Processing math: 4%

Your data matches 61 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000210: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1] => 0
[1,2] => 0
[2,1] => 1
[1,2,3] => 0
[1,3,2] => 0
[2,1,3] => 0
[2,3,1] => 2
[3,1,2] => 2
[3,2,1] => 0
[1,2,3,4] => 0
[1,2,4,3] => 0
[1,3,2,4] => 0
[1,3,4,2] => 0
[1,4,2,3] => 0
[1,4,3,2] => 0
[2,1,3,4] => 0
[2,1,4,3] => 1
[2,3,1,4] => 0
[2,3,4,1] => 3
[2,4,1,3] => 3
[2,4,3,1] => 0
[3,1,2,4] => 0
[3,1,4,2] => 3
[3,2,1,4] => 0
[3,2,4,1] => 0
[3,4,1,2] => 2
[3,4,2,1] => 3
[4,1,2,3] => 3
[4,1,3,2] => 0
[4,2,1,3] => 0
[4,2,3,1] => 0
[4,3,1,2] => 3
[4,3,2,1] => 1
[1,2,3,4,5] => 0
[1,2,3,5,4] => 0
[1,2,4,3,5] => 0
[1,2,4,5,3] => 0
[1,2,5,3,4] => 0
[1,2,5,4,3] => 0
[1,3,2,4,5] => 0
[1,3,2,5,4] => 0
[1,3,4,2,5] => 0
[1,3,4,5,2] => 0
[1,3,5,2,4] => 0
[1,3,5,4,2] => 0
[1,4,2,3,5] => 0
[1,4,2,5,3] => 0
[1,4,3,2,5] => 0
[1,4,3,5,2] => 0
[1,4,5,2,3] => 0
Description
Minimum over maximum difference of elements in cycles. Given a cycle C in a permutation, we can compute the maximum distance between elements in the cycle, that is max. The statistic is then the minimum of this value over all cycles in the permutation. For example, all permutations with a fixed-point has statistic value 0, and all permutations of [n] with only one cycle, has statistic value n-1.
Mp00065: Permutations permutation posetPosets
Mp00206: Posets antichains of maximal sizeLattices
Mp00193: Lattices to posetPosets
St001095: Posets ⟶ ℤResult quality: 33% values known / values provided: 64%distinct values known / distinct values provided: 33%
Values
[1] => ([],1)
=> ([],1)
=> ([],1)
=> ? = 0
[1,2] => ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[2,1] => ([],2)
=> ([],1)
=> ([],1)
=> ? = 1
[1,2,3] => ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[1,3,2] => ([(0,1),(0,2)],3)
=> ([],1)
=> ([],1)
=> ? ∊ {0,2,2}
[2,1,3] => ([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ? ∊ {0,2,2}
[2,3,1] => ([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[3,1,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[3,2,1] => ([],3)
=> ([],1)
=> ([],1)
=> ? ∊ {0,2,2}
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[1,2,4,3] => ([(0,3),(3,1),(3,2)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,2,3,3,3,3,3,3}
[1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,2,3,3,3,3,3,3}
[1,3,4,2] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[1,4,2,3] => ([(0,2),(0,3),(3,1)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[1,4,3,2] => ([(0,1),(0,2),(0,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,2,3,3,3,3,3,3}
[2,1,3,4] => ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,2,3,3,3,3,3,3}
[2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[2,3,1,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[2,3,4,1] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[2,4,1,3] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[2,4,3,1] => ([(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,2,3,3,3,3,3,3}
[3,1,2,4] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[3,1,4,2] => ([(0,3),(1,2),(1,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[3,2,1,4] => ([(0,3),(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,2,3,3,3,3,3,3}
[3,2,4,1] => ([(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,2,3,3,3,3,3,3}
[3,4,1,2] => ([(0,3),(1,2)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[3,4,2,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[4,1,2,3] => ([(1,2),(2,3)],4)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[4,1,3,2] => ([(1,2),(1,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,2,3,3,3,3,3,3}
[4,2,1,3] => ([(1,3),(2,3)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,2,3,3,3,3,3,3}
[4,2,3,1] => ([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[4,3,1,2] => ([(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[4,3,2,1] => ([],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,1,1,2,3,3,3,3,3,3}
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 0
[1,2,3,5,4] => ([(0,3),(3,4),(4,1),(4,2)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,4,5,3] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[1,2,5,3,4] => ([(0,4),(3,2),(4,1),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[1,2,5,4,3] => ([(0,4),(4,1),(4,2),(4,3)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,2,5,4] => ([(0,1),(0,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[1,3,4,5,2] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[1,3,5,2,4] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[1,3,5,4,2] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,2,3,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[1,4,2,5,3] => ([(0,2),(0,3),(2,4),(3,1),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[1,4,3,2,5] => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,3,5,2] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,5,2,3] => ([(0,3),(0,4),(3,2),(4,1)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 0
[1,4,5,3,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[1,5,2,3,4] => ([(0,2),(0,4),(3,1),(4,3)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[1,5,2,4,3] => ([(0,3),(0,4),(4,1),(4,2)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,3,2,4] => ([(0,1),(0,2),(0,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,3,4,2] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[1,5,4,2,3] => ([(0,2),(0,3),(0,4),(4,1)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[1,5,4,3,2] => ([(0,1),(0,2),(0,3),(0,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,3,4,5] => ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,3,5,4] => ([(0,4),(1,4),(4,2),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[2,1,4,3,5] => ([(0,3),(0,4),(1,3),(1,4),(3,2),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[2,1,4,5,3] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[2,1,5,3,4] => ([(0,3),(0,4),(1,3),(1,4),(4,2)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[2,1,5,4,3] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,1,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[2,3,1,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[2,3,4,1,5] => ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[2,3,5,1,4] => ([(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[2,3,5,4,1] => ([(1,4),(4,2),(4,3)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,4,1,3,5] => ([(0,3),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[2,4,1,5,3] => ([(0,3),(0,4),(1,2),(1,3),(2,4)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[2,4,3,1,5] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,4,3,5,1] => ([(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,4,5,1,3] => ([(0,4),(1,2),(1,4),(2,3)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> ([(0,3),(1,4),(2,4),(3,1),(3,2)],5)
=> 0
[2,4,5,3,1] => ([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[2,5,1,3,4] => ([(0,4),(1,2),(1,4),(4,3)],5)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 0
[2,5,1,4,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,5,3,1,4] => ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,5,3,4,1] => ([(1,3),(1,4),(4,2)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(1,4)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[2,5,4,3,1] => ([(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,1,2,4,5] => ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 0
[3,1,2,5,4] => ([(0,3),(0,4),(1,2),(2,3),(2,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 0
[3,1,5,4,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,2,1,4,5] => ([(0,4),(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,2,1,5,4] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,2,4,1,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,2,5,1,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,5,1,4,2] => ([(0,3),(0,4),(1,2),(1,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,5,4,2,1] => ([(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,1,3,2,5] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,1,3,5,2] => ([(0,4),(1,2),(1,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,2,1,3,5] => ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,2,1,5,3] => ([(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,2,5,1,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,3,2,1,5] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,3,2,5,1] => ([(1,4),(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,3,5,2,1] => ([(2,4),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[5,1,2,4,3] => ([(1,4),(4,2),(4,3)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
Description
The number of non-isomorphic posets with precisely one further covering relation.
Mp00160: Permutations graph of inversionsGraphs
Mp00274: Graphs block-cut treeGraphs
St000771: Graphs ⟶ ℤResult quality: 62% values known / values provided: 62%distinct values known / distinct values provided: 67%
Values
[1] => ([],1)
=> ([],1)
=> 1 = 0 + 1
[1,2] => ([],2)
=> ([],2)
=> ? = 1 + 1
[2,1] => ([(0,1)],2)
=> ([],1)
=> 1 = 0 + 1
[1,2,3] => ([],3)
=> ([],3)
=> ? ∊ {0,2,2} + 1
[1,3,2] => ([(1,2)],3)
=> ([],2)
=> ? ∊ {0,2,2} + 1
[2,1,3] => ([(1,2)],3)
=> ([],2)
=> ? ∊ {0,2,2} + 1
[2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> 1 = 0 + 1
[1,2,3,4] => ([],4)
=> ([],4)
=> ? ∊ {0,0,0,0,2,3,3,3,3,3,3} + 1
[1,2,4,3] => ([(2,3)],4)
=> ([],3)
=> ? ∊ {0,0,0,0,2,3,3,3,3,3,3} + 1
[1,3,2,4] => ([(2,3)],4)
=> ([],3)
=> ? ∊ {0,0,0,0,2,3,3,3,3,3,3} + 1
[1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,3,3,3,3,3,3} + 1
[1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,3,3,3,3,3,3} + 1
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? ∊ {0,0,0,0,2,3,3,3,3,3,3} + 1
[2,1,3,4] => ([(2,3)],4)
=> ([],3)
=> ? ∊ {0,0,0,0,2,3,3,3,3,3,3} + 1
[2,1,4,3] => ([(0,3),(1,2)],4)
=> ([],2)
=> ? ∊ {0,0,0,0,2,3,3,3,3,3,3} + 1
[2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,3,3,3,3,3,3} + 1
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,3,3,3,3,3,3} + 1
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? ∊ {0,0,0,0,2,3,3,3,3,3,3} + 1
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> 1 = 0 + 1
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1 = 0 + 1
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1 = 0 + 1
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1 = 0 + 1
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1 = 0 + 1
[1,2,3,4,5] => ([],5)
=> ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,2,3,5,4] => ([(3,4)],5)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,2,4,3,5] => ([(3,4)],5)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,3,2,4,5] => ([(3,4)],5)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,1,3,4,5] => ([(3,4)],5)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1 = 0 + 1
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 1 = 0 + 1
[2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1 = 0 + 1
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
[2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
[2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1 = 0 + 1
[3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 1 = 0 + 1
[3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
[3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
[3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 1 = 0 + 1
[3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1 = 0 + 1
[3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1 = 0 + 1
[3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1 = 0 + 1
[3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 1 = 0 + 1
[3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1 = 0 + 1
[4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1 = 0 + 1
[4,1,3,5,2] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
[4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums 0, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). Its eigenvalues are 0,4,4,6, so the statistic is 2. The path on four vertices has eigenvalues 0, 4.7\dots, 6, 9.2\dots and therefore statistic 1.
Mp00160: Permutations graph of inversionsGraphs
Mp00274: Graphs block-cut treeGraphs
St000772: Graphs ⟶ ℤResult quality: 62% values known / values provided: 62%distinct values known / distinct values provided: 67%
Values
[1] => ([],1)
=> ([],1)
=> 1 = 0 + 1
[1,2] => ([],2)
=> ([],2)
=> ? = 1 + 1
[2,1] => ([(0,1)],2)
=> ([],1)
=> 1 = 0 + 1
[1,2,3] => ([],3)
=> ([],3)
=> ? ∊ {0,2,2} + 1
[1,3,2] => ([(1,2)],3)
=> ([],2)
=> ? ∊ {0,2,2} + 1
[2,1,3] => ([(1,2)],3)
=> ([],2)
=> ? ∊ {0,2,2} + 1
[2,3,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[3,1,2] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[3,2,1] => ([(0,1),(0,2),(1,2)],3)
=> ([],1)
=> 1 = 0 + 1
[1,2,3,4] => ([],4)
=> ([],4)
=> ? ∊ {0,0,0,0,2,3,3,3,3,3,3} + 1
[1,2,4,3] => ([(2,3)],4)
=> ([],3)
=> ? ∊ {0,0,0,0,2,3,3,3,3,3,3} + 1
[1,3,2,4] => ([(2,3)],4)
=> ([],3)
=> ? ∊ {0,0,0,0,2,3,3,3,3,3,3} + 1
[1,3,4,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,3,3,3,3,3,3} + 1
[1,4,2,3] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,3,3,3,3,3,3} + 1
[1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? ∊ {0,0,0,0,2,3,3,3,3,3,3} + 1
[2,1,3,4] => ([(2,3)],4)
=> ([],3)
=> ? ∊ {0,0,0,0,2,3,3,3,3,3,3} + 1
[2,1,4,3] => ([(0,3),(1,2)],4)
=> ([],2)
=> ? ∊ {0,0,0,0,2,3,3,3,3,3,3} + 1
[2,3,1,4] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,3,3,3,3,3,3} + 1
[2,3,4,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,4,1,3] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
[2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[3,1,2,4] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,2,3,3,3,3,3,3} + 1
[3,1,4,2] => ([(0,3),(1,2),(2,3)],4)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
[3,2,1,4] => ([(1,2),(1,3),(2,3)],4)
=> ([],2)
=> ? ∊ {0,0,0,0,2,3,3,3,3,3,3} + 1
[3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4)
=> ([],1)
=> 1 = 0 + 1
[3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1 = 0 + 1
[4,1,2,3] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[4,1,3,2] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1 = 0 + 1
[4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1 = 0 + 1
[4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([],1)
=> 1 = 0 + 1
[1,2,3,4,5] => ([],5)
=> ([],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,2,3,5,4] => ([(3,4)],5)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,2,4,3,5] => ([(3,4)],5)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,2,4,5,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,2,5,3,4] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,3,2,4,5] => ([(3,4)],5)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,3,2,5,4] => ([(1,4),(2,3)],5)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,3,4,2,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,4,2,3,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,4,3,5,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,4,5,2,3] => ([(1,3),(1,4),(2,3),(2,4)],5)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,5,2,3,4] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,5,2,4,3] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,5,3,2,4] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,5,3,4,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,5,4,2,3] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,1,3,4,5] => ([(3,4)],5)
=> ([],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,1,3,5,4] => ([(1,4),(2,3)],5)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,1,4,3,5] => ([(1,4),(2,3)],5)
=> ([],3)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,1,4,5,3] => ([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,1,5,3,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,1,5,4,3] => ([(0,1),(2,3),(2,4),(3,4)],5)
=> ([],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,3,1,4,5] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,3,1,5,4] => ([(0,1),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,3,4,1,5] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3 = 2 + 1
[2,3,5,1,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1 = 0 + 1
[2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,4,1,3,5] => ([(1,4),(2,3),(3,4)],5)
=> ([(1,5),(2,4),(3,4),(3,5)],6)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,4,1,5,3] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 1 = 0 + 1
[2,4,3,1,5] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(2,3)],4)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4} + 1
[2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[2,5,1,3,4] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1 = 0 + 1
[2,5,1,4,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
[2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
[2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[3,1,4,5,2] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1 = 0 + 1
[3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5)
=> ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7)
=> 1 = 0 + 1
[3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
[3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,3),(2,3)],4)
=> 2 = 1 + 1
[3,2,5,1,4] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
[3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[3,4,5,1,2] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 1 = 0 + 1
[3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1 = 0 + 1
[3,5,1,2,4] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1 = 0 + 1
[3,5,2,1,4] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
[3,5,2,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1 = 0 + 1
[3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5)
=> ([],1)
=> 1 = 0 + 1
[3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([],1)
=> 1 = 0 + 1
[4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5)
=> ([(0,5),(1,5),(2,3),(3,4),(4,5)],6)
=> 1 = 0 + 1
[4,1,3,5,2] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(2,3),(2,4)],5)
=> 1 = 0 + 1
[4,1,5,2,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5)
=> ([(0,2),(1,2)],3)
=> 1 = 0 + 1
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums 0, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). Its eigenvalues are 0,4,4,6, so the statistic is 1. The path on four vertices has eigenvalues 0, 4.7\dots, 6, 9.2\dots and therefore also statistic 1. The graphs with statistic n-1, n-2 and n-3 have been characterised, see [1].
Matching statistic: St000661
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St000661: Dyck paths ⟶ ℤResult quality: 33% values known / values provided: 61%distinct values known / distinct values provided: 33%
Values
[1] => [1]
=> []
=> []
=> ? = 0
[1,2] => [1,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1}
[2,1] => [2]
=> []
=> []
=> ? ∊ {0,1}
[1,2,3] => [1,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,3,2] => [2,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,2,2}
[2,1,3] => [2,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,2,2}
[2,3,1] => [3]
=> []
=> []
=> ? ∊ {0,0,0,2,2}
[3,1,2] => [3]
=> []
=> []
=> ? ∊ {0,0,0,2,2}
[3,2,1] => [2,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,2,2}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 0
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,3,4,2] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[1,4,2,3] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,1,4,3] => [2,2]
=> [2]
=> [1,0,1,0]
=> 0
[2,3,1,4] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[2,3,4,1] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[2,4,1,3] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[2,4,3,1] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[3,1,2,4] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[3,1,4,2] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[3,2,4,1] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[3,4,1,2] => [2,2]
=> [2]
=> [1,0,1,0]
=> 0
[3,4,2,1] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,1,2,3] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,1,3,2] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,2,1,3] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[4,3,1,2] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,3,2,1] => [2,2]
=> [2]
=> [1,0,1,0]
=> 0
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 0
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 0
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 0
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 0
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 0
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,3,4,5,2] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,5,2,4] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,4,2,5,3] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 0
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[1,4,5,3,2] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,2,3,4] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 0
[1,5,4,2,3] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 0
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[2,1,4,5,3] => [3,2]
=> [2]
=> [1,0,1,0]
=> 0
[2,1,5,3,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 0
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[2,3,1,4,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,3,1,5,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 0
[2,3,4,1,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,4,5,1] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,5,1,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,5,4,1] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,4,1,3,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,4,1,5,3] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,4,3,5,1] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,4,5,1,3] => [3,2]
=> [2]
=> [1,0,1,0]
=> 0
[2,4,5,3,1] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,5,1,3,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,5,1,4,3] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,5,3,1,4] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,5,4,1,3] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,5,4,3,1] => [3,2]
=> [2]
=> [1,0,1,0]
=> 0
[3,1,2,4,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[3,1,2,5,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 0
[3,1,4,2,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,1,4,5,2] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,1,5,2,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,1,5,4,2] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 0
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[3,2,4,5,1] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,2,5,1,4] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,2,5,4,1] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[3,4,1,2,5] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[3,4,1,5,2] => [3,2]
=> [2]
=> [1,0,1,0]
=> 0
[3,4,2,1,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,4,2,5,1] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,4,5,1,2] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,4,5,2,1] => [3,2]
=> [2]
=> [1,0,1,0]
=> 0
[3,5,2,1,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
Description
The number of rises of length 3 of a Dyck path.
Matching statistic: St000931
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St000931: Dyck paths ⟶ ℤResult quality: 33% values known / values provided: 61%distinct values known / distinct values provided: 33%
Values
[1] => [1]
=> []
=> []
=> ? = 0
[1,2] => [1,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1}
[2,1] => [2]
=> []
=> []
=> ? ∊ {0,1}
[1,2,3] => [1,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,3,2] => [2,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,2,2}
[2,1,3] => [2,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,2,2}
[2,3,1] => [3]
=> []
=> []
=> ? ∊ {0,0,0,2,2}
[3,1,2] => [3]
=> []
=> []
=> ? ∊ {0,0,0,2,2}
[3,2,1] => [2,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,2,2}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 0
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,3,4,2] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[1,4,2,3] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,1,4,3] => [2,2]
=> [2]
=> [1,0,1,0]
=> 0
[2,3,1,4] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[2,3,4,1] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[2,4,1,3] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[2,4,3,1] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[3,1,2,4] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[3,1,4,2] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[3,2,4,1] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[3,4,1,2] => [2,2]
=> [2]
=> [1,0,1,0]
=> 0
[3,4,2,1] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,1,2,3] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,1,3,2] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,2,1,3] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[4,3,1,2] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,3,2,1] => [2,2]
=> [2]
=> [1,0,1,0]
=> 0
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 0
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 0
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 0
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 0
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 0
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,3,4,5,2] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,5,2,4] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,4,2,5,3] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 0
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[1,4,5,3,2] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,2,3,4] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 0
[1,5,4,2,3] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 0
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[2,1,4,5,3] => [3,2]
=> [2]
=> [1,0,1,0]
=> 0
[2,1,5,3,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 0
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[2,3,1,4,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,3,1,5,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 0
[2,3,4,1,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,4,5,1] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,5,1,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,5,4,1] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,4,1,3,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,4,1,5,3] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,4,3,5,1] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,4,5,1,3] => [3,2]
=> [2]
=> [1,0,1,0]
=> 0
[2,4,5,3,1] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,5,1,3,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,5,1,4,3] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,5,3,1,4] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,5,4,1,3] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,5,4,3,1] => [3,2]
=> [2]
=> [1,0,1,0]
=> 0
[3,1,2,4,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[3,1,2,5,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 0
[3,1,4,2,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,1,4,5,2] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,1,5,2,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,1,5,4,2] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 0
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[3,2,4,5,1] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,2,5,1,4] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,2,5,4,1] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[3,4,1,2,5] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[3,4,1,5,2] => [3,2]
=> [2]
=> [1,0,1,0]
=> 0
[3,4,2,1,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,4,2,5,1] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,4,5,1,2] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,4,5,2,1] => [3,2]
=> [2]
=> [1,0,1,0]
=> 0
[3,5,2,1,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
Description
The number of occurrences of the pattern UUU in a Dyck path. The number of Dyck paths with statistic value 0 are counted by the Motzkin numbers [1].
Matching statistic: St001141
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
Mp00230: Integer partitions parallelogram polyominoDyck paths
St001141: Dyck paths ⟶ ℤResult quality: 33% values known / values provided: 61%distinct values known / distinct values provided: 33%
Values
[1] => [1]
=> []
=> []
=> ? = 0
[1,2] => [1,1]
=> [1]
=> [1,0]
=> ? ∊ {0,1}
[2,1] => [2]
=> []
=> []
=> ? ∊ {0,1}
[1,2,3] => [1,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,3,2] => [2,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,2,2}
[2,1,3] => [2,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,2,2}
[2,3,1] => [3]
=> []
=> []
=> ? ∊ {0,0,0,2,2}
[3,1,2] => [3]
=> []
=> []
=> ? ∊ {0,0,0,2,2}
[3,2,1] => [2,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,2,2}
[1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 0
[1,2,4,3] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,3,2,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,3,4,2] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[1,4,2,3] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[1,4,3,2] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,1,3,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,1,4,3] => [2,2]
=> [2]
=> [1,0,1,0]
=> 0
[2,3,1,4] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[2,3,4,1] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[2,4,1,3] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[2,4,3,1] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[3,1,2,4] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[3,1,4,2] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[3,2,1,4] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[3,2,4,1] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[3,4,1,2] => [2,2]
=> [2]
=> [1,0,1,0]
=> 0
[3,4,2,1] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,1,2,3] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,1,3,2] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,2,1,3] => [3,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,2,3,1] => [2,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[4,3,1,2] => [4]
=> []
=> []
=> ? ∊ {0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,3,2,1] => [2,2]
=> [2]
=> [1,0,1,0]
=> 0
[1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> [1,1,0,1,0,1,0,0]
=> 0
[1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 0
[1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 0
[1,2,4,5,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,2,5,3,4] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 0
[1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 0
[1,3,2,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[1,3,4,2,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,3,4,5,2] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,5,2,4] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,5,4,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,4,2,3,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,4,2,5,3] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,3,2,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 0
[1,4,3,5,2] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,4,5,2,3] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[1,4,5,3,2] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,2,3,4] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,2,4,3] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,5,3,2,4] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[1,5,3,4,2] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 0
[1,5,4,2,3] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,4,3,2] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 0
[2,1,3,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[2,1,4,3,5] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[2,1,4,5,3] => [3,2]
=> [2]
=> [1,0,1,0]
=> 0
[2,1,5,3,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 0
[2,1,5,4,3] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[2,3,1,4,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,3,1,5,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 0
[2,3,4,1,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,4,5,1] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,5,1,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,5,4,1] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,4,1,3,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,4,1,5,3] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,4,3,1,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,4,3,5,1] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,4,5,1,3] => [3,2]
=> [2]
=> [1,0,1,0]
=> 0
[2,4,5,3,1] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,5,1,3,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,5,1,4,3] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,5,3,1,4] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,5,3,4,1] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[2,5,4,1,3] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,5,4,3,1] => [3,2]
=> [2]
=> [1,0,1,0]
=> 0
[3,1,2,4,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[3,1,2,5,4] => [3,2]
=> [2]
=> [1,0,1,0]
=> 0
[3,1,4,2,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,1,4,5,2] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,1,5,2,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,1,5,4,2] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,2,1,4,5] => [2,1,1,1]
=> [1,1,1]
=> [1,1,0,1,0,0]
=> 0
[3,2,1,5,4] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[3,2,4,1,5] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[3,2,4,5,1] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,2,5,1,4] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,2,5,4,1] => [3,1,1]
=> [1,1]
=> [1,1,0,0]
=> 0
[3,4,1,2,5] => [2,2,1]
=> [2,1]
=> [1,0,1,1,0,0]
=> 0
[3,4,1,5,2] => [3,2]
=> [2]
=> [1,0,1,0]
=> 0
[3,4,2,1,5] => [4,1]
=> [1]
=> [1,0]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,4,2,5,1] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,4,5,1,2] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,4,5,2,1] => [3,2]
=> [2]
=> [1,0,1,0]
=> 0
[3,5,2,1,4] => [5]
=> []
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
Description
The number of occurrences of hills of size 3 in a Dyck path. A hill of size three is a subpath beginning at height zero, consisting of three up steps followed by three down steps.
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001604: Integer partitions ⟶ ℤResult quality: 33% values known / values provided: 57%distinct values known / distinct values provided: 33%
Values
[1] => [1] => [1]
=> []
=> ? = 0
[1,2] => [1,2] => [1,1]
=> [1]
=> ? ∊ {0,1}
[2,1] => [1,2] => [1,1]
=> [1]
=> ? ∊ {0,1}
[1,2,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,2,2}
[1,3,2] => [1,2,3] => [1,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,2,2}
[2,1,3] => [1,2,3] => [1,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,2,2}
[2,3,1] => [1,2,3] => [1,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,2,2}
[3,1,2] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,2,2}
[3,2,1] => [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0,2,2}
[1,2,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 0
[1,2,4,3] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 0
[1,3,2,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 0
[1,3,4,2] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 0
[1,4,2,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[1,4,3,2] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[2,1,3,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 0
[2,1,4,3] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 0
[2,3,1,4] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 0
[2,3,4,1] => [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 0
[2,4,1,3] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[2,4,3,1] => [1,2,4,3] => [2,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[3,1,2,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[3,1,4,2] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[3,2,1,4] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[3,2,4,1] => [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[3,4,1,2] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[3,4,2,1] => [1,3,2,4] => [2,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,1,2,3] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,1,3,2] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,2,1,3] => [1,4,3,2] => [2,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,2,3,1] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,3,1,2] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,3,2,1] => [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[1,2,3,4,5] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,2,3,5,4] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,2,4,3,5] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,2,4,5,3] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,2,5,3,4] => [1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,2,5,4,3] => [1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,3,2,4,5] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,3,2,5,4] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,3,4,2,5] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,3,4,5,2] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[1,3,5,2,4] => [1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,3,5,4,2] => [1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,4,2,3,5] => [1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,4,2,5,3] => [1,2,4,5,3] => [3,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,3,2,5] => [1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,4,3,5,2] => [1,2,4,5,3] => [3,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,5,2,3] => [1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,4,5,3,2] => [1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,5,2,3,4] => [1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,5,2,4,3] => [1,2,5,3,4] => [3,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,3,2,4] => [1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> 0
[1,5,3,4,2] => [1,2,5,3,4] => [3,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,4,2,3] => [1,2,5,3,4] => [3,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,4,3,2] => [1,2,5,3,4] => [3,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,3,4,5] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[2,1,3,5,4] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[2,1,4,3,5] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[2,1,4,5,3] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[2,1,5,3,4] => [1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 0
[2,1,5,4,3] => [1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 0
[2,3,1,4,5] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[2,3,1,5,4] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[2,3,4,1,5] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[2,3,4,5,1] => [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[2,3,5,1,4] => [1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 0
[2,3,5,4,1] => [1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 0
[2,4,1,3,5] => [1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[2,4,1,5,3] => [1,2,4,5,3] => [3,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,4,3,1,5] => [1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[2,4,3,5,1] => [1,2,4,5,3] => [3,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,4,5,1,3] => [1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[2,4,5,3,1] => [1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[2,5,1,3,4] => [1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> 0
[2,5,1,4,3] => [1,2,5,3,4] => [3,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,5,3,1,4] => [1,2,5,4,3] => [2,1,1,1]
=> [1,1,1]
=> 0
[2,5,3,4,1] => [1,2,5,3,4] => [3,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,5,4,1,3] => [1,2,5,3,4] => [3,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,5,4,3,1] => [1,2,5,3,4] => [3,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,1,2,4,5] => [1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[3,1,2,5,4] => [1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[3,1,4,2,5] => [1,3,4,2,5] => [3,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,1,4,5,2] => [1,3,4,5,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,1,5,2,4] => [1,3,5,4,2] => [3,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,1,5,4,2] => [1,3,5,2,4] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,2,1,4,5] => [1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[3,2,1,5,4] => [1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[3,2,4,1,5] => [1,3,4,2,5] => [3,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,2,4,5,1] => [1,3,4,5,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,2,5,1,4] => [1,3,5,4,2] => [3,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,2,5,4,1] => [1,3,5,2,4] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,4,1,2,5] => [1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[3,4,1,5,2] => [1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[3,4,5,1,2] => [1,3,5,2,4] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,4,5,2,1] => [1,3,5,2,4] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,5,4,1,2] => [1,3,4,2,5] => [3,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,5,4,2,1] => [1,3,4,2,5] => [3,1,1]
=> [1,1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[4,1,2,5,3] => [1,4,5,3,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
Description
The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. Equivalently, this is the multiplicity of the irreducible representation corresponding to a partition in the cycle index of the dihedral group. This statistic is only defined for partitions of size at least 3, to avoid ambiguity.
Mp00248: Permutations DEX compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00154: Graphs coreGraphs
St001570: Graphs ⟶ ℤResult quality: 17% values known / values provided: 53%distinct values known / distinct values provided: 17%
Values
[1] => [1] => ([],1)
=> ([],1)
=> ? = 0
[1,2] => [2] => ([],2)
=> ([],1)
=> ? ∊ {0,1}
[2,1] => [2] => ([],2)
=> ([],1)
=> ? ∊ {0,1}
[1,2,3] => [3] => ([],3)
=> ([],1)
=> ? ∊ {0,0,0,0,2,2}
[1,3,2] => [1,2] => ([(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,2,2}
[2,1,3] => [3] => ([],3)
=> ([],1)
=> ? ∊ {0,0,0,0,2,2}
[2,3,1] => [3] => ([],3)
=> ([],1)
=> ? ∊ {0,0,0,0,2,2}
[3,1,2] => [3] => ([],3)
=> ([],1)
=> ? ∊ {0,0,0,0,2,2}
[3,2,1] => [2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,2,2}
[1,2,3,4] => [4] => ([],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[1,2,4,3] => [2,2] => ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[1,3,2,4] => [1,3] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[1,3,4,2] => [1,3] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[1,4,2,3] => [1,3] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[1,4,3,2] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[2,1,3,4] => [4] => ([],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[2,1,4,3] => [2,2] => ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[2,3,1,4] => [4] => ([],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[2,3,4,1] => [4] => ([],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[2,4,1,3] => [4] => ([],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[2,4,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[3,1,2,4] => [4] => ([],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[3,1,4,2] => [2,2] => ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[3,2,1,4] => [2,2] => ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[3,2,4,1] => [2,2] => ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[3,4,1,2] => [4] => ([],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[3,4,2,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,1,2,3] => [4] => ([],4)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,1,3,2] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,2,1,3] => [2,2] => ([(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,2,3,1] => [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,3,1,2] => [1,3] => ([(2,3)],4)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,3,2,1] => [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,2,3,4,5] => [5] => ([],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,3,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,4,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,4,5,3] => [2,3] => ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,5,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,3,2,4,5] => [1,4] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,2,5,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,3,4,2,5] => [1,4] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,4,5,2] => [1,4] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,5,2,4] => [1,4] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,5,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,4,2,3,5] => [1,4] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,2,5,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,4,3,2,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,4,3,5,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,4,5,2,3] => [1,4] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,5,3,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,5,2,3,4] => [1,4] => ([(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,2,4,3] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,5,3,2,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,5,3,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,5,4,2,3] => [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,5,4,3,2] => [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[2,1,3,4,5] => [5] => ([],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,3,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,4,3,5] => [2,3] => ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,4,5,3] => [2,3] => ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,5,3,4] => [2,3] => ([(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,5,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[2,3,1,4,5] => [5] => ([],5)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,1,5,4] => [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,5,4,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[3,1,5,4,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[3,2,1,5,4] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[3,2,5,4,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[3,5,4,2,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[4,1,5,3,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[4,2,1,5,3] => [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[4,2,5,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[4,3,1,5,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[4,3,2,1,5] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[4,3,2,5,1] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[4,3,5,2,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[4,5,3,2,1] => [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[5,1,4,3,2] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[5,2,1,4,3] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[5,2,4,3,1] => [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[5,3,1,4,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[5,3,2,1,4] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[5,3,2,4,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[5,3,4,2,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[5,4,1,3,2] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[5,4,2,1,3] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[5,4,2,3,1] => [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[5,4,3,1,2] => [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[5,4,3,2,1] => [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 0
[1,2,3,6,5,4] => [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,2,4,3,6,5] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,2,4,6,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,2,5,3,6,4] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,2,5,4,3,6] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,2,5,4,6,3] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,2,5,6,4,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,2,6,3,5,4] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,2,6,4,3,5] => [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
[1,2,6,4,5,3] => [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(1,2)],3)
=> 0
Description
The minimal number of edges to add to make a graph Hamiltonian. A graph is Hamiltonian if it contains a cycle as a subgraph, which contains all vertices.
Mp00127: Permutations left-to-right-maxima to Dyck pathDyck paths
Mp00233: Dyck paths skew partitionSkew partitions
Mp00183: Skew partitions inner shapeInteger partitions
St000205: Integer partitions ⟶ ℤResult quality: 33% values known / values provided: 52%distinct values known / distinct values provided: 33%
Values
[1] => [1,0]
=> [[1],[]]
=> []
=> ? = 0
[1,2] => [1,0,1,0]
=> [[1,1],[]]
=> []
=> ? ∊ {0,1}
[2,1] => [1,1,0,0]
=> [[2],[]]
=> []
=> ? ∊ {0,1}
[1,2,3] => [1,0,1,0,1,0]
=> [[1,1,1],[]]
=> []
=> ? ∊ {0,0,0,2,2}
[1,3,2] => [1,0,1,1,0,0]
=> [[2,1],[]]
=> []
=> ? ∊ {0,0,0,2,2}
[2,1,3] => [1,1,0,0,1,0]
=> [[2,2],[1]]
=> [1]
=> 0
[2,3,1] => [1,1,0,1,0,0]
=> [[3],[]]
=> []
=> ? ∊ {0,0,0,2,2}
[3,1,2] => [1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ? ∊ {0,0,0,2,2}
[3,2,1] => [1,1,1,0,0,0]
=> [[2,2],[]]
=> []
=> ? ∊ {0,0,0,2,2}
[1,2,3,4] => [1,0,1,0,1,0,1,0]
=> [[1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[1,2,4,3] => [1,0,1,0,1,1,0,0]
=> [[2,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[1,3,2,4] => [1,0,1,1,0,0,1,0]
=> [[2,2,1],[1]]
=> [1]
=> 0
[1,3,4,2] => [1,0,1,1,0,1,0,0]
=> [[3,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[1,4,2,3] => [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[1,4,3,2] => [1,0,1,1,1,0,0,0]
=> [[2,2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[2,1,3,4] => [1,1,0,0,1,0,1,0]
=> [[2,2,2],[1,1]]
=> [1,1]
=> 0
[2,1,4,3] => [1,1,0,0,1,1,0,0]
=> [[3,2],[1]]
=> [1]
=> 0
[2,3,1,4] => [1,1,0,1,0,0,1,0]
=> [[3,3],[2]]
=> [2]
=> 0
[2,3,4,1] => [1,1,0,1,0,1,0,0]
=> [[4],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[2,4,1,3] => [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 0
[2,4,3,1] => [1,1,0,1,1,0,0,0]
=> [[3,3],[1]]
=> [1]
=> 0
[3,1,2,4] => [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> 0
[3,1,4,2] => [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[3,2,1,4] => [1,1,1,0,0,0,1,0]
=> [[2,2,2],[1]]
=> [1]
=> 0
[3,2,4,1] => [1,1,1,0,0,1,0,0]
=> [[3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[3,4,1,2] => [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[3,4,2,1] => [1,1,1,0,1,0,0,0]
=> [[2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,1,2,3] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,1,3,2] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,2,1,3] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,2,3,1] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,3,1,2] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[4,3,2,1] => [1,1,1,1,0,0,0,0]
=> [[3,3],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,2,3,3,3,3,3,3}
[1,2,3,4,5] => [1,0,1,0,1,0,1,0,1,0]
=> [[1,1,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,3,5,4] => [1,0,1,0,1,0,1,1,0,0]
=> [[2,1,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,4,3,5] => [1,0,1,0,1,1,0,0,1,0]
=> [[2,2,1,1],[1]]
=> [1]
=> 0
[1,2,4,5,3] => [1,0,1,0,1,1,0,1,0,0]
=> [[3,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,5,3,4] => [1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,2,5,4,3] => [1,0,1,0,1,1,1,0,0,0]
=> [[2,2,1,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,2,4,5] => [1,0,1,1,0,0,1,0,1,0]
=> [[2,2,2,1],[1,1]]
=> [1,1]
=> 0
[1,3,2,5,4] => [1,0,1,1,0,0,1,1,0,0]
=> [[3,2,1],[1]]
=> [1]
=> 0
[1,3,4,2,5] => [1,0,1,1,0,1,0,0,1,0]
=> [[3,3,1],[2]]
=> [2]
=> 0
[1,3,4,5,2] => [1,0,1,1,0,1,0,1,0,0]
=> [[4,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,3,5,2,4] => [1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [1]
=> 0
[1,3,5,4,2] => [1,0,1,1,0,1,1,0,0,0]
=> [[3,3,1],[1]]
=> [1]
=> 0
[1,4,2,3,5] => [1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> 0
[1,4,2,5,3] => [1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,3,2,5] => [1,0,1,1,1,0,0,0,1,0]
=> [[2,2,2,1],[1]]
=> [1]
=> 0
[1,4,3,5,2] => [1,0,1,1,1,0,0,1,0,0]
=> [[3,2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,5,2,3] => [1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,4,5,3,2] => [1,0,1,1,1,0,1,0,0,0]
=> [[2,2,2,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,2,3,4] => [1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,2,4,3] => [1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,3,2,4] => [1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,3,4,2] => [1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,4,2,3] => [1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[1,5,4,3,2] => [1,0,1,1,1,1,0,0,0,0]
=> [[3,3,1],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,1,3,4,5] => [1,1,0,0,1,0,1,0,1,0]
=> [[2,2,2,2],[1,1,1]]
=> [1,1,1]
=> 0
[2,1,3,5,4] => [1,1,0,0,1,0,1,1,0,0]
=> [[3,2,2],[1,1]]
=> [1,1]
=> 0
[2,1,4,3,5] => [1,1,0,0,1,1,0,0,1,0]
=> [[3,3,2],[2,1]]
=> [2,1]
=> 0
[2,1,4,5,3] => [1,1,0,0,1,1,0,1,0,0]
=> [[4,2],[1]]
=> [1]
=> 0
[2,1,5,3,4] => [1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> 0
[2,1,5,4,3] => [1,1,0,0,1,1,1,0,0,0]
=> [[3,3,2],[1,1]]
=> [1,1]
=> 0
[2,3,1,4,5] => [1,1,0,1,0,0,1,0,1,0]
=> [[3,3,3],[2,2]]
=> [2,2]
=> 0
[2,3,1,5,4] => [1,1,0,1,0,0,1,1,0,0]
=> [[4,3],[2]]
=> [2]
=> 0
[2,3,4,1,5] => [1,1,0,1,0,1,0,0,1,0]
=> [[4,4],[3]]
=> [3]
=> 0
[2,3,4,5,1] => [1,1,0,1,0,1,0,1,0,0]
=> [[5],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[2,3,5,1,4] => [1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2]
=> 0
[2,3,5,4,1] => [1,1,0,1,0,1,1,0,0,0]
=> [[4,4],[2]]
=> [2]
=> 0
[2,4,1,3,5] => [1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> 0
[2,4,1,5,3] => [1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> [1]
=> 0
[2,4,3,1,5] => [1,1,0,1,1,0,0,0,1,0]
=> [[3,3,3],[2,1]]
=> [2,1]
=> 0
[2,4,3,5,1] => [1,1,0,1,1,0,0,1,0,0]
=> [[4,3],[1]]
=> [1]
=> 0
[2,4,5,1,3] => [1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [1,1]
=> 0
[2,4,5,3,1] => [1,1,0,1,1,0,1,0,0,0]
=> [[3,3,3],[1,1]]
=> [1,1]
=> 0
[2,5,1,3,4] => [1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [1]
=> 0
[2,5,1,4,3] => [1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [1]
=> 0
[2,5,3,1,4] => [1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [1]
=> 0
[2,5,3,4,1] => [1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [1]
=> 0
[2,5,4,1,3] => [1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [1]
=> 0
[2,5,4,3,1] => [1,1,0,1,1,1,0,0,0,0]
=> [[4,4],[1]]
=> [1]
=> 0
[3,1,2,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 0
[3,1,2,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> [1]
=> 0
[3,1,4,2,5] => [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 0
[3,1,4,5,2] => [1,1,1,0,0,1,0,1,0,0]
=> [[4,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,1,5,2,4] => [1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> [1]
=> 0
[3,1,5,4,2] => [1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> [1]
=> 0
[3,2,1,4,5] => [1,1,1,0,0,0,1,0,1,0]
=> [[2,2,2,2],[1,1]]
=> [1,1]
=> 0
[3,2,1,5,4] => [1,1,1,0,0,0,1,1,0,0]
=> [[3,2,2],[1]]
=> [1]
=> 0
[3,2,4,1,5] => [1,1,1,0,0,1,0,0,1,0]
=> [[3,3,2],[2]]
=> [2]
=> 0
[3,2,4,5,1] => [1,1,1,0,0,1,0,1,0,0]
=> [[4,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,2,5,1,4] => [1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> [1]
=> 0
[3,2,5,4,1] => [1,1,1,0,0,1,1,0,0,0]
=> [[3,3,2],[1]]
=> [1]
=> 0
[3,4,1,5,2] => [1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,4,2,5,1] => [1,1,1,0,1,0,0,1,0,0]
=> [[3,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,4,5,1,2] => [1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,4,5,2,1] => [1,1,1,0,1,0,1,0,0,0]
=> [[2,2,2,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,5,1,2,4] => [1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,5,1,4,2] => [1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
[3,5,2,1,4] => [1,1,1,0,1,1,0,0,0,0]
=> [[3,3,2],[]]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
Description
Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and partition weight. Given \lambda count how many ''integer partitions'' w (weight) there are, such that P_{\lambda,w} is non-integral, i.e., w such that the Gelfand-Tsetlin polytope P_{\lambda,w} has at least one non-integral vertex.
The following 51 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St000206Number of non-integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000749The smallest integer d such that the restriction of the representation corresponding to a partition of n to the symmetric group on n-d letters has a constituent of odd degree. St001175The size of a partition minus the hook length of the base cell. St001586The number of odd parts smaller than the largest even part in an integer partition. St001912The length of the preperiod in Bulgarian solitaire corresponding to an integer partition. St000455The second largest eigenvalue of a graph if it is integral. St000699The toughness times the least common multiple of 1,. St001498The normalised height of a Nakayama algebra with magnitude 1. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000936The number of even values of the symmetric group character corresponding to the partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000940The number of characters of the symmetric group whose value on the partition is zero. St000941The number of characters of the symmetric group whose value on the partition is even. St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St000478Another weight of a partition according to Alladi. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000934The 2-degree of an integer partition. St001283The number of finite solvable groups that are realised by the given partition over the complex numbers. St001284The number of finite groups that are realised by the given partition over the complex numbers. St000175Degree of the polynomial counting the number of semistandard Young tableaux when stretching the shape. St000225Difference between largest and smallest parts in a partition. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000944The 3-degree of an integer partition. St001178Twelve times the variance of the major index among all standard Young tableaux of a partition. St001248Sum of the even parts of a partition. St001279The sum of the parts of an integer partition that are at least two. St001280The number of parts of an integer partition that are at least two. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001541The Gini index of an integer partition. St001587Half of the largest even part of an integer partition. St001657The number of twos in an integer partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St000929The constant term of the character polynomial of an integer partition. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001629The coefficient of the integer composition in the quasisymmetric expansion of the relabelling action of the symmetric group on cycles. St001249Sum of the odd parts of a partition. St001383The BG-rank of an integer partition. St001440The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition. St001714The number of subpartitions of an integer partition that do not dominate the conjugate subpartition. St001785The number of ways to obtain a partition as the multiset of antidiagonal lengths of the Ferrers diagram of a partition. St001096The size of the overlap set of a permutation. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St000848The balance constant multiplied with the number of linear extensions of a poset. St000849The number of 1/3-balanced pairs in a poset. St000850The number of 1/2-balanced pairs in a poset. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition.