,3,5] => [5,3,4,2,1] => [1,5,2,3,4] => 1 = 0 + 1
[1,2,4,5,3] => [1,2,3,5,4] => [4,5,3,2,1] => [5,1,2,3,4] => 2 = 1 + 1
[1,2,5,3,4] => [1,2,5,3,4] => [4,3,5,2,1] => [5,4,1,2,3] => 3 = 2 + 1
[1,2,5,4,3] => [1,2,5,4,3] => [3,4,5,2,1] => [4,5,1,2,3] => 2 = 1 + 1
[1,3,2,4,5] => [1,3,2,4,5] => [5,4,2,3,1] => [1,2,5,3,4] => 1 = 0 + 1
[1,3,2,5,4] => [1,3,2,5,4] => [4,5,2,3,1] => [5,1,4,2,3] => 2 = 1 + 1
[1,3,4,2,5] => [1,2,4,3,5] => [5,3,4,2,1] => [1,5,2,3,4] => 1 = 0 + 1
[1,3,4,5,2] => [1,2,3,5,4] => [4,5,3,2,1] => [5,1,2,3,4] => 2 = 1 + 1
[1,3,5,2,4] => [1,3,5,2,4] => [4,2,5,3,1] => [5,3,1,2,4] => 3 = 2 + 1
[1,3,5,4,2] => [1,2,5,4,3] => [3,4,5,2,1] => [4,5,1,2,3] => 2 = 1 + 1
[1,4,2,3,5] => [1,4,2,3,5] => [5,3,2,4,1] => [1,5,4,2,3] => 1 = 0 + 1
[1,4,2,5,3] => [1,3,2,5,4] => [4,5,2,3,1] => [5,1,4,2,3] => 2 = 1 + 1
[1,4,3,2,5] => [1,4,3,2,5] => [5,2,3,4,1] => [1,4,5,2,3] => 1 = 0 + 1
[1,4,3,5,2] => [1,3,2,5,4] => [4,5,2,3,1] => [5,1,4,2,3] => 2 = 1 + 1
[1,4,5,2,3] => [1,3,5,2,4] => [4,2,5,3,1] => [5,3,1,2,4] => 3 = 2 + 1
[1,4,5,3,2] => [1,2,5,4,3] => [3,4,5,2,1] => [4,5,1,2,3] => 2 = 1 + 1
Description
The number of left-to-right-minima of a permutation. An integer $\sigma_i$ in the one-line notation of a permutation $\sigma$ is a left-to-right-minimum if there does not exist a j < i such that $\sigma_j < \sigma_i$.
Matching statistic: St000991
Mp00254: Permutations Inverse fireworks mapPermutations
Mp00066: Permutations inversePermutations
Mp00088: Permutations Kreweras complementPermutations
St000991: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,2] => [1,2] => [1,2] => [2,1] => 1 = 0 + 1
[2,1] => [2,1] => [2,1] => [1,2] => 2 = 1 + 1
[1,2,3] => [1,2,3] => [1,2,3] => [2,3,1] => 1 = 0 + 1
[1,3,2] => [1,3,2] => [1,3,2] => [2,1,3] => 2 = 1 + 1
[2,1,3] => [2,1,3] => [2,1,3] => [3,2,1] => 1 = 0 + 1
[2,3,1] => [1,3,2] => [1,3,2] => [2,1,3] => 2 = 1 + 1
[3,1,2] => [3,1,2] => [2,3,1] => [1,2,3] => 3 = 2 + 1
[3,2,1] => [3,2,1] => [3,2,1] => [1,3,2] => 2 = 1 + 1
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => [2,3,4,1] => 1 = 0 + 1
[1,2,4,3] => [1,2,4,3] => [1,2,4,3] => [2,3,1,4] => 2 = 1 + 1
[1,3,2,4] => [1,3,2,4] => [1,3,2,4] => [2,4,3,1] => 1 = 0 + 1
[1,3,4,2] => [1,2,4,3] => [1,2,4,3] => [2,3,1,4] => 2 = 1 + 1
[1,4,2,3] => [1,4,2,3] => [1,3,4,2] => [2,1,3,4] => 3 = 2 + 1
[1,4,3,2] => [1,4,3,2] => [1,4,3,2] => [2,1,4,3] => 2 = 1 + 1
[2,1,3,4] => [2,1,3,4] => [2,1,3,4] => [3,2,4,1] => 1 = 0 + 1
[2,1,4,3] => [2,1,4,3] => [2,1,4,3] => [3,2,1,4] => 2 = 1 + 1
[2,3,1,4] => [1,3,2,4] => [1,3,2,4] => [2,4,3,1] => 1 = 0 + 1
[2,3,4,1] => [1,2,4,3] => [1,2,4,3] => [2,3,1,4] => 2 = 1 + 1
[2,4,1,3] => [2,4,1,3] => [3,1,4,2] => [3,1,2,4] => 3 = 2 + 1
[2,4,3,1] => [1,4,3,2] => [1,4,3,2] => [2,1,4,3] => 2 = 1 + 1
[3,1,2,4] => [3,1,2,4] => [2,3,1,4] => [4,2,3,1] => 1 = 0 + 1
[3,1,4,2] => [2,1,4,3] => [2,1,4,3] => [3,2,1,4] => 2 = 1 + 1
[3,2,1,4] => [3,2,1,4] => [3,2,1,4] => [4,3,2,1] => 1 = 0 + 1
[3,2,4,1] => [2,1,4,3] => [2,1,4,3] => [3,2,1,4] => 2 = 1 + 1
[3,4,1,2] => [2,4,1,3] => [3,1,4,2] => [3,1,2,4] => 3 = 2 + 1
[3,4,2,1] => [1,4,3,2] => [1,4,3,2] => [2,1,4,3] => 2 = 1 + 1
[4,1,2,3] => [4,1,2,3] => [2,3,4,1] => [1,2,3,4] => 4 = 3 + 1
[4,1,3,2] => [4,1,3,2] => [2,4,3,1] => [1,2,4,3] => 3 = 2 + 1
[4,2,1,3] => [4,2,1,3] => [3,2,4,1] => [1,3,2,4] => 3 = 2 + 1
[4,2,3,1] => [4,1,3,2] => [2,4,3,1] => [1,2,4,3] => 3 = 2 + 1
[4,3,1,2] => [4,3,1,2] => [3,4,2,1] => [1,4,2,3] => 3 = 2 + 1
[4,3,2,1] => [4,3,2,1] => [4,3,2,1] => [1,4,3,2] => 2 = 1 + 1
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => [2,3,4,5,1] => 1 = 0 + 1
[1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => [2,3,4,1,5] => 2 = 1 + 1
[1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => [2,3,5,4,1] => 1 = 0 + 1
[1,2,4,5,3] => [1,2,3,5,4] => [1,2,3,5,4] => [2,3,4,1,5] => 2 = 1 + 1
[1,2,5,3,4] => [1,2,5,3,4] => [1,2,4,5,3] => [2,3,1,4,5] => 3 = 2 + 1
[1,2,5,4,3] => [1,2,5,4,3] => [1,2,5,4,3] => [2,3,1,5,4] => 2 = 1 + 1
[1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => [2,4,3,5,1] => 1 = 0 + 1
[1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => [2,4,3,1,5] => 2 = 1 + 1
[1,3,4,2,5] => [1,2,4,3,5] => [1,2,4,3,5] => [2,3,5,4,1] => 1 = 0 + 1
[1,3,4,5,2] => [1,2,3,5,4] => [1,2,3,5,4] => [2,3,4,1,5] => 2 = 1 + 1
[1,3,5,2,4] => [1,3,5,2,4] => [1,4,2,5,3] => [2,4,1,3,5] => 3 = 2 + 1
[1,3,5,4,2] => [1,2,5,4,3] => [1,2,5,4,3] => [2,3,1,5,4] => 2 = 1 + 1
[1,4,2,3,5] => [1,4,2,3,5] => [1,3,4,2,5] => [2,5,3,4,1] => 1 = 0 + 1
[1,4,2,5,3] => [1,3,2,5,4] => [1,3,2,5,4] => [2,4,3,1,5] => 2 = 1 + 1
[1,4,3,2,5] => [1,4,3,2,5] => [1,4,3,2,5] => [2,5,4,3,1] => 1 = 0 + 1
[1,4,3,5,2] => [1,3,2,5,4] => [1,3,2,5,4] => [2,4,3,1,5] => 2 = 1 + 1
[1,4,5,2,3] => [1,3,5,2,4] => [1,4,2,5,3] => [2,4,1,3,5] => 3 = 2 + 1
[1,4,5,3,2] => [1,2,5,4,3] => [1,2,5,4,3] => [2,3,1,5,4] => 2 = 1 + 1
Description
The number of right-to-left minima of a permutation. For the number of left-to-right maxima, see [[St000314]].
Matching statistic: St000120
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St000120: Dyck paths ⟶ ℤResult quality: 65% values known / values provided: 65%distinct values known / distinct values provided: 83%
Values
[1,2] => [1,0,1,0]
=> [1]
=> [1,0]
=> 0
[2,1] => [1,1,0,0]
=> []
=> []
=> ? = 1
[1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,1,3] => [1,1,0,0,1,0]
=> [2]
=> [1,0,1,0]
=> 1
[2,3,1] => [1,1,0,1,0,0]
=> [1]
=> [1,0]
=> 0
[3,1,2] => [1,1,1,0,0,0]
=> []
=> []
=> ? ∊ {1,2}
[3,2,1] => [1,1,1,0,0,0]
=> []
=> []
=> ? ∊ {1,2}
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 1
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> 0
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 2
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 0
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> 0
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> 0
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,2,2,2,2,3}
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,2,2,2,2,3}
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,2,2,2,2,3}
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,2,2,2,2,3}
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,2,2,2,2,3}
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,2,2,2,2,3}
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 2
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> 1
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> 3
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> 3
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 3
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> 3
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 2
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 2
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 1
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> 2
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> 1
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 2
[2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 0
[2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 0
[2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> 2
[2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2
[2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> 2
[5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,1,2,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,2,3,4,5,6] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,3,4,6,5] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2,1]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,3,5,4,6] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> [1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,3,5,6,4] => [1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,3,6,4,5] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2,1]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,3,6,5,4] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2,1]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,4,3,5,6] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> [1,0,1,1,1,0,1,0,1,1,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,4,3,6,5] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2,1]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,4,5,3,6] => [1,0,1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,4,5,6,3] => [1,0,1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,2,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,4,6,3,5] => [1,0,1,0,1,1,0,1,1,0,0,0]
=> [3,3,2,2,1]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
Description
The number of left tunnels of a Dyck path. A tunnel is a pair (a,b) where a is the position of an open parenthesis and b is the position of the matching close parenthesis. If a+b
Matching statistic: St001192
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001192: Dyck paths ⟶ ℤResult quality: 65% values known / values provided: 65%distinct values known / distinct values provided: 83%
Values
[1,2] => [1,0,1,0]
=> [1]
=> [1,0]
=> 0
[2,1] => [1,1,0,0]
=> []
=> []
=> ? = 1
[1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,1,3] => [1,1,0,0,1,0]
=> [2]
=> [1,0,1,0]
=> 1
[2,3,1] => [1,1,0,1,0,0]
=> [1]
=> [1,0]
=> 0
[3,1,2] => [1,1,1,0,0,0]
=> []
=> []
=> ? ∊ {1,2}
[3,2,1] => [1,1,1,0,0,0]
=> []
=> []
=> ? ∊ {1,2}
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> 0
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 0
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> 0
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> 0
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,1,2,2,2,3}
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,1,2,2,2,3}
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,1,2,2,2,3}
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,1,2,2,2,3}
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,1,2,2,2,3}
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,1,2,2,2,3}
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 3
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> 2
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 3
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> 2
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 1
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 1
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 1
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 2
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> 2
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> 3
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 1
[2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 0
[2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 0
[2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> 2
[2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3
[2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> 2
[5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,1,2,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,4}
[1,2,3,4,5,6] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
[1,2,3,4,6,5] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2,1]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
[1,2,3,5,4,6] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> [1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
[1,2,3,5,6,4] => [1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
[1,2,3,6,4,5] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2,1]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
[1,2,3,6,5,4] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2,1]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
[1,2,4,3,5,6] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> [1,0,1,1,1,0,1,0,1,1,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
[1,2,4,3,6,5] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2,1]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
[1,2,4,5,3,6] => [1,0,1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
[1,2,4,5,6,3] => [1,0,1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,2,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
[1,2,4,6,3,5] => [1,0,1,0,1,1,0,1,1,0,0,0]
=> [3,3,2,2,1]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,5}
Description
The maximal dimension of $Ext_A^2(S,A)$ for a simple module $S$ over the corresponding Nakayama algebra $A$.
Matching statistic: St001215
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001215: Dyck paths ⟶ ℤResult quality: 65% values known / values provided: 65%distinct values known / distinct values provided: 83%
Values
[1,2] => [1,0,1,0]
=> [1]
=> [1,0]
=> 0
[2,1] => [1,1,0,0]
=> []
=> []
=> ? = 1
[1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,1,3] => [1,1,0,0,1,0]
=> [2]
=> [1,0,1,0]
=> 1
[2,3,1] => [1,1,0,1,0,0]
=> [1]
=> [1,0]
=> 0
[3,1,2] => [1,1,1,0,0,0]
=> []
=> []
=> ? ∊ {1,2}
[3,2,1] => [1,1,1,0,0,0]
=> []
=> []
=> ? ∊ {1,2}
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 3
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 2
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 2
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 2
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> 0
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 0
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> 1
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> 1
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> 1
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> 1
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> 0
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> 0
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,1,1,1,2,2}
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,1,1,1,2,2}
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,1,1,1,2,2}
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,1,1,1,2,2}
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,1,1,1,2,2}
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {0,1,1,1,2,2}
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 4
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> 3
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 3
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> 3
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 2
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 2
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 2
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> 3
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> 3
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 1
[2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> 1
[2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 0
[2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 0
[2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> 3
[2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 3
[2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> 3
[5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,1,2,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2}
[1,2,3,4,5,6] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5}
[1,2,3,4,6,5] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2,1]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5}
[1,2,3,5,4,6] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> [1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5}
[1,2,3,5,6,4] => [1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5}
[1,2,3,6,4,5] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2,1]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5}
[1,2,3,6,5,4] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2,1]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5}
[1,2,4,3,5,6] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> [1,0,1,1,1,0,1,0,1,1,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5}
[1,2,4,3,6,5] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2,1]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5}
[1,2,4,5,3,6] => [1,0,1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5}
[1,2,4,5,6,3] => [1,0,1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,2,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5}
[1,2,4,6,3,5] => [1,0,1,0,1,1,0,1,1,0,0,0]
=> [3,3,2,2,1]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5}
Description
Let X be the direct sum of all simple modules of the corresponding Nakayama algebra. Then the statistic gives the vector space dimension of the second Ext-group between X and the regular module. For the first 196 values, the statistic also gives the number of indecomposable non-projective modules $X$ such that $\tau(X)$ has codominant dimension equal to one and projective dimension equal to one.
Matching statistic: St001873
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001873: Dyck paths ⟶ ℤResult quality: 65% values known / values provided: 65%distinct values known / distinct values provided: 67%
Values
[1,2] => [1,0,1,0]
=> [1]
=> [1,0]
=> 0
[2,1] => [1,1,0,0]
=> []
=> []
=> ? = 1
[1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1
[2,1,3] => [1,1,0,0,1,0]
=> [2]
=> [1,0,1,0]
=> 0
[2,3,1] => [1,1,0,1,0,0]
=> [1]
=> [1,0]
=> 0
[3,1,2] => [1,1,1,0,0,0]
=> []
=> []
=> ? ∊ {1,2}
[3,2,1] => [1,1,1,0,0,0]
=> []
=> []
=> ? ∊ {1,2}
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [1,0,1,1,1,0,0,1,0,0]
=> 2
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [1,1,1,0,0,1,0,0]
=> 2
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,0,1,0,1,1,0,1,0,0]
=> 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,0,1,1,0,1,0,0]
=> 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [3,2]
=> [1,0,1,1,1,0,0,0]
=> 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,2]
=> [1,1,1,0,0,0]
=> 1
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1,0,1,0,1,1,0,0]
=> 1
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1,0,1,1,0,0]
=> 1
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1,1,0,0]
=> 1
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> 0
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> 0
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> [1,0,1,0,1,0]
=> 0
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [2]
=> [1,0,1,0]
=> 0
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> 0
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1]
=> [1,0]
=> 0
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {2,2,2,2,2,3}
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {2,2,2,2,2,3}
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {2,2,2,2,2,3}
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {2,2,2,2,2,3}
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {2,2,2,2,2,3}
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> []
=> []
=> ? ∊ {2,2,2,2,2,3}
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [1,0,1,1,1,0,1,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> 2
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [1,0,1,0,1,1,1,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [1,0,1,1,1,1,0,0,0,1,0,0]
=> 2
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [1,1,1,1,0,0,0,1,0,0]
=> 2
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [1,0,1,1,1,0,1,0,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> 2
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [1,0,1,0,1,1,1,0,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [1,0,1,1,1,0,0,1,0,1,0,0]
=> 2
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [1,1,1,0,0,1,0,1,0,0]
=> 2
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 2
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,0,1,0,1,0,1,1,0,1,0,1,0,0]
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,0,1,0,1,1,0,1,0,1,0,0]
=> 2
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,0,1,1,0,1,0,1,0,0]
=> 2
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 2
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 2
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [1,0,1,1,1,0,1,1,0,0,0,0]
=> 2
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [1,1,1,0,1,1,0,0,0,0]
=> 2
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [1,0,1,0,1,1,1,1,0,0,0,0]
=> 2
[2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [1,0,1,1,1,1,0,0,0,0]
=> 2
[2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 2
[2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [1,1,1,1,0,0,0,0]
=> 2
[2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [1,0,1,1,1,0,1,0,0,1,0,0]
=> 2
[2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [1,1,1,0,1,0,0,1,0,0]
=> 2
[2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [1,0,1,0,1,1,1,0,0,1,0,0]
=> 2
[5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[5,1,2,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[5,2,3,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[5,2,3,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[5,2,4,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[5,2,4,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[5,3,1,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[5,3,1,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[5,3,2,1,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[5,3,2,4,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[5,3,4,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[5,3,4,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[5,4,1,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[5,4,1,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[5,4,2,1,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[5,4,2,3,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[5,4,3,1,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[5,4,3,2,1] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> []
=> ? ∊ {1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[1,2,3,4,5,6] => [1,0,1,0,1,0,1,0,1,0,1,0]
=> [5,4,3,2,1]
=> [1,0,1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,3,4,6,5] => [1,0,1,0,1,0,1,0,1,1,0,0]
=> [4,4,3,2,1]
=> [1,1,1,0,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,3,5,4,6] => [1,0,1,0,1,0,1,1,0,0,1,0]
=> [5,3,3,2,1]
=> [1,0,1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,3,5,6,4] => [1,0,1,0,1,0,1,1,0,1,0,0]
=> [4,3,3,2,1]
=> [1,0,1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,3,6,4,5] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2,1]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,3,6,5,4] => [1,0,1,0,1,0,1,1,1,0,0,0]
=> [3,3,3,2,1]
=> [1,1,1,1,1,0,0,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,4,3,5,6] => [1,0,1,0,1,1,0,0,1,0,1,0]
=> [5,4,2,2,1]
=> [1,0,1,1,1,0,1,0,1,1,0,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,4,3,6,5] => [1,0,1,0,1,1,0,0,1,1,0,0]
=> [4,4,2,2,1]
=> [1,1,1,0,1,0,1,1,0,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,4,5,3,6] => [1,0,1,0,1,1,0,1,0,0,1,0]
=> [5,3,2,2,1]
=> [1,0,1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,4,5,6,3] => [1,0,1,0,1,1,0,1,0,1,0,0]
=> [4,3,2,2,1]
=> [1,0,1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
[1,2,4,6,3,5] => [1,0,1,0,1,1,0,1,1,0,0,0]
=> [3,3,2,2,1]
=> [1,1,1,0,1,1,0,1,0,0,0,1,0,0]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5}
Description
For a Nakayama algebra corresponding to a Dyck path, we define the matrix C with entries the Hom-spaces between $e_i J$ and $e_j J$ (the radical of the indecomposable projective modules). The statistic gives half of the rank of the matrix C^t-C.
Matching statistic: St001384
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00027: Dyck paths to partitionInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001384: Integer partitions ⟶ ℤResult quality: 65% values known / values provided: 65%distinct values known / distinct values provided: 83%
Values
[1,2] => [1,0,1,0]
=> [1]
=> []
=> ? ∊ {0,1}
[2,1] => [1,1,0,0]
=> []
=> ?
=> ? ∊ {0,1}
[1,2,3] => [1,0,1,0,1,0]
=> [2,1]
=> [1]
=> 0
[1,3,2] => [1,0,1,1,0,0]
=> [1,1]
=> [1]
=> 0
[2,1,3] => [1,1,0,0,1,0]
=> [2]
=> []
=> ? ∊ {1,1,1,2}
[2,3,1] => [1,1,0,1,0,0]
=> [1]
=> []
=> ? ∊ {1,1,1,2}
[3,1,2] => [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {1,1,1,2}
[3,2,1] => [1,1,1,0,0,0]
=> []
=> ?
=> ? ∊ {1,1,1,2}
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [3,2,1]
=> [2,1]
=> 0
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [2,2,1]
=> [2,1]
=> 0
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [3,1,1]
=> [1,1]
=> 1
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [2,1,1]
=> [1,1]
=> 1
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 1
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [1,1,1]
=> [1,1]
=> 1
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [3,2]
=> [2]
=> 1
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [2,2]
=> [2]
=> 1
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [3,1]
=> [1]
=> 0
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [2,1]
=> [1]
=> 0
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> 0
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [1,1]
=> [1]
=> 0
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,3}
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,3}
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [3]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,3}
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [2]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,3}
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,3}
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [1]
=> []
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,3}
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,3}
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,3}
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,3}
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,3}
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,3}
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> []
=> ?
=> ? ∊ {1,1,1,1,2,2,2,2,2,2,2,3}
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [4,3,2,1]
=> [3,2,1]
=> 0
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [3,3,2,1]
=> [3,2,1]
=> 0
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [4,2,2,1]
=> [2,2,1]
=> 2
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [3,2,2,1]
=> [2,2,1]
=> 2
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [2,2,1]
=> 2
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [2,2,2,1]
=> [2,2,1]
=> 2
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [4,3,1,1]
=> [3,1,1]
=> 2
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [3,3,1,1]
=> [3,1,1]
=> 2
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [4,2,1,1]
=> [2,1,1]
=> 1
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [3,2,1,1]
=> [2,1,1]
=> 1
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [2,1,1]
=> 1
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [2,2,1,1]
=> [2,1,1]
=> 1
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,1,1]
=> 2
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,1,1]
=> 2
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [4,1,1,1]
=> [1,1,1]
=> 2
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [3,1,1,1]
=> [1,1,1]
=> 2
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,1,1]
=> 2
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [2,1,1,1]
=> [1,1,1]
=> 2
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [1,1,1,1]
=> [1,1,1]
=> 2
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [4,3,2]
=> [3,2]
=> 2
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [3,3,2]
=> [3,2]
=> 2
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [4,2,2]
=> [2,2]
=> 1
[2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [3,2,2]
=> [2,2]
=> 1
[2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [2,2]
=> 1
[2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,2,2]
=> [2,2]
=> 1
[2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [4,3,1]
=> [3,1]
=> 1
[2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [3,3,1]
=> [3,1]
=> 1
[2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [4,2,1]
=> [2,1]
=> 0
[2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [3,2,1]
=> [2,1]
=> 0
[2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [2,1]
=> 0
[2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> [2,2,1]
=> [2,1]
=> 0
[4,1,2,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[4,1,2,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[4,1,3,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[4,1,3,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[4,1,5,2,3] => [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[4,1,5,3,2] => [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[4,2,1,3,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[4,2,1,5,3] => [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[4,2,3,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[4,2,3,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[4,2,5,1,3] => [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[4,2,5,3,1] => [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[4,3,1,2,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[4,3,1,5,2] => [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[4,3,2,1,5] => [1,1,1,1,0,0,0,0,1,0]
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[4,3,2,5,1] => [1,1,1,1,0,0,0,1,0,0]
=> [3]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[4,3,5,1,2] => [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[4,3,5,2,1] => [1,1,1,1,0,0,1,0,0,0]
=> [2]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[4,5,1,2,3] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[4,5,1,3,2] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[4,5,2,1,3] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[4,5,2,3,1] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[4,5,3,1,2] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[4,5,3,2,1] => [1,1,1,1,0,1,0,0,0,0]
=> [1]
=> []
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[5,1,2,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[5,1,2,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[5,1,3,2,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[5,1,3,4,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[5,1,4,2,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[5,1,4,3,2] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[5,2,1,3,4] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
[5,2,1,4,3] => [1,1,1,1,1,0,0,0,0,0]
=> []
=> ?
=> ? ∊ {0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,4}
Description
The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains.
The following 87 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St001632The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset. St000681The Grundy value of Chomp on Ferrers diagrams. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000668The least common multiple of the parts of the partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St001032The number of horizontal steps in the bicoloured Motzkin path associated with the Dyck path. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000460The hook length of the last cell along the main diagonal of an integer partition. St001247The number of parts of a partition that are not congruent 2 modulo 3. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000815The number of semistandard Young tableaux of partition weight of given shape. St000933The number of multipartitions of sizes given by an integer partition. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000993The multiplicity of the largest part of an integer partition. St000260The radius of a connected graph. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St001568The smallest positive integer that does not appear twice in the partition. St000454The largest eigenvalue of a graph if it is integral. St001060The distinguishing index of a graph. St001498The normalised height of a Nakayama algebra with magnitude 1. St000137The Grundy value of an integer partition. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001122The multiplicity of the sign representation in the Kronecker square corresponding to a partition. St001249Sum of the odd parts of a partition. St001250The number of parts of a partition that are not congruent 0 modulo 3. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St001389The number of partitions of the same length below the given integer partition. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001525The number of symmetric hooks on the diagonal of a partition. St001527The cyclic permutation representation number of an integer partition. St001593This is the number of standard Young tableaux of the given shifted shape. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001933The largest multiplicity of a part in an integer partition. St001939The number of parts that are equal to their multiplicity in the integer partition. St001940The number of distinct parts that are equal to their multiplicity in the integer partition. St000259The diameter of a connected graph. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St000937The number of positive values of the symmetric group character corresponding to the partition. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001877Number of indecomposable injective modules with projective dimension 2. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000929The constant term of the character polynomial of an integer partition. St000934The 2-degree of an integer partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St000941The number of characters of the symmetric group whose value on the partition is even. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001128The exponens consonantiae of a partition. St000284The Plancherel distribution on integer partitions. St000478Another weight of a partition according to Alladi. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000770The major index of an integer partition when read from bottom to top. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000264The girth of a graph, which is not a tree. St001570The minimal number of edges to add to make a graph Hamiltonian. St000455The second largest eigenvalue of a graph if it is integral. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001429The number of negative entries in a signed permutation. St000366The number of double descents of a permutation. St000352The Elizalde-Pak rank of a permutation. St000054The first entry of the permutation. St001875The number of simple modules with projective dimension at most 1. St000892The maximal number of nonzero entries on a diagonal of an alternating sign matrix. St000331The number of upper interactions of a Dyck path. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St001553The number of indecomposable summands of the square of the Jacobson radical as a bimodule in the Nakayama algebra corresponding to the Dyck path. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St001621The number of atoms of a lattice.