Your data matches 78 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
Mp00080: Set partitions to permutationPermutations
St001727: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => 0
{{1,2}}
=> [2,1] => 0
{{1},{2}}
=> [1,2] => 0
{{1,2,3}}
=> [2,3,1] => 0
{{1,2},{3}}
=> [2,1,3] => 0
{{1,3},{2}}
=> [3,2,1] => 1
{{1},{2,3}}
=> [1,3,2] => 0
{{1},{2},{3}}
=> [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => 1
{{1,2},{3,4}}
=> [2,1,4,3] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => 1
{{1,3},{2,4}}
=> [3,4,1,2] => 1
{{1,3},{2},{4}}
=> [3,2,1,4] => 1
{{1,4},{2,3}}
=> [4,3,2,1] => 2
{{1},{2,3,4}}
=> [1,3,4,2] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => 2
{{1},{2,4},{3}}
=> [1,4,3,2] => 1
{{1},{2},{3,4}}
=> [1,2,4,3] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => 2
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => 2
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => 2
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => 2
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => 2
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => 2
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => 2
Description
The number of invisible inversions of a permutation. A visible inversion of a permutation $\pi$ is a pair $i < j$ such that $\pi(j) \leq \min(i, \pi(i))$. Thus, an invisible inversion satisfies $\pi(i) > \pi(j) > i$.
Mp00080: Set partitions to permutationPermutations
Mp00087: Permutations inverse first fundamental transformationPermutations
St000039: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => 0
{{1,2}}
=> [2,1] => [2,1] => 0
{{1},{2}}
=> [1,2] => [1,2] => 0
{{1,2,3}}
=> [2,3,1] => [3,1,2] => 0
{{1,2},{3}}
=> [2,1,3] => [2,1,3] => 0
{{1,3},{2}}
=> [3,2,1] => [2,3,1] => 1
{{1},{2,3}}
=> [1,3,2] => [1,3,2] => 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [4,1,2,3] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => [3,1,2,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => [3,4,1,2] => 2
{{1,2},{3,4}}
=> [2,1,4,3] => [2,1,4,3] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => [2,4,1,3] => 1
{{1,3},{2,4}}
=> [3,4,1,2] => [3,1,4,2] => 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [2,3,1,4] => 1
{{1,4},{2,3}}
=> [4,3,2,1] => [3,2,4,1] => 1
{{1},{2,3,4}}
=> [1,3,4,2] => [1,4,2,3] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,3,2,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [2,3,4,1] => 2
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,3,4,2] => 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,4,3] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [5,1,2,3,4] => 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [4,1,2,3,5] => 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [4,5,1,2,3] => 3
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [3,1,2,5,4] => 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [3,1,2,4,5] => 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [3,5,1,2,4] => 2
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [4,1,2,5,3] => 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [3,4,1,2,5] => 2
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [4,3,5,1,2] => 3
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [2,1,5,3,4] => 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [2,1,4,3,5] => 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [3,4,5,1,2] => 4
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [2,1,4,5,3] => 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [2,1,3,5,4] => 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [2,1,3,4,5] => 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [2,5,1,3,4] => 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [4,1,3,5,2] => 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [2,4,1,3,5] => 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [4,2,5,1,3] => 2
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [3,1,5,2,4] => 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [3,1,4,2,5] => 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [2,4,5,1,3] => 3
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [3,1,4,5,2] => 2
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [2,3,1,5,4] => 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [2,3,1,4,5] => 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [3,2,5,1,4] => 1
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [4,1,5,2,3] => 2
Description
The number of crossings of a permutation. A crossing of a permutation $\pi$ is given by a pair $(i,j)$ such that either $i < j \leq \pi(i) \leq \pi(j)$ or $\pi(i) < \pi(j) < i < j$. Pictorially, the diagram of a permutation is obtained by writing the numbers from $1$ to $n$ in this order on a line, and connecting $i$ and $\pi(i)$ with an arc above the line if $i\leq\pi(i)$ and with an arc below the line if $i > \pi(i)$. Then the number of crossings is the number of pairs of arcs above the line that cross or touch, plus the number of arcs below the line that cross.
Mp00080: Set partitions to permutationPermutations
Mp00067: Permutations Foata bijectionPermutations
St000223: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => 0
{{1,2}}
=> [2,1] => [2,1] => 0
{{1},{2}}
=> [1,2] => [1,2] => 0
{{1,2,3}}
=> [2,3,1] => [2,3,1] => 0
{{1,2},{3}}
=> [2,1,3] => [2,1,3] => 0
{{1,3},{2}}
=> [3,2,1] => [3,2,1] => 1
{{1},{2,3}}
=> [1,3,2] => [3,1,2] => 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [2,3,4,1] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => [2,3,1,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => [4,2,3,1] => 2
{{1,2},{3,4}}
=> [2,1,4,3] => [4,2,1,3] => 1
{{1,2},{3},{4}}
=> [2,1,3,4] => [2,1,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => [3,2,4,1] => 1
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,4,2] => 0
{{1,3},{2},{4}}
=> [3,2,1,4] => [3,2,1,4] => 1
{{1,4},{2,3}}
=> [4,3,2,1] => [4,3,2,1] => 2
{{1},{2,3,4}}
=> [1,3,4,2] => [3,1,4,2] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [3,1,2,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [2,4,3,1] => 1
{{1},{2,4},{3}}
=> [1,4,3,2] => [4,3,1,2] => 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [4,1,2,3] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [2,3,4,5,1] => 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [2,3,4,1,5] => 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [5,2,3,4,1] => 3
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [5,2,3,1,4] => 2
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [2,3,1,4,5] => 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [4,2,3,5,1] => 2
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [2,1,4,5,3] => 0
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [4,2,3,1,5] => 2
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [5,4,2,3,1] => 3
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [4,2,1,5,3] => 1
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [4,2,1,3,5] => 1
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [2,5,3,4,1] => 2
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [5,4,2,1,3] => 2
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [5,2,1,3,4] => 1
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [2,1,3,4,5] => 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [3,2,4,5,1] => 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,5,3,4,2] => 2
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [3,2,4,1,5] => 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [3,4,5,2,1] => 1
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [3,4,5,1,2] => 0
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,4,2,5] => 0
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [5,3,2,4,1] => 3
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [3,5,1,4,2] => 1
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [5,3,2,1,4] => 2
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [3,2,1,4,5] => 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [4,3,2,5,1] => 2
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,3,5,2] => 1
Description
The number of nestings in the permutation.
Mp00080: Set partitions to permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
St000356: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => 0
{{1,2}}
=> [2,1] => [1,2] => 0
{{1},{2}}
=> [1,2] => [1,2] => 0
{{1,2,3}}
=> [2,3,1] => [1,2,3] => 0
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => 0
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => 1
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => 1
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => 2
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => 2
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => 2
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => 2
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => 2
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => 2
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => 2
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => 2
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => 2
Description
The number of occurrences of the pattern 13-2. See [[Permutations/#Pattern-avoiding_permutations]] for the definition of the pattern $13\!\!-\!\!2$.
Mp00080: Set partitions to permutationPermutations
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00069: Permutations complementPermutations
St000358: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => [1] => 0
{{1,2}}
=> [2,1] => [1,2] => [2,1] => 0
{{1},{2}}
=> [1,2] => [1,2] => [2,1] => 0
{{1,2,3}}
=> [2,3,1] => [1,2,3] => [3,2,1] => 0
{{1,2},{3}}
=> [2,1,3] => [1,2,3] => [3,2,1] => 0
{{1,3},{2}}
=> [3,2,1] => [1,3,2] => [3,1,2] => 1
{{1},{2,3}}
=> [1,3,2] => [1,2,3] => [3,2,1] => 0
{{1},{2},{3}}
=> [1,2,3] => [1,2,3] => [3,2,1] => 0
{{1,2,3,4}}
=> [2,3,4,1] => [1,2,3,4] => [4,3,2,1] => 0
{{1,2,3},{4}}
=> [2,3,1,4] => [1,2,3,4] => [4,3,2,1] => 0
{{1,2,4},{3}}
=> [2,4,3,1] => [1,2,4,3] => [4,3,1,2] => 1
{{1,2},{3,4}}
=> [2,1,4,3] => [1,2,3,4] => [4,3,2,1] => 0
{{1,2},{3},{4}}
=> [2,1,3,4] => [1,2,3,4] => [4,3,2,1] => 0
{{1,3,4},{2}}
=> [3,2,4,1] => [1,3,4,2] => [4,2,1,3] => 1
{{1,3},{2,4}}
=> [3,4,1,2] => [1,3,2,4] => [4,2,3,1] => 1
{{1,3},{2},{4}}
=> [3,2,1,4] => [1,3,2,4] => [4,2,3,1] => 1
{{1,4},{2,3}}
=> [4,3,2,1] => [1,4,2,3] => [4,1,3,2] => 2
{{1},{2,3,4}}
=> [1,3,4,2] => [1,2,3,4] => [4,3,2,1] => 0
{{1},{2,3},{4}}
=> [1,3,2,4] => [1,2,3,4] => [4,3,2,1] => 0
{{1,4},{2},{3}}
=> [4,2,3,1] => [1,4,2,3] => [4,1,3,2] => 2
{{1},{2,4},{3}}
=> [1,4,3,2] => [1,2,4,3] => [4,3,1,2] => 1
{{1},{2},{3,4}}
=> [1,2,4,3] => [1,2,3,4] => [4,3,2,1] => 0
{{1},{2},{3},{4}}
=> [1,2,3,4] => [1,2,3,4] => [4,3,2,1] => 0
{{1,2,3,4,5}}
=> [2,3,4,5,1] => [1,2,3,4,5] => [5,4,3,2,1] => 0
{{1,2,3,4},{5}}
=> [2,3,4,1,5] => [1,2,3,4,5] => [5,4,3,2,1] => 0
{{1,2,3,5},{4}}
=> [2,3,5,4,1] => [1,2,3,5,4] => [5,4,3,1,2] => 1
{{1,2,3},{4,5}}
=> [2,3,1,5,4] => [1,2,3,4,5] => [5,4,3,2,1] => 0
{{1,2,3},{4},{5}}
=> [2,3,1,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => 0
{{1,2,4,5},{3}}
=> [2,4,3,5,1] => [1,2,4,5,3] => [5,4,2,1,3] => 1
{{1,2,4},{3,5}}
=> [2,4,5,1,3] => [1,2,4,3,5] => [5,4,2,3,1] => 1
{{1,2,4},{3},{5}}
=> [2,4,3,1,5] => [1,2,4,3,5] => [5,4,2,3,1] => 1
{{1,2,5},{3,4}}
=> [2,5,4,3,1] => [1,2,5,3,4] => [5,4,1,3,2] => 2
{{1,2},{3,4,5}}
=> [2,1,4,5,3] => [1,2,3,4,5] => [5,4,3,2,1] => 0
{{1,2},{3,4},{5}}
=> [2,1,4,3,5] => [1,2,3,4,5] => [5,4,3,2,1] => 0
{{1,2,5},{3},{4}}
=> [2,5,3,4,1] => [1,2,5,3,4] => [5,4,1,3,2] => 2
{{1,2},{3,5},{4}}
=> [2,1,5,4,3] => [1,2,3,5,4] => [5,4,3,1,2] => 1
{{1,2},{3},{4,5}}
=> [2,1,3,5,4] => [1,2,3,4,5] => [5,4,3,2,1] => 0
{{1,2},{3},{4},{5}}
=> [2,1,3,4,5] => [1,2,3,4,5] => [5,4,3,2,1] => 0
{{1,3,4,5},{2}}
=> [3,2,4,5,1] => [1,3,4,5,2] => [5,3,2,1,4] => 1
{{1,3,4},{2,5}}
=> [3,5,4,1,2] => [1,3,4,2,5] => [5,3,2,4,1] => 1
{{1,3,4},{2},{5}}
=> [3,2,4,1,5] => [1,3,4,2,5] => [5,3,2,4,1] => 1
{{1,3,5},{2,4}}
=> [3,4,5,2,1] => [1,3,5,2,4] => [5,3,1,4,2] => 2
{{1,3},{2,4,5}}
=> [3,4,1,5,2] => [1,3,2,4,5] => [5,3,4,2,1] => 1
{{1,3},{2,4},{5}}
=> [3,4,1,2,5] => [1,3,2,4,5] => [5,3,4,2,1] => 1
{{1,3,5},{2},{4}}
=> [3,2,5,4,1] => [1,3,5,2,4] => [5,3,1,4,2] => 2
{{1,3},{2,5},{4}}
=> [3,5,1,4,2] => [1,3,2,5,4] => [5,3,4,1,2] => 2
{{1,3},{2},{4,5}}
=> [3,2,1,5,4] => [1,3,2,4,5] => [5,3,4,2,1] => 1
{{1,3},{2},{4},{5}}
=> [3,2,1,4,5] => [1,3,2,4,5] => [5,3,4,2,1] => 1
{{1,4,5},{2,3}}
=> [4,3,2,5,1] => [1,4,5,2,3] => [5,2,1,4,3] => 2
{{1,4},{2,3,5}}
=> [4,3,5,1,2] => [1,4,2,3,5] => [5,2,4,3,1] => 2
Description
The number of occurrences of the pattern 31-2. See [[Permutations/#Pattern-avoiding_permutations]] for the definition of the pattern $31\!\!-\!\!2$.
Matching statistic: St000516
Mp00128: Set partitions to compositionInteger compositions
Mp00231: Integer compositions bounce pathDyck paths
Mp00201: Dyck paths RingelPermutations
St000516: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1,0]
=> [2,1] => 0
{{1,2}}
=> [2] => [1,1,0,0]
=> [2,3,1] => 0
{{1},{2}}
=> [1,1] => [1,0,1,0]
=> [3,1,2] => 0
{{1,2,3}}
=> [3] => [1,1,1,0,0,0]
=> [2,3,4,1] => 0
{{1,2},{3}}
=> [2,1] => [1,1,0,0,1,0]
=> [2,4,1,3] => 0
{{1,3},{2}}
=> [2,1] => [1,1,0,0,1,0]
=> [2,4,1,3] => 0
{{1},{2,3}}
=> [1,2] => [1,0,1,1,0,0]
=> [3,1,4,2] => 1
{{1},{2},{3}}
=> [1,1,1] => [1,0,1,0,1,0]
=> [4,1,2,3] => 0
{{1,2,3,4}}
=> [4] => [1,1,1,1,0,0,0,0]
=> [2,3,4,5,1] => 0
{{1,2,3},{4}}
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 0
{{1,2,4},{3}}
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 0
{{1,2},{3,4}}
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 1
{{1,2},{3},{4}}
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 0
{{1,3,4},{2}}
=> [3,1] => [1,1,1,0,0,0,1,0]
=> [2,3,5,1,4] => 0
{{1,3},{2,4}}
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 1
{{1,3},{2},{4}}
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 0
{{1,4},{2,3}}
=> [2,2] => [1,1,0,0,1,1,0,0]
=> [2,4,1,5,3] => 1
{{1},{2,3,4}}
=> [1,3] => [1,0,1,1,1,0,0,0]
=> [3,1,4,5,2] => 2
{{1},{2,3},{4}}
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
{{1,4},{2},{3}}
=> [2,1,1] => [1,1,0,0,1,0,1,0]
=> [2,5,1,3,4] => 0
{{1},{2,4},{3}}
=> [1,2,1] => [1,0,1,1,0,0,1,0]
=> [3,1,5,2,4] => 1
{{1},{2},{3,4}}
=> [1,1,2] => [1,0,1,0,1,1,0,0]
=> [4,1,2,5,3] => 2
{{1},{2},{3},{4}}
=> [1,1,1,1] => [1,0,1,0,1,0,1,0]
=> [5,1,2,3,4] => 0
{{1,2,3,4,5}}
=> [5] => [1,1,1,1,1,0,0,0,0,0]
=> [2,3,4,5,6,1] => 0
{{1,2,3,4},{5}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 0
{{1,2,3,5},{4}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 0
{{1,2,3},{4,5}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 1
{{1,2,3},{4},{5}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => 0
{{1,2,4,5},{3}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 0
{{1,2,4},{3,5}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 1
{{1,2,4},{3},{5}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => 0
{{1,2,5},{3,4}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 1
{{1,2},{3,4,5}}
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 2
{{1,2},{3,4},{5}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 1
{{1,2,5},{3},{4}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => 0
{{1,2},{3,5},{4}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 1
{{1,2},{3},{4,5}}
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => 2
{{1,2},{3},{4},{5}}
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => 0
{{1,3,4,5},{2}}
=> [4,1] => [1,1,1,1,0,0,0,0,1,0]
=> [2,3,4,6,1,5] => 0
{{1,3,4},{2,5}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 1
{{1,3,4},{2},{5}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => 0
{{1,3,5},{2,4}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 1
{{1,3},{2,4,5}}
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 2
{{1,3},{2,4},{5}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 1
{{1,3,5},{2},{4}}
=> [3,1,1] => [1,1,1,0,0,0,1,0,1,0]
=> [2,3,6,1,4,5] => 0
{{1,3},{2,5},{4}}
=> [2,2,1] => [1,1,0,0,1,1,0,0,1,0]
=> [2,4,1,6,3,5] => 1
{{1,3},{2},{4,5}}
=> [2,1,2] => [1,1,0,0,1,0,1,1,0,0]
=> [2,5,1,3,6,4] => 2
{{1,3},{2},{4},{5}}
=> [2,1,1,1] => [1,1,0,0,1,0,1,0,1,0]
=> [2,6,1,3,4,5] => 0
{{1,4,5},{2,3}}
=> [3,2] => [1,1,1,0,0,0,1,1,0,0]
=> [2,3,5,1,6,4] => 1
{{1,4},{2,3,5}}
=> [2,3] => [1,1,0,0,1,1,1,0,0,0]
=> [2,4,1,5,6,3] => 2
Description
The number of stretching pairs of a permutation. This is the number of pairs $(i,j)$ with $\pi(i) < i < j < \pi(j)$.
Mp00128: Set partitions to compositionInteger compositions
Mp00038: Integer compositions reverseInteger compositions
Mp00180: Integer compositions to ribbonSkew partitions
St001438: Skew partitions ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
{{1}}
=> [1] => [1] => [[1],[]]
=> 0
{{1,2}}
=> [2] => [2] => [[2],[]]
=> 0
{{1},{2}}
=> [1,1] => [1,1] => [[1,1],[]]
=> 0
{{1,2,3}}
=> [3] => [3] => [[3],[]]
=> 0
{{1,2},{3}}
=> [2,1] => [1,2] => [[2,1],[]]
=> 0
{{1,3},{2}}
=> [2,1] => [1,2] => [[2,1],[]]
=> 0
{{1},{2,3}}
=> [1,2] => [2,1] => [[2,2],[1]]
=> 1
{{1},{2},{3}}
=> [1,1,1] => [1,1,1] => [[1,1,1],[]]
=> 0
{{1,2,3,4}}
=> [4] => [4] => [[4],[]]
=> 0
{{1,2,3},{4}}
=> [3,1] => [1,3] => [[3,1],[]]
=> 0
{{1,2,4},{3}}
=> [3,1] => [1,3] => [[3,1],[]]
=> 0
{{1,2},{3,4}}
=> [2,2] => [2,2] => [[3,2],[1]]
=> 1
{{1,2},{3},{4}}
=> [2,1,1] => [1,1,2] => [[2,1,1],[]]
=> 0
{{1,3,4},{2}}
=> [3,1] => [1,3] => [[3,1],[]]
=> 0
{{1,3},{2,4}}
=> [2,2] => [2,2] => [[3,2],[1]]
=> 1
{{1,3},{2},{4}}
=> [2,1,1] => [1,1,2] => [[2,1,1],[]]
=> 0
{{1,4},{2,3}}
=> [2,2] => [2,2] => [[3,2],[1]]
=> 1
{{1},{2,3,4}}
=> [1,3] => [3,1] => [[3,3],[2]]
=> 2
{{1},{2,3},{4}}
=> [1,2,1] => [1,2,1] => [[2,2,1],[1]]
=> 1
{{1,4},{2},{3}}
=> [2,1,1] => [1,1,2] => [[2,1,1],[]]
=> 0
{{1},{2,4},{3}}
=> [1,2,1] => [1,2,1] => [[2,2,1],[1]]
=> 1
{{1},{2},{3,4}}
=> [1,1,2] => [2,1,1] => [[2,2,2],[1,1]]
=> 2
{{1},{2},{3},{4}}
=> [1,1,1,1] => [1,1,1,1] => [[1,1,1,1],[]]
=> 0
{{1,2,3,4,5}}
=> [5] => [5] => [[5],[]]
=> 0
{{1,2,3,4},{5}}
=> [4,1] => [1,4] => [[4,1],[]]
=> 0
{{1,2,3,5},{4}}
=> [4,1] => [1,4] => [[4,1],[]]
=> 0
{{1,2,3},{4,5}}
=> [3,2] => [2,3] => [[4,2],[1]]
=> 1
{{1,2,3},{4},{5}}
=> [3,1,1] => [1,1,3] => [[3,1,1],[]]
=> 0
{{1,2,4,5},{3}}
=> [4,1] => [1,4] => [[4,1],[]]
=> 0
{{1,2,4},{3,5}}
=> [3,2] => [2,3] => [[4,2],[1]]
=> 1
{{1,2,4},{3},{5}}
=> [3,1,1] => [1,1,3] => [[3,1,1],[]]
=> 0
{{1,2,5},{3,4}}
=> [3,2] => [2,3] => [[4,2],[1]]
=> 1
{{1,2},{3,4,5}}
=> [2,3] => [3,2] => [[4,3],[2]]
=> 2
{{1,2},{3,4},{5}}
=> [2,2,1] => [1,2,2] => [[3,2,1],[1]]
=> 1
{{1,2,5},{3},{4}}
=> [3,1,1] => [1,1,3] => [[3,1,1],[]]
=> 0
{{1,2},{3,5},{4}}
=> [2,2,1] => [1,2,2] => [[3,2,1],[1]]
=> 1
{{1,2},{3},{4,5}}
=> [2,1,2] => [2,1,2] => [[3,2,2],[1,1]]
=> 2
{{1,2},{3},{4},{5}}
=> [2,1,1,1] => [1,1,1,2] => [[2,1,1,1],[]]
=> 0
{{1,3,4,5},{2}}
=> [4,1] => [1,4] => [[4,1],[]]
=> 0
{{1,3,4},{2,5}}
=> [3,2] => [2,3] => [[4,2],[1]]
=> 1
{{1,3,4},{2},{5}}
=> [3,1,1] => [1,1,3] => [[3,1,1],[]]
=> 0
{{1,3,5},{2,4}}
=> [3,2] => [2,3] => [[4,2],[1]]
=> 1
{{1,3},{2,4,5}}
=> [2,3] => [3,2] => [[4,3],[2]]
=> 2
{{1,3},{2,4},{5}}
=> [2,2,1] => [1,2,2] => [[3,2,1],[1]]
=> 1
{{1,3,5},{2},{4}}
=> [3,1,1] => [1,1,3] => [[3,1,1],[]]
=> 0
{{1,3},{2,5},{4}}
=> [2,2,1] => [1,2,2] => [[3,2,1],[1]]
=> 1
{{1,3},{2},{4,5}}
=> [2,1,2] => [2,1,2] => [[3,2,2],[1,1]]
=> 2
{{1,3},{2},{4},{5}}
=> [2,1,1,1] => [1,1,1,2] => [[2,1,1,1],[]]
=> 0
{{1,4,5},{2,3}}
=> [3,2] => [2,3] => [[4,2],[1]]
=> 1
{{1,4},{2,3,5}}
=> [2,3] => [3,2] => [[4,3],[2]]
=> 2
Description
The number of missing boxes of a skew partition.
Matching statistic: St000491
St000491: Set partitions ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
{{1}}
=> ? = 0
{{1,2}}
=> 0
{{1},{2}}
=> 0
{{1,2,3}}
=> 0
{{1,2},{3}}
=> 0
{{1,3},{2}}
=> 1
{{1},{2,3}}
=> 0
{{1},{2},{3}}
=> 0
{{1,2,3,4}}
=> 0
{{1,2,3},{4}}
=> 0
{{1,2,4},{3}}
=> 1
{{1,2},{3,4}}
=> 0
{{1,2},{3},{4}}
=> 0
{{1,3,4},{2}}
=> 2
{{1,3},{2,4}}
=> 1
{{1,3},{2},{4}}
=> 1
{{1,4},{2,3}}
=> 1
{{1},{2,3,4}}
=> 0
{{1},{2,3},{4}}
=> 0
{{1,4},{2},{3}}
=> 2
{{1},{2,4},{3}}
=> 1
{{1},{2},{3,4}}
=> 0
{{1},{2},{3},{4}}
=> 0
{{1,2,3,4,5}}
=> 0
{{1,2,3,4},{5}}
=> 0
{{1,2,3,5},{4}}
=> 1
{{1,2,3},{4,5}}
=> 0
{{1,2,3},{4},{5}}
=> 0
{{1,2,4,5},{3}}
=> 2
{{1,2,4},{3,5}}
=> 1
{{1,2,4},{3},{5}}
=> 1
{{1,2,5},{3,4}}
=> 1
{{1,2},{3,4,5}}
=> 0
{{1,2},{3,4},{5}}
=> 0
{{1,2,5},{3},{4}}
=> 2
{{1,2},{3,5},{4}}
=> 1
{{1,2},{3},{4,5}}
=> 0
{{1,2},{3},{4},{5}}
=> 0
{{1,3,4,5},{2}}
=> 3
{{1,3,4},{2,5}}
=> 2
{{1,3,4},{2},{5}}
=> 2
{{1,3,5},{2,4}}
=> 2
{{1,3},{2,4,5}}
=> 1
{{1,3},{2,4},{5}}
=> 1
{{1,3,5},{2},{4}}
=> 3
{{1,3},{2,5},{4}}
=> 2
{{1,3},{2},{4,5}}
=> 1
{{1,3},{2},{4},{5}}
=> 1
{{1,4,5},{2,3}}
=> 2
{{1,4},{2,3,5}}
=> 1
{{1,4},{2,3},{5}}
=> 1
Description
The number of inversions of a set partition. Let $S = B_1,\ldots,B_k$ be a set partition with ordered blocks $B_i$ and with $\operatorname{min} B_a < \operatorname{min} B_b$ for $a < b$. According to [1], see also [2,3], an inversion of $S$ is given by a pair $i > j$ such that $j = \operatorname{min} B_b$ and $i \in B_a$ for $a < b$. This statistic is called '''ros''' in [1, Definition 3] for "right, opener, smaller". This is also the number of occurrences of the pattern {{1, 3}, {2}} such that 1 and 2 are minimal elements of blocks.
Matching statistic: St000497
St000497: Set partitions ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
{{1}}
=> ? = 0
{{1,2}}
=> 0
{{1},{2}}
=> 0
{{1,2,3}}
=> 0
{{1,2},{3}}
=> 0
{{1,3},{2}}
=> 1
{{1},{2,3}}
=> 0
{{1},{2},{3}}
=> 0
{{1,2,3,4}}
=> 0
{{1,2,3},{4}}
=> 0
{{1,2,4},{3}}
=> 1
{{1,2},{3,4}}
=> 0
{{1,2},{3},{4}}
=> 0
{{1,3,4},{2}}
=> 1
{{1,3},{2,4}}
=> 1
{{1,3},{2},{4}}
=> 1
{{1,4},{2,3}}
=> 2
{{1},{2,3,4}}
=> 0
{{1},{2,3},{4}}
=> 0
{{1,4},{2},{3}}
=> 2
{{1},{2,4},{3}}
=> 1
{{1},{2},{3,4}}
=> 0
{{1},{2},{3},{4}}
=> 0
{{1,2,3,4,5}}
=> 0
{{1,2,3,4},{5}}
=> 0
{{1,2,3,5},{4}}
=> 1
{{1,2,3},{4,5}}
=> 0
{{1,2,3},{4},{5}}
=> 0
{{1,2,4,5},{3}}
=> 1
{{1,2,4},{3,5}}
=> 1
{{1,2,4},{3},{5}}
=> 1
{{1,2,5},{3,4}}
=> 2
{{1,2},{3,4,5}}
=> 0
{{1,2},{3,4},{5}}
=> 0
{{1,2,5},{3},{4}}
=> 2
{{1,2},{3,5},{4}}
=> 1
{{1,2},{3},{4,5}}
=> 0
{{1,2},{3},{4},{5}}
=> 0
{{1,3,4,5},{2}}
=> 1
{{1,3,4},{2,5}}
=> 1
{{1,3,4},{2},{5}}
=> 1
{{1,3,5},{2,4}}
=> 2
{{1,3},{2,4,5}}
=> 1
{{1,3},{2,4},{5}}
=> 1
{{1,3,5},{2},{4}}
=> 2
{{1,3},{2,5},{4}}
=> 2
{{1,3},{2},{4,5}}
=> 1
{{1,3},{2},{4},{5}}
=> 1
{{1,4,5},{2,3}}
=> 2
{{1,4},{2,3,5}}
=> 2
{{1,4},{2,3},{5}}
=> 2
Description
The lcb statistic of a set partition. Let $S = B_1,\ldots,B_k$ be a set partition with ordered blocks $B_i$ and with $\operatorname{min} B_a < \operatorname{min} B_b$ for $a < b$. According to [1, Definition 3], a '''lcb''' (left-closer-bigger) of $S$ is given by a pair $i < j$ such that $j = \operatorname{max} B_b$ and $i \in B_a$ for $a > b$.
Matching statistic: St000565
St000565: Set partitions ⟶ ℤResult quality: 99% values known / values provided: 99%distinct values known / distinct values provided: 100%
Values
{{1}}
=> ? = 0
{{1,2}}
=> 0
{{1},{2}}
=> 0
{{1,2,3}}
=> 0
{{1,2},{3}}
=> 0
{{1,3},{2}}
=> 1
{{1},{2,3}}
=> 0
{{1},{2},{3}}
=> 0
{{1,2,3,4}}
=> 0
{{1,2,3},{4}}
=> 0
{{1,2,4},{3}}
=> 1
{{1,2},{3,4}}
=> 0
{{1,2},{3},{4}}
=> 0
{{1,3,4},{2}}
=> 2
{{1,3},{2,4}}
=> 1
{{1,3},{2},{4}}
=> 1
{{1,4},{2,3}}
=> 1
{{1},{2,3,4}}
=> 0
{{1},{2,3},{4}}
=> 0
{{1,4},{2},{3}}
=> 1
{{1},{2,4},{3}}
=> 2
{{1},{2},{3,4}}
=> 0
{{1},{2},{3},{4}}
=> 0
{{1,2,3,4,5}}
=> 0
{{1,2,3,4},{5}}
=> 0
{{1,2,3,5},{4}}
=> 1
{{1,2,3},{4,5}}
=> 0
{{1,2,3},{4},{5}}
=> 0
{{1,2,4,5},{3}}
=> 2
{{1,2,4},{3,5}}
=> 1
{{1,2,4},{3},{5}}
=> 1
{{1,2,5},{3,4}}
=> 1
{{1,2},{3,4,5}}
=> 0
{{1,2},{3,4},{5}}
=> 0
{{1,2,5},{3},{4}}
=> 1
{{1,2},{3,5},{4}}
=> 2
{{1,2},{3},{4,5}}
=> 0
{{1,2},{3},{4},{5}}
=> 0
{{1,3,4,5},{2}}
=> 3
{{1,3,4},{2,5}}
=> 2
{{1,3,4},{2},{5}}
=> 2
{{1,3,5},{2,4}}
=> 2
{{1,3},{2,4,5}}
=> 1
{{1,3},{2,4},{5}}
=> 1
{{1,3,5},{2},{4}}
=> 2
{{1,3},{2,5},{4}}
=> 3
{{1,3},{2},{4,5}}
=> 1
{{1,3},{2},{4},{5}}
=> 1
{{1,4,5},{2,3}}
=> 2
{{1,4},{2,3,5}}
=> 1
{{1,4},{2,3},{5}}
=> 1
Description
The major index of a set partition. Let $\pi=B_1/B_2/\dots/B_k$ with $\min B_1<\min B_2<\dots<\min B_k$ a set partition. Let $d_i$ be the number of elements in $B_i$ larger than $\min B_{i+1}$. Then the major index of $\pi$ is $1d_1+2d_2+\dots+(k-1)d_{k-1}$.
The following 68 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000609The number of occurrences of the pattern {{1},{2,3}} such that 1,2 are minimal. St000293The number of inversions of a binary word. St000589The number of occurrences of the pattern {{1},{2,3}} such that 1 is maximal, (2,3) are consecutive in a block. St000612The number of occurrences of the pattern {{1},{2,3}} such that 1 is minimal, (2,3) are consecutive in a block. St000809The reduced reflection length of the permutation. St001964The interval resolution global dimension of a poset. St001176The size of a partition minus its first part. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St000454The largest eigenvalue of a graph if it is integral. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000929The constant term of the character polynomial of an integer partition. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St001862The number of crossings of a signed permutation. St001866The nesting alignments of a signed permutation. St001868The number of alignments of type NE of a signed permutation. St001435The number of missing boxes in the first row. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000681The Grundy value of Chomp on Ferrers diagrams. St000941The number of characters of the symmetric group whose value on the partition is even. St001123The multiplicity of the dual of the standard representation in the Kronecker square corresponding to a partition. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St001867The number of alignments of type EN of a signed permutation. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001905The number of preferred parking spots in a parking function less than the index of the car. St000260The radius of a connected graph. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001875The number of simple modules with projective dimension at most 1. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St000284The Plancherel distribution on integer partitions. St000478Another weight of a partition according to Alladi. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000567The sum of the products of all pairs of parts. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000668The least common multiple of the parts of the partition. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000707The product of the factorials of the parts. St000708The product of the parts of an integer partition. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000770The major index of an integer partition when read from bottom to top. St000815The number of semistandard Young tableaux of partition weight of given shape. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000933The number of multipartitions of sizes given by an integer partition. St000934The 2-degree of an integer partition. St000936The number of even values of the symmetric group character corresponding to the partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St000940The number of characters of the symmetric group whose value on the partition is zero. St000993The multiplicity of the largest part of an integer partition. St001099The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled binary trees. St001100The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for leaf labelled trees. St001101The coefficient times the product of the factorials of the parts of the monomial symmetric function indexed by the partition in the formal group law for increasing trees. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St001128The exponens consonantiae of a partition. St001568The smallest positive integer that does not appear twice in the partition. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St001722The number of minimal chains with small intervals between a binary word and the top element. St001857The number of edges in the reduced word graph of a signed permutation.