Your data matches 103 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St000122: Binary trees ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[.,.]
=> 0
[.,[.,.]]
=> 0
[[.,.],.]
=> 0
[.,[.,[.,.]]]
=> 0
[.,[[.,.],.]]
=> 0
[[.,.],[.,.]]
=> 0
[[.,[.,.]],.]
=> 0
[[[.,.],.],.]
=> 0
[.,[.,[.,[.,.]]]]
=> 0
[.,[.,[[.,.],.]]]
=> 1
[.,[[.,.],[.,.]]]
=> 0
[.,[[.,[.,.]],.]]
=> 0
[.,[[[.,.],.],.]]
=> 0
[[.,.],[.,[.,.]]]
=> 0
[[.,.],[[.,.],.]]
=> 0
[[.,[.,.]],[.,.]]
=> 0
[[[.,.],.],[.,.]]
=> 0
[[.,[.,[.,.]]],.]
=> 0
[[.,[[.,.],.]],.]
=> 0
[[[.,.],[.,.]],.]
=> 0
[[[.,[.,.]],.],.]
=> 0
[[[[.,.],.],.],.]
=> 0
[.,[.,[.,[.,[.,.]]]]]
=> 0
[.,[.,[.,[[.,.],.]]]]
=> 1
[.,[.,[[.,.],[.,.]]]]
=> 1
[.,[.,[[.,[.,.]],.]]]
=> 1
[.,[.,[[[.,.],.],.]]]
=> 1
[.,[[.,.],[.,[.,.]]]]
=> 0
[.,[[.,.],[[.,.],.]]]
=> 1
[.,[[.,[.,.]],[.,.]]]
=> 0
[.,[[[.,.],.],[.,.]]]
=> 0
[.,[[.,[.,[.,.]]],.]]
=> 0
[.,[[.,[[.,.],.]],.]]
=> 0
[.,[[[.,.],[.,.]],.]]
=> 0
[.,[[[.,[.,.]],.],.]]
=> 0
[.,[[[[.,.],.],.],.]]
=> 0
[[.,.],[.,[.,[.,.]]]]
=> 0
[[.,.],[.,[[.,.],.]]]
=> 1
[[.,.],[[.,.],[.,.]]]
=> 0
[[.,.],[[.,[.,.]],.]]
=> 0
[[.,.],[[[.,.],.],.]]
=> 0
[[.,[.,.]],[.,[.,.]]]
=> 0
[[.,[.,.]],[[.,.],.]]
=> 0
[[[.,.],.],[.,[.,.]]]
=> 0
[[[.,.],.],[[.,.],.]]
=> 0
[[.,[.,[.,.]]],[.,.]]
=> 0
[[.,[[.,.],.]],[.,.]]
=> 0
[[[.,.],[.,.]],[.,.]]
=> 0
[[[.,[.,.]],.],[.,.]]
=> 0
[[[[.,.],.],.],[.,.]]
=> 0
Description
The number of occurrences of the contiguous pattern {{{[.,[.,[[.,.],.]]]}}} in a binary tree. [[oeis:A086581]] counts binary trees avoiding this pattern.
Mp00017: Binary trees to 312-avoiding permutationPermutations
Mp00060: Permutations Robinson-Schensted tableau shapeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000940: Integer partitions ⟶ ℤResult quality: 90% values known / values provided: 90%distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => [1]
=> []
=> ? = 0
[.,[.,.]]
=> [2,1] => [1,1]
=> [1]
=> ? ∊ {0,0}
[[.,.],.]
=> [1,2] => [2]
=> []
=> ? ∊ {0,0}
[.,[.,[.,.]]]
=> [3,2,1] => [1,1,1]
=> [1,1]
=> 0
[.,[[.,.],.]]
=> [2,3,1] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0}
[[.,.],[.,.]]
=> [1,3,2] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0}
[[.,[.,.]],.]
=> [2,1,3] => [2,1]
=> [1]
=> ? ∊ {0,0,0,0}
[[[.,.],.],.]
=> [1,2,3] => [3]
=> []
=> ? ∊ {0,0,0,0}
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [1,1,1,1]
=> [1,1,1]
=> 0
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [2,1,1]
=> [1,1]
=> 0
[.,[[.,.],[.,.]]]
=> [2,4,3,1] => [2,1,1]
=> [1,1]
=> 0
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [2,1,1]
=> [1,1]
=> 0
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1}
[[.,.],[.,[.,.]]]
=> [1,4,3,2] => [2,1,1]
=> [1,1]
=> 0
[[.,.],[[.,.],.]]
=> [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1}
[[.,[.,.]],[.,.]]
=> [2,1,4,3] => [2,2]
=> [2]
=> 0
[[[.,.],.],[.,.]]
=> [1,2,4,3] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1}
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [2,1,1]
=> [1,1]
=> 0
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1}
[[[.,.],[.,.]],.]
=> [1,3,2,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1}
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [3,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,1}
[[[[.,.],.],.],.]
=> [1,2,3,4] => [4]
=> []
=> ? ∊ {0,0,0,0,0,0,1}
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [1,1,1,1,1]
=> [1,1,1,1]
=> 0
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[.,[.,[[.,.],[.,.]]]]
=> [3,5,4,2,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [3,1,1]
=> [1,1]
=> 0
[.,[[.,.],[.,[.,.]]]]
=> [2,5,4,3,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[.,[[.,.],[[.,.],.]]]
=> [2,4,5,3,1] => [3,1,1]
=> [1,1]
=> 0
[.,[[.,[.,.]],[.,.]]]
=> [3,2,5,4,1] => [2,2,1]
=> [2,1]
=> 1
[.,[[[.,.],.],[.,.]]]
=> [2,3,5,4,1] => [3,1,1]
=> [1,1]
=> 0
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [2,1,1,1]
=> [1,1,1]
=> 0
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [3,1,1]
=> [1,1]
=> 0
[.,[[[.,.],[.,.]],.]]
=> [2,4,3,5,1] => [3,1,1]
=> [1,1]
=> 0
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [3,1,1]
=> [1,1]
=> 0
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1}
[[.,.],[.,[.,[.,.]]]]
=> [1,5,4,3,2] => [2,1,1,1]
=> [1,1,1]
=> 0
[[.,.],[.,[[.,.],.]]]
=> [1,4,5,3,2] => [3,1,1]
=> [1,1]
=> 0
[[.,.],[[.,.],[.,.]]]
=> [1,3,5,4,2] => [3,1,1]
=> [1,1]
=> 0
[[.,.],[[.,[.,.]],.]]
=> [1,4,3,5,2] => [3,1,1]
=> [1,1]
=> 0
[[.,.],[[[.,.],.],.]]
=> [1,3,4,5,2] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1}
[[.,[.,.]],[.,[.,.]]]
=> [2,1,5,4,3] => [2,2,1]
=> [2,1]
=> 1
[[.,[.,.]],[[.,.],.]]
=> [2,1,4,5,3] => [3,2]
=> [2]
=> 0
[[[.,.],.],[.,[.,.]]]
=> [1,2,5,4,3] => [3,1,1]
=> [1,1]
=> 0
[[[.,.],.],[[.,.],.]]
=> [1,2,4,5,3] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1}
[[.,[.,[.,.]]],[.,.]]
=> [3,2,1,5,4] => [2,2,1]
=> [2,1]
=> 1
[[.,[[.,.],.]],[.,.]]
=> [2,3,1,5,4] => [3,2]
=> [2]
=> 0
[[[.,.],[.,.]],[.,.]]
=> [1,3,2,5,4] => [3,2]
=> [2]
=> 0
[[[.,[.,.]],.],[.,.]]
=> [2,1,3,5,4] => [3,2]
=> [2]
=> 0
[[[[.,.],.],.],[.,.]]
=> [1,2,3,5,4] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1}
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [2,1,1,1]
=> [1,1,1]
=> 0
[[.,[.,[[.,.],.]]],.]
=> [3,4,2,1,5] => [3,1,1]
=> [1,1]
=> 0
[[.,[[.,.],[.,.]]],.]
=> [2,4,3,1,5] => [3,1,1]
=> [1,1]
=> 0
[[.,[[.,[.,.]],.]],.]
=> [3,2,4,1,5] => [3,1,1]
=> [1,1]
=> 0
[[.,[[[.,.],.],.]],.]
=> [2,3,4,1,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1}
[[[.,.],[.,[.,.]]],.]
=> [1,4,3,2,5] => [3,1,1]
=> [1,1]
=> 0
[[[.,.],[[.,.],.]],.]
=> [1,3,4,2,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1}
[[[.,[.,.]],[.,.]],.]
=> [2,1,4,3,5] => [3,2]
=> [2]
=> 0
[[[[.,.],.],[.,.]],.]
=> [1,2,4,3,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1}
[[[.,[.,[.,.]]],.],.]
=> [3,2,1,4,5] => [3,1,1]
=> [1,1]
=> 0
[[[.,[[.,.],.]],.],.]
=> [2,3,1,4,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1}
[[[[.,.],[.,.]],.],.]
=> [1,3,2,4,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1}
[[[[.,[.,.]],.],.],.]
=> [2,1,3,4,5] => [4,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1}
[[[[[.,.],.],.],.],.]
=> [1,2,3,4,5] => [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1}
[.,[.,[.,[.,[.,[.,.]]]]]]
=> [6,5,4,3,2,1] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 0
[.,[.,[.,[.,[[.,.],.]]]]]
=> [5,6,4,3,2,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[.,[.,[.,[[.,.],[.,.]]]]]
=> [4,6,5,3,2,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[.,[.,[.,[[.,[.,.]],.]]]]
=> [5,4,6,3,2,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[.,[.,[.,[[[.,.],.],.]]]]
=> [4,5,6,3,2,1] => [3,1,1,1]
=> [1,1,1]
=> 0
[.,[.,[[.,.],[.,[.,.]]]]]
=> [3,6,5,4,2,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[.,[.,[[.,.],[[.,.],.]]]]
=> [3,5,6,4,2,1] => [3,1,1,1]
=> [1,1,1]
=> 0
[.,[.,[[.,[.,.]],[.,.]]]]
=> [4,3,6,5,2,1] => [2,2,1,1]
=> [2,1,1]
=> 1
[.,[.,[[[.,.],.],[.,.]]]]
=> [3,4,6,5,2,1] => [3,1,1,1]
=> [1,1,1]
=> 0
[.,[.,[[.,[.,[.,.]]],.]]]
=> [5,4,3,6,2,1] => [2,1,1,1,1]
=> [1,1,1,1]
=> 0
[.,[.,[[.,[[.,.],.]],.]]]
=> [4,5,3,6,2,1] => [3,1,1,1]
=> [1,1,1]
=> 0
[.,[[[[[.,.],.],.],.],.]]
=> [2,3,4,5,6,1] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2}
[[.,.],[[[[.,.],.],.],.]]
=> [1,3,4,5,6,2] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2}
[[[.,.],.],[[[.,.],.],.]]
=> [1,2,4,5,6,3] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2}
[[[[.,.],.],.],[[.,.],.]]
=> [1,2,3,5,6,4] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2}
[[[[[.,.],.],.],.],[.,.]]
=> [1,2,3,4,6,5] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2}
[[.,[[[[.,.],.],.],.]],.]
=> [2,3,4,5,1,6] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2}
[[[.,.],[[[.,.],.],.]],.]
=> [1,3,4,5,2,6] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2}
[[[[.,.],.],[[.,.],.]],.]
=> [1,2,4,5,3,6] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2}
[[[[[.,.],.],.],[.,.]],.]
=> [1,2,3,5,4,6] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2}
[[[.,[[[.,.],.],.]],.],.]
=> [2,3,4,1,5,6] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2}
[[[[.,.],[[.,.],.]],.],.]
=> [1,3,4,2,5,6] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2}
[[[[[.,.],.],[.,.]],.],.]
=> [1,2,4,3,5,6] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2}
[[[[.,[[.,.],.]],.],.],.]
=> [2,3,1,4,5,6] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2}
[[[[[.,.],[.,.]],.],.],.]
=> [1,3,2,4,5,6] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2}
[[[[[.,[.,.]],.],.],.],.]
=> [2,1,3,4,5,6] => [5,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2}
[[[[[[.,.],.],.],.],.],.]
=> [1,2,3,4,5,6] => [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,2}
[.,[[[[[[.,.],.],.],.],.],.]]
=> [2,3,4,5,6,7,1] => [6,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2}
[[.,.],[[[[[.,.],.],.],.],.]]
=> [1,3,4,5,6,7,2] => [6,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2}
[[[.,.],.],[[[[.,.],.],.],.]]
=> [1,2,4,5,6,7,3] => [6,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2}
[[[[.,.],.],.],[[[.,.],.],.]]
=> [1,2,3,5,6,7,4] => [6,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2}
[[[[[.,.],.],.],.],[[.,.],.]]
=> [1,2,3,4,6,7,5] => [6,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2}
[[[[[[.,.],.],.],.],.],[.,.]]
=> [1,2,3,4,5,7,6] => [6,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2}
[[.,[[[[[.,.],.],.],.],.]],.]
=> [2,3,4,5,6,1,7] => [6,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2}
[[[.,.],[[[[.,.],.],.],.]],.]
=> [1,3,4,5,6,2,7] => [6,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2}
[[[[.,.],.],[[[.,.],.],.]],.]
=> [1,2,4,5,6,3,7] => [6,1]
=> [1]
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,2,2}
Description
The number of characters of the symmetric group whose value on the partition is zero. The maximal value for any given size is recorded in [2].
Mp00014: Binary trees to 132-avoiding permutationPermutations
Mp00223: Permutations runsortPermutations
St000779: Permutations ⟶ ℤResult quality: 84% values known / values provided: 84%distinct values known / distinct values provided: 100%
Values
[.,.]
=> [1] => [1] => ? = 0
[.,[.,.]]
=> [2,1] => [1,2] => 0
[[.,.],.]
=> [1,2] => [1,2] => 0
[.,[.,[.,.]]]
=> [3,2,1] => [1,2,3] => 0
[.,[[.,.],.]]
=> [2,3,1] => [1,2,3] => 0
[[.,.],[.,.]]
=> [3,1,2] => [1,2,3] => 0
[[.,[.,.]],.]
=> [2,1,3] => [1,3,2] => 0
[[[.,.],.],.]
=> [1,2,3] => [1,2,3] => 0
[.,[.,[.,[.,.]]]]
=> [4,3,2,1] => [1,2,3,4] => 0
[.,[.,[[.,.],.]]]
=> [3,4,2,1] => [1,2,3,4] => 0
[.,[[.,.],[.,.]]]
=> [4,2,3,1] => [1,2,3,4] => 0
[.,[[.,[.,.]],.]]
=> [3,2,4,1] => [1,2,4,3] => 0
[.,[[[.,.],.],.]]
=> [2,3,4,1] => [1,2,3,4] => 0
[[.,.],[.,[.,.]]]
=> [4,3,1,2] => [1,2,3,4] => 0
[[.,.],[[.,.],.]]
=> [3,4,1,2] => [1,2,3,4] => 0
[[.,[.,.]],[.,.]]
=> [4,2,1,3] => [1,3,2,4] => 0
[[[.,.],.],[.,.]]
=> [4,1,2,3] => [1,2,3,4] => 0
[[.,[.,[.,.]]],.]
=> [3,2,1,4] => [1,4,2,3] => 0
[[.,[[.,.],.]],.]
=> [2,3,1,4] => [1,4,2,3] => 0
[[[.,.],[.,.]],.]
=> [3,1,2,4] => [1,2,4,3] => 0
[[[.,[.,.]],.],.]
=> [2,1,3,4] => [1,3,4,2] => 1
[[[[.,.],.],.],.]
=> [1,2,3,4] => [1,2,3,4] => 0
[.,[.,[.,[.,[.,.]]]]]
=> [5,4,3,2,1] => [1,2,3,4,5] => 0
[.,[.,[.,[[.,.],.]]]]
=> [4,5,3,2,1] => [1,2,3,4,5] => 0
[.,[.,[[.,.],[.,.]]]]
=> [5,3,4,2,1] => [1,2,3,4,5] => 0
[.,[.,[[.,[.,.]],.]]]
=> [4,3,5,2,1] => [1,2,3,5,4] => 0
[.,[.,[[[.,.],.],.]]]
=> [3,4,5,2,1] => [1,2,3,4,5] => 0
[.,[[.,.],[.,[.,.]]]]
=> [5,4,2,3,1] => [1,2,3,4,5] => 0
[.,[[.,.],[[.,.],.]]]
=> [4,5,2,3,1] => [1,2,3,4,5] => 0
[.,[[.,[.,.]],[.,.]]]
=> [5,3,2,4,1] => [1,2,4,3,5] => 0
[.,[[[.,.],.],[.,.]]]
=> [5,2,3,4,1] => [1,2,3,4,5] => 0
[.,[[.,[.,[.,.]]],.]]
=> [4,3,2,5,1] => [1,2,5,3,4] => 0
[.,[[.,[[.,.],.]],.]]
=> [3,4,2,5,1] => [1,2,5,3,4] => 0
[.,[[[.,.],[.,.]],.]]
=> [4,2,3,5,1] => [1,2,3,5,4] => 0
[.,[[[.,[.,.]],.],.]]
=> [3,2,4,5,1] => [1,2,4,5,3] => 1
[.,[[[[.,.],.],.],.]]
=> [2,3,4,5,1] => [1,2,3,4,5] => 0
[[.,.],[.,[.,[.,.]]]]
=> [5,4,3,1,2] => [1,2,3,4,5] => 0
[[.,.],[.,[[.,.],.]]]
=> [4,5,3,1,2] => [1,2,3,4,5] => 0
[[.,.],[[.,.],[.,.]]]
=> [5,3,4,1,2] => [1,2,3,4,5] => 0
[[.,.],[[.,[.,.]],.]]
=> [4,3,5,1,2] => [1,2,3,5,4] => 0
[[.,.],[[[.,.],.],.]]
=> [3,4,5,1,2] => [1,2,3,4,5] => 0
[[.,[.,.]],[.,[.,.]]]
=> [5,4,2,1,3] => [1,3,2,4,5] => 0
[[.,[.,.]],[[.,.],.]]
=> [4,5,2,1,3] => [1,3,2,4,5] => 0
[[[.,.],.],[.,[.,.]]]
=> [5,4,1,2,3] => [1,2,3,4,5] => 0
[[[.,.],.],[[.,.],.]]
=> [4,5,1,2,3] => [1,2,3,4,5] => 0
[[.,[.,[.,.]]],[.,.]]
=> [5,3,2,1,4] => [1,4,2,3,5] => 0
[[.,[[.,.],.]],[.,.]]
=> [5,2,3,1,4] => [1,4,2,3,5] => 0
[[[.,.],[.,.]],[.,.]]
=> [5,3,1,2,4] => [1,2,4,3,5] => 0
[[[.,[.,.]],.],[.,.]]
=> [5,2,1,3,4] => [1,3,4,2,5] => 1
[[[[.,.],.],.],[.,.]]
=> [5,1,2,3,4] => [1,2,3,4,5] => 0
[[.,[.,[.,[.,.]]]],.]
=> [4,3,2,1,5] => [1,5,2,3,4] => 0
[[.,[.,[.,[.,.]]]],[.,[.,.]]]
=> [7,6,4,3,2,1,5] => [1,5,2,3,4,6,7] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[.,[.,[.,.]]]],[[.,.],.]]
=> [6,7,4,3,2,1,5] => [1,5,2,3,4,6,7] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[.,[[.,.],.]]],[.,[.,.]]]
=> [7,6,3,4,2,1,5] => [1,5,2,3,4,6,7] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[.,[[.,.],.]]],[[.,.],.]]
=> [6,7,3,4,2,1,5] => [1,5,2,3,4,6,7] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[[.,.],[.,.]]],[.,[.,.]]]
=> [7,6,4,2,3,1,5] => [1,5,2,3,4,6,7] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[[.,.],[.,.]]],[[.,.],.]]
=> [6,7,4,2,3,1,5] => [1,5,2,3,4,6,7] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[[.,[.,.]],.]],[.,[.,.]]]
=> [7,6,3,2,4,1,5] => [1,5,2,4,3,6,7] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[[.,[.,.]],.]],[[.,.],.]]
=> [6,7,3,2,4,1,5] => [1,5,2,4,3,6,7] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[[[.,.],.],.]],[.,[.,.]]]
=> [7,6,2,3,4,1,5] => [1,5,2,3,4,6,7] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[[[.,.],.],.]],[[.,.],.]]
=> [6,7,2,3,4,1,5] => [1,5,2,3,4,6,7] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[.,[.,[.,[.,.]]]]],[.,.]]
=> [7,5,4,3,2,1,6] => [1,6,2,3,4,5,7] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[.,[.,[[.,.],.]]]],[.,.]]
=> [7,4,5,3,2,1,6] => [1,6,2,3,4,5,7] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[.,[[.,.],[.,.]]]],[.,.]]
=> [7,5,3,4,2,1,6] => [1,6,2,3,4,5,7] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[.,[[.,[.,.]],.]]],[.,.]]
=> [7,4,3,5,2,1,6] => [1,6,2,3,5,4,7] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[.,[[[.,.],.],.]]],[.,.]]
=> [7,3,4,5,2,1,6] => [1,6,2,3,4,5,7] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[[.,.],[.,[.,.]]]],[.,.]]
=> [7,5,4,2,3,1,6] => [1,6,2,3,4,5,7] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[[.,.],[[.,.],.]]],[.,.]]
=> [7,4,5,2,3,1,6] => [1,6,2,3,4,5,7] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[[.,[.,.]],[.,.]]],[.,.]]
=> [7,5,3,2,4,1,6] => [1,6,2,4,3,5,7] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[[[.,.],.],[.,.]]],[.,.]]
=> [7,5,2,3,4,1,6] => [1,6,2,3,4,5,7] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[[.,[.,[.,.]]],.]],[.,.]]
=> [7,4,3,2,5,1,6] => [1,6,2,5,3,4,7] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[[.,[[.,.],.]],.]],[.,.]]
=> [7,3,4,2,5,1,6] => [1,6,2,5,3,4,7] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[[[.,.],[.,.]],.]],[.,.]]
=> [7,4,2,3,5,1,6] => [1,6,2,3,5,4,7] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[[[.,[.,.]],.],.]],[.,.]]
=> [7,3,2,4,5,1,6] => [1,6,2,4,5,3,7] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[[[[.,.],.],.],.]],[.,.]]
=> [7,2,3,4,5,1,6] => [1,6,2,3,4,5,7] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[[.,[.,[.,[.,.]]]],.],[.,.]]
=> [7,4,3,2,1,5,6] => [1,5,6,2,3,4,7] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[[.,[.,[[.,.],.]]],.],[.,.]]
=> [7,3,4,2,1,5,6] => [1,5,6,2,3,4,7] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[[.,[[.,.],[.,.]]],.],[.,.]]
=> [7,4,2,3,1,5,6] => [1,5,6,2,3,4,7] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[[.,[[.,[.,.]],.]],.],[.,.]]
=> [7,3,2,4,1,5,6] => [1,5,6,2,4,3,7] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[[.,[[[.,.],.],.]],.],[.,.]]
=> [7,2,3,4,1,5,6] => [1,5,6,2,3,4,7] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[.,[.,[.,[.,[.,.]]]]]],.]
=> [6,5,4,3,2,1,7] => [1,7,2,3,4,5,6] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[.,[.,[.,[[.,.],.]]]]],.]
=> [5,6,4,3,2,1,7] => [1,7,2,3,4,5,6] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[.,[.,[[.,.],[.,.]]]]],.]
=> [6,4,5,3,2,1,7] => [1,7,2,3,4,5,6] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[.,[.,[[.,[.,.]],.]]]],.]
=> [5,4,6,3,2,1,7] => [1,7,2,3,4,6,5] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[.,[.,[[[.,.],.],.]]]],.]
=> [4,5,6,3,2,1,7] => [1,7,2,3,4,5,6] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[.,[[.,.],[.,[.,.]]]]],.]
=> [6,5,3,4,2,1,7] => [1,7,2,3,4,5,6] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[.,[[.,.],[[.,.],.]]]],.]
=> [5,6,3,4,2,1,7] => [1,7,2,3,4,5,6] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[.,[[.,[.,.]],[.,.]]]],.]
=> [6,4,3,5,2,1,7] => [1,7,2,3,5,4,6] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[.,[[[.,.],.],[.,.]]]],.]
=> [6,3,4,5,2,1,7] => [1,7,2,3,4,5,6] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[.,[[.,[.,[.,.]]],.]]],.]
=> [5,4,3,6,2,1,7] => [1,7,2,3,6,4,5] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[.,[[.,[[.,.],.]],.]]],.]
=> [4,5,3,6,2,1,7] => [1,7,2,3,6,4,5] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[.,[[[.,.],[.,.]],.]]],.]
=> [5,3,4,6,2,1,7] => [1,7,2,3,4,6,5] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[.,[[[.,[.,.]],.],.]]],.]
=> [4,3,5,6,2,1,7] => [1,7,2,3,5,6,4] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[.,[[[[.,.],.],.],.]]],.]
=> [3,4,5,6,2,1,7] => [1,7,2,3,4,5,6] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[[.,.],[.,[.,[.,.]]]]],.]
=> [6,5,4,2,3,1,7] => [1,7,2,3,4,5,6] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[[.,.],[.,[[.,.],.]]]],.]
=> [5,6,4,2,3,1,7] => [1,7,2,3,4,5,6] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[[.,.],[[.,.],[.,.]]]],.]
=> [6,4,5,2,3,1,7] => [1,7,2,3,4,5,6] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[[.,.],[[.,[.,.]],.]]],.]
=> [5,4,6,2,3,1,7] => [1,7,2,3,4,6,5] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[[.,.],[[[.,.],.],.]]],.]
=> [4,5,6,2,3,1,7] => [1,7,2,3,4,5,6] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
[[.,[[.,[.,.]],[.,[.,.]]]],.]
=> [6,5,3,2,4,1,7] => [1,7,2,4,3,5,6] => ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2}
Description
The tier of a permutation. This is the number of elements $i$ such that $[i+1,k,i]$ is an occurrence of the pattern $[2,3,1]$. For example, $[3,5,6,1,2,4]$ has tier $2$, with witnesses $[3,5,2]$ (or $[3,6,2]$) and $[5,6,4]$. According to [1], this is the number of passes minus one needed to sort the permutation using a single stack. The generating function for this statistic appears as [[OEIS:A122890]] and [[OEIS:A158830]] in the form of triangles read by rows, see [sec. 4, 1].
Matching statistic: St001632
Mp00013: Binary trees to posetPosets
Mp00206: Posets antichains of maximal sizeLattices
Mp00193: Lattices to posetPosets
St001632: Posets ⟶ ℤResult quality: 67% values known / values provided: 81%distinct values known / distinct values provided: 67%
Values
[.,.]
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 0 + 1
[.,[.,.]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[[.,.],.]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ? = 0 + 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,1} + 1
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,1} + 1
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1} + 1
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1} + 1
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1} + 1
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1} + 1
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1} + 1
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1} + 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[.,[[.,[[.,.],[.,.]]],.]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[.,[[[[.,.],[.,.]],.],.]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[[.,.],[.,[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[[.,.],[[[.,.],[.,.]],.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[[.,[[.,.],[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[[[[.,.],[.,.]],.],[.,.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[[.,[.,[[.,.],[.,.]]]],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[[.,[[[.,.],[.,.]],.]],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[[[[.,.],[.,.]],[.,.]],.]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[[[.,[[.,.],[.,.]]],.],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[[[[[.,.],[.,.]],.],.],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[.,[[.,.],[[.,.],[.,.]]]]]
=> ([(0,6),(1,5),(2,5),(3,4),(5,6),(6,3)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[.,[[[.,.],[.,.]],[.,.]]]]
=> ([(0,6),(1,5),(2,5),(3,4),(5,6),(6,3)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[.,[[.,[[.,.],[.,.]]],.]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[.,[[[[.,.],[.,.]],.],.]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[[.,.],[.,[[.,.],[.,.]]]]]
=> ([(0,6),(1,5),(2,5),(4,6),(5,4),(6,3)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[[.,.],[[[.,.],[.,.]],.]]]
=> ([(0,6),(1,5),(2,5),(4,6),(5,4),(6,3)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[[.,[[.,.],[.,.]]],[.,.]]]
=> ([(0,6),(1,5),(2,5),(4,6),(5,4),(6,3)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[[[[.,.],[.,.]],.],[.,.]]]
=> ([(0,6),(1,5),(2,5),(4,6),(5,4),(6,3)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[[.,[.,[[.,.],[.,.]]]],.]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[[.,[[[.,.],[.,.]],.]],.]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[[[.,.],[[.,.],[.,.]]],.]]
=> ([(0,6),(1,5),(2,5),(3,4),(5,6),(6,3)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[[[[.,.],[.,.]],[.,.]],.]]
=> ([(0,6),(1,5),(2,5),(3,4),(5,6),(6,3)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[[[.,[[.,.],[.,.]]],.],.]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[[[[[.,.],[.,.]],.],.],.]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[[.,.],[.,[.,[[.,.],[.,.]]]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(6,3)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[[.,.],[.,[[[.,.],[.,.]],.]]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(6,3)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[[.,.],[[.,.],[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[[.,.],[[[.,.],[.,.]],[.,.]]]
=> ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[[.,.],[[.,[[.,.],[.,.]]],.]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(6,3)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[[.,.],[[[[.,.],[.,.]],.],.]]
=> ([(0,6),(1,6),(2,5),(3,4),(4,5),(6,3)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[[.,[.,.]],[.,[.,[.,[.,.]]]]]
=> ([(0,5),(1,3),(2,6),(3,6),(4,2),(5,4)],7)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[[.,[.,.]],[.,[.,[[.,.],.]]]]
=> ([(0,5),(1,3),(2,6),(3,6),(4,2),(5,4)],7)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,7),(4,3),(4,5),(5,7),(7,6)],8)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
Description
The number of indecomposable injective modules $I$ with $dim Ext^1(I,A)=1$ for the incidence algebra A of a poset.
Matching statistic: St000506
Mp00013: Binary trees to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000506: Integer partitions ⟶ ℤResult quality: 67% values known / values provided: 80%distinct values known / distinct values provided: 67%
Values
[.,.]
=> ([],1)
=> [1]
=> []
=> ? = 0
[.,[.,.]]
=> ([(0,1)],2)
=> [2]
=> []
=> ? ∊ {0,0}
[[.,.],.]
=> ([(0,1)],2)
=> [2]
=> []
=> ? ∊ {0,0}
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> ? ∊ {0,0,0,0}
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> ? ∊ {0,0,0,0}
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1]
=> 0
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> ? ∊ {0,0,0,0}
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> ? ∊ {0,0,0,0}
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> 0
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> 0
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> 0
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> 0
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> 0
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> 0
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 0
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 0
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 0
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 0
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [1]
=> 0
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[.,[[.,.],[.,[.,.]]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [5,1]
=> [1]
=> 0
[.,[.,[[.,.],[[.,.],.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [5,1]
=> [1]
=> 0
[.,[.,[[.,[.,.]],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [5,1]
=> [1]
=> 0
[.,[.,[[[.,.],.],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [5,1]
=> [1]
=> 0
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [1]
=> 0
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[[.,.],[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 0
[.,[[.,.],[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 0
[.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> [4,1,1]
=> [1,1]
=> 1
[.,[[.,.],[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 0
[.,[[.,.],[[[.,.],.],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 0
[.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> [2]
=> 0
[.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> [2]
=> 0
[.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> [2]
=> 0
[.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> [2]
=> 0
[.,[[.,[.,[.,.]]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 0
[.,[[.,[[.,.],.]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 0
[.,[[.,[.,[.,[.,.]]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[[.,[.,[[.,.],.]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[[.,[[.,[.,.]],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[[.,[[[.,.],.],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[[[.,[.,[.,.]]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[[[.,[[.,.],.]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[[[[.,[.,.]],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
Description
The number of standard desarrangement tableaux of shape equal to the given partition. A '''standard desarrangement tableau''' is a standard tableau whose first ascent is even. Here, an ascent of a standard tableau is an entry $i$ such that $i+1$ appears to the right or above $i$ in the tableau (with respect to English tableau notation). This is also the nullity of the random-to-random operator (and the random-to-top) operator acting on the simple module of the symmetric group indexed by the given partition. See also: * [[St000046]]: The largest eigenvalue of the random to random operator acting on the simple module corresponding to the given partition * [[St000500]]: Eigenvalues of the random-to-random operator acting on the regular representation.
Matching statistic: St001176
Mp00013: Binary trees to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001176: Integer partitions ⟶ ℤResult quality: 80% values known / values provided: 80%distinct values known / distinct values provided: 100%
Values
[.,.]
=> ([],1)
=> [1]
=> []
=> ? = 0
[.,[.,.]]
=> ([(0,1)],2)
=> [2]
=> []
=> ? ∊ {0,0}
[[.,.],.]
=> ([(0,1)],2)
=> [2]
=> []
=> ? ∊ {0,0}
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> ? ∊ {0,0,0,0}
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> ? ∊ {0,0,0,0}
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1]
=> 0
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> ? ∊ {0,0,0,0}
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> ? ∊ {0,0,0,0}
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> 0
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> 0
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> 0
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> 0
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> 0
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> 0
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 0
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 0
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 0
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 0
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [1]
=> 0
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[.,[[.,.],[.,[.,.]]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [5,1]
=> [1]
=> 0
[.,[.,[[.,.],[[.,.],.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [5,1]
=> [1]
=> 0
[.,[.,[[.,[.,.]],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [5,1]
=> [1]
=> 0
[.,[.,[[[.,.],.],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [5,1]
=> [1]
=> 0
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [1]
=> 0
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[[.,.],[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 0
[.,[[.,.],[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 0
[.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> [4,1,1]
=> [1,1]
=> 1
[.,[[.,.],[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 0
[.,[[.,.],[[[.,.],.],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 0
[.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> [2]
=> 0
[.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> [2]
=> 0
[.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> [2]
=> 0
[.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> [2]
=> 0
[.,[[.,[.,[.,.]]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 0
[.,[[.,[[.,.],.]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 0
[.,[[.,[.,[.,[.,.]]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[[.,[.,[[.,.],.]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[[.,[[.,[.,.]],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[[.,[[[.,.],.],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[[[.,[.,[.,.]]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[[[.,[[.,.],.]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[[[[.,[.,.]],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
Description
The size of a partition minus its first part. This is the number of boxes in its diagram that are not in the first row.
Matching statistic: St001440
Mp00013: Binary trees to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001440: Integer partitions ⟶ ℤResult quality: 67% values known / values provided: 80%distinct values known / distinct values provided: 67%
Values
[.,.]
=> ([],1)
=> [1]
=> []
=> ? = 0
[.,[.,.]]
=> ([(0,1)],2)
=> [2]
=> []
=> ? ∊ {0,0}
[[.,.],.]
=> ([(0,1)],2)
=> [2]
=> []
=> ? ∊ {0,0}
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> ? ∊ {0,0,0,0}
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> ? ∊ {0,0,0,0}
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1]
=> 0
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> ? ∊ {0,0,0,0}
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> ? ∊ {0,0,0,0}
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> 0
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> 0
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> 0
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> 0
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> 0
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> 0
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 0
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 0
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 0
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 1
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 0
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 0
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1}
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [1]
=> 0
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[.,[[.,.],[.,[.,.]]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [5,1]
=> [1]
=> 0
[.,[.,[[.,.],[[.,.],.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [5,1]
=> [1]
=> 0
[.,[.,[[.,[.,.]],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [5,1]
=> [1]
=> 0
[.,[.,[[[.,.],.],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [5,1]
=> [1]
=> 0
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [1]
=> 0
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[[.,.],[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 0
[.,[[.,.],[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 0
[.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> [4,1,1]
=> [1,1]
=> 1
[.,[[.,.],[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 0
[.,[[.,.],[[[.,.],.],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 0
[.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> [2]
=> 0
[.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> [2]
=> 0
[.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> [2]
=> 0
[.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> [2]
=> 0
[.,[[.,[.,[.,.]]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 0
[.,[[.,[[.,.],.]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 0
[.,[[.,[.,[.,[.,.]]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[[.,[.,[[.,.],.]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[[.,[[.,[.,.]],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[[.,[[[.,.],.],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[[[.,[.,[.,.]]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[[[.,[[.,.],.]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[[[[.,[.,.]],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
[[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2}
Description
The number of standard Young tableaux whose major index is congruent one modulo the size of a given integer partition.
Matching statistic: St001587
Mp00013: Binary trees to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001587: Integer partitions ⟶ ℤResult quality: 67% values known / values provided: 80%distinct values known / distinct values provided: 67%
Values
[.,.]
=> ([],1)
=> [1]
=> []
=> ? = 0
[.,[.,.]]
=> ([(0,1)],2)
=> [2]
=> []
=> ? ∊ {0,0}
[[.,.],.]
=> ([(0,1)],2)
=> [2]
=> []
=> ? ∊ {0,0}
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> ? ∊ {0,0,0,0}
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> ? ∊ {0,0,0,0}
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1]
=> 0
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> ? ∊ {0,0,0,0}
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> ? ∊ {0,0,0,0}
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> 0
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> 0
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> 0
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> 0
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> 0
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> 0
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 0
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 0
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 0
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 0
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [1]
=> 0
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[.,[.,[[.,.],[.,[.,.]]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [5,1]
=> [1]
=> 0
[.,[.,[[.,.],[[.,.],.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [5,1]
=> [1]
=> 0
[.,[.,[[.,[.,.]],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [5,1]
=> [1]
=> 0
[.,[.,[[[.,.],.],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [5,1]
=> [1]
=> 0
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [1]
=> 0
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[.,[[.,.],[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 0
[.,[[.,.],[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 0
[.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> [4,1,1]
=> [1,1]
=> 0
[.,[[.,.],[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 0
[.,[[.,.],[[[.,.],.],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 0
[.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> [2]
=> 1
[.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> [2]
=> 1
[.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> [2]
=> 1
[.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> [2]
=> 1
[.,[[.,[.,[.,.]]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 0
[.,[[.,[[.,.],.]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 0
[.,[[.,[.,[.,[.,.]]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[.,[[.,[.,[[.,.],.]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[.,[[.,[[.,[.,.]],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[.,[[.,[[[.,.],.],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[.,[[[.,[.,[.,.]]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[.,[[[.,[[.,.],.]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[.,[[[[.,[.,.]],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
Description
Half of the largest even part of an integer partition. The largest even part is recorded by [[St000995]].
Matching statistic: St001657
Mp00013: Binary trees to posetPosets
Mp00110: Posets Greene-Kleitman invariantInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St001657: Integer partitions ⟶ ℤResult quality: 67% values known / values provided: 80%distinct values known / distinct values provided: 67%
Values
[.,.]
=> ([],1)
=> [1]
=> []
=> ? = 0
[.,[.,.]]
=> ([(0,1)],2)
=> [2]
=> []
=> ? ∊ {0,0}
[[.,.],.]
=> ([(0,1)],2)
=> [2]
=> []
=> ? ∊ {0,0}
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> ? ∊ {0,0,0,0}
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> ? ∊ {0,0,0,0}
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> [2,1]
=> [1]
=> 0
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> ? ∊ {0,0,0,0}
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> [3]
=> []
=> ? ∊ {0,0,0,0}
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> 0
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> 0
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> 0
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> 0
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> [3,1]
=> [1]
=> 0
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> [3,1]
=> [1]
=> 0
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> [4]
=> []
=> ? ∊ {0,0,0,0,0,0,0,1}
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 0
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 0
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> [3,2]
=> [2]
=> 1
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> [3,1,1]
=> [1,1]
=> 0
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> [4,1]
=> [1]
=> 0
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 0
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> [4,1]
=> [1]
=> 0
[[[.,[.,[.,.]]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[[.,[[.,.],.]],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> [4,1]
=> [1]
=> 0
[[[[.,[.,.]],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[[[[[.,.],.],.],.],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> [5]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1}
[.,[.,[.,[.,[.,[.,.]]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[.,[.,[.,[.,[[.,.],.]]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [1]
=> 0
[.,[.,[.,[[.,[.,.]],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[.,[.,[.,[[[.,.],.],.]]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[.,[.,[[.,.],[.,[.,.]]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [5,1]
=> [1]
=> 0
[.,[.,[[.,.],[[.,.],.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [5,1]
=> [1]
=> 0
[.,[.,[[.,[.,.]],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [5,1]
=> [1]
=> 0
[.,[.,[[[.,.],.],[.,.]]]]
=> ([(0,5),(1,3),(3,5),(4,2),(5,4)],6)
=> [5,1]
=> [1]
=> 0
[.,[.,[[.,[.,[.,.]]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[.,[.,[[.,[[.,.],.]],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> [5,1]
=> [1]
=> 0
[.,[.,[[[.,[.,.]],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[.,[.,[[[[.,.],.],.],.]]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[.,[[.,.],[.,[.,[.,.]]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 0
[.,[[.,.],[.,[[.,.],.]]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 0
[.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> [4,1,1]
=> [1,1]
=> 0
[.,[[.,.],[[.,[.,.]],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 0
[.,[[.,.],[[[.,.],.],.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 0
[.,[[.,[.,.]],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> [2]
=> 1
[.,[[.,[.,.]],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> [2]
=> 1
[.,[[[.,.],.],[.,[.,.]]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> [2]
=> 1
[.,[[[.,.],.],[[.,.],.]]]
=> ([(0,4),(1,3),(3,5),(4,5),(5,2)],6)
=> [4,2]
=> [2]
=> 1
[.,[[.,[.,[.,.]]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 0
[.,[[.,[[.,.],.]],[.,.]]]
=> ([(0,5),(1,4),(2,5),(4,2),(5,3)],6)
=> [5,1]
=> [1]
=> 0
[.,[[.,[.,[.,[.,.]]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[.,[[.,[.,[[.,.],.]]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[.,[[.,[[.,[.,.]],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[.,[[.,[[[.,.],.],.]],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[.,[[[.,[.,[.,.]]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[.,[[[.,[[.,.],.]],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[.,[[[[.,[.,.]],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[.,[[[[[.,.],.],.],.],.]]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[[.,[.,[.,[.,[.,.]]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[[.,[.,[.,[[.,.],.]]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
[[.,[.,[[.,[.,.]],.]]],.]
=> ([(0,5),(2,4),(3,2),(4,1),(5,3)],6)
=> [6]
=> []
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,2}
Description
The number of twos in an integer partition. The total number of twos in all partitions of $n$ is equal to the total number of singletons [[St001484]] in all partitions of $n-1$, see [1].
Matching statistic: St000640
Mp00013: Binary trees to posetPosets
Mp00206: Posets antichains of maximal sizeLattices
Mp00193: Lattices to posetPosets
St000640: Posets ⟶ ℤResult quality: 67% values known / values provided: 71%distinct values known / distinct values provided: 67%
Values
[.,.]
=> ([],1)
=> ([],1)
=> ([],1)
=> ? = 0 + 1
[.,[.,.]]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[[.,.],.]
=> ([(0,1)],2)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[.,[.,[.,.]]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[[.,.],.]]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[.,.],[.,.]]
=> ([(0,2),(1,2)],3)
=> ([],1)
=> ([],1)
=> ? = 0 + 1
[[.,[.,.]],.]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[.,.],.],.]
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[.,[.,[.,[.,.]]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[.,[.,[[.,.],.]]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[.,[[.,.],[.,.]]]
=> ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,1} + 1
[.,[[.,[.,.]],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[.,[[[.,.],.],.]]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[.,.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[[.,.],[[.,.],.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[[.,[.,.]],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[[[.,.],.],[.,.]]
=> ([(0,3),(1,2),(2,3)],4)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[[.,[.,[.,.]]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[.,[[.,.],.]],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[[.,.],[.,.]],.]
=> ([(0,3),(1,3),(3,2)],4)
=> ([],1)
=> ([],1)
=> ? ∊ {0,1} + 1
[[[.,[.,.]],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[[[[.,.],.],.],.]
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> ([(0,3),(2,1),(3,2)],4)
=> 1 = 0 + 1
[.,[.,[.,[.,[.,.]]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[.,[.,[[.,.],.]]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[.,[[.,.],[.,.]]]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1} + 1
[.,[.,[[.,[.,.]],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[.,[[[.,.],.],.]]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[[.,.],[.,[.,.]]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[.,[[.,.],[[.,.],.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[.,[[.,[.,.]],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[.,[[[.,.],.],[.,.]]]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[.,[[.,[.,[.,.]]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[[.,[[.,.],.]],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[[[.,.],[.,.]],.]]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1} + 1
[.,[[[.,[.,.]],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[.,[[[[.,.],.],.],.]]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[.,.],[.,[.,[.,.]]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[.,.],[.,[[.,.],.]]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[.,.],[[.,.],[.,.]]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1} + 1
[[.,.],[[.,[.,.]],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[.,.],[[[.,.],.],.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[.,[.,.]],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[.,[.,.]],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[.,.],.],[.,[.,.]]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[[.,.],.],[[.,.],.]]
=> ([(0,3),(1,2),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,3),(2,3)],4)
=> 2 = 1 + 1
[[.,[.,[.,.]]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[.,[[.,.],.]],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[.,.],[.,.]],[.,.]]
=> ([(0,4),(1,3),(2,3),(3,4)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1} + 1
[[[.,[.,.]],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[[[.,.],.],.],[.,.]]
=> ([(0,4),(1,2),(2,3),(3,4)],5)
=> ([(0,2),(2,1)],3)
=> ([(0,2),(2,1)],3)
=> 1 = 0 + 1
[[.,[.,[.,[.,.]]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[.,[.,[[.,.],.]]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[.,[[.,.],[.,.]]],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1} + 1
[[.,[[.,[.,.]],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[.,[[[.,.],.],.]],.]
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> ([(0,4),(2,3),(3,1),(4,2)],5)
=> 1 = 0 + 1
[[[.,.],[.,[.,.]]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[[[.,.],[[.,.],.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[[[.,[.,.]],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[[[[.,.],.],[.,.]],.]
=> ([(0,4),(1,2),(2,4),(4,3)],5)
=> ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 0 + 1
[[[[.,.],[.,.]],.],.]
=> ([(0,4),(1,4),(2,3),(4,2)],5)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,1,1,1} + 1
[.,[.,[.,[[.,.],[.,.]]]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[.,[.,[[[.,.],[.,.]],.]]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[.,[[.,.],[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[.,[[[.,.],[.,.]],[.,.]]]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[.,[[.,[[.,.],[.,.]]],.]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[.,[[[[.,.],[.,.]],.],.]]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[[.,.],[.,[[.,.],[.,.]]]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[[.,.],[[[.,.],[.,.]],.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[[.,[[.,.],[.,.]]],[.,.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[[[[.,.],[.,.]],.],[.,.]]
=> ([(0,5),(1,4),(2,4),(3,5),(4,3)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[[.,[.,[[.,.],[.,.]]]],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[[.,[[[.,.],[.,.]],.]],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[[[.,.],[[.,.],[.,.]]],.]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[[[[.,.],[.,.]],[.,.]],.]
=> ([(0,5),(1,4),(2,4),(4,5),(5,3)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[[[.,[[.,.],[.,.]]],.],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[[[[[.,.],[.,.]],.],.],.]
=> ([(0,5),(1,5),(3,2),(4,3),(5,4)],6)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,2} + 1
[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[.,[.,[.,[.,[[.,.],.]]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[.,[.,[.,[[.,.],[.,.]]]]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[.,[.,[.,[[.,[.,.]],.]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[.,[.,[.,[[[.,.],.],.]]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[.,[.,[[.,[.,[.,.]]],.]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[.,[.,[[.,[[.,.],.]],.]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[.,[.,[[[.,.],[.,.]],.]]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[.,[.,[[[.,[.,.]],.],.]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[.,[.,[[[[.,.],.],.],.]]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[.,[[.,.],[[.,.],[.,.]]]]]
=> ([(0,6),(1,5),(2,5),(3,4),(5,6),(6,3)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[.,[[[.,.],[.,.]],[.,.]]]]
=> ([(0,6),(1,5),(2,5),(3,4),(5,6),(6,3)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[.,[[.,[.,[.,[.,.]]]],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[.,[[.,[.,[[.,.],.]]],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[.,[[.,[[.,.],[.,.]]],.]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[.,[[.,[[.,[.,.]],.]],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[.,[[.,[[[.,.],.],.]],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[.,[[[.,[.,[.,.]]],.],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[.,[[[.,[[.,.],.]],.],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[.,[[[[.,.],[.,.]],.],.]]]
=> ([(0,6),(1,6),(3,4),(4,2),(5,3),(6,5)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[.,[[[[.,[.,.]],.],.],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[.,[[[[[.,.],.],.],.],.]]]
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[[.,.],[.,[[.,.],[.,.]]]]]
=> ([(0,6),(1,5),(2,5),(4,6),(5,4),(6,3)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
[.,[[.,.],[[[.,.],[.,.]],.]]]
=> ([(0,6),(1,5),(2,5),(4,6),(5,4),(6,3)],7)
=> ([],1)
=> ([],1)
=> ? ∊ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2} + 1
Description
The rank of the largest boolean interval in a poset.
The following 93 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001124The multiplicity of the standard representation in the Kronecker square corresponding to a partition. St000455The second largest eigenvalue of a graph if it is integral. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St000929The constant term of the character polynomial of an integer partition. St000478Another weight of a partition according to Alladi. St001394The genus of a permutation. St001728The number of invisible descents of a permutation. St000375The number of non weak exceedences of a permutation that are mid-points of a decreasing subsequence of length $3$. St000512The number of invariant subsets of size 3 when acting with a permutation of given cycle type. St000620The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is odd. St000621The number of standard tableaux of shape equal to the given partition such that the minimal cyclic descent is even. St000934The 2-degree of an integer partition. St000938The number of zeros of the symmetric group character corresponding to the partition. St000941The number of characters of the symmetric group whose value on the partition is even. St000664The number of right ropes of a permutation. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St001498The normalised height of a Nakayama algebra with magnitude 1. St000360The number of occurrences of the pattern 32-1. St001744The number of occurrences of the arrow pattern 1-2 with an arrow from 1 to 2 in a permutation. St001271The competition number of a graph. St000379The number of Hamiltonian cycles in a graph. St000259The diameter of a connected graph. St000260The radius of a connected graph. St000302The determinant of the distance matrix of a connected graph. St000466The Gutman (or modified Schultz) index of a connected graph. St000467The hyper-Wiener index of a connected graph. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000772The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. St000777The number of distinct eigenvalues of the distance Laplacian of a connected graph. St001645The pebbling number of a connected graph. St001330The hat guessing number of a graph. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001877Number of indecomposable injective modules with projective dimension 2. St000660The number of rises of length at least 3 of a Dyck path. St000031The number of cycles in the cycle decomposition of a permutation. St001719The number of shortest chains of small intervals from the bottom to the top in a lattice. St001720The minimal length of a chain of small intervals in a lattice. St001964The interval resolution global dimension of a poset. St000655The length of the minimal rise of a Dyck path. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001435The number of missing boxes in the first row. St001438The number of missing boxes of a skew partition. St001208The number of connected components of the quiver of $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra $A$ of $K[x]/(x^n)$. St001181Number of indecomposable injective modules with grade at least 3 in the corresponding Nakayama algebra. St001549The number of restricted non-inversions between exceedances. St001550The number of inversions between exceedances where the greater exceedance is linked. St001493The number of simple modules with maximal even projective dimension in the corresponding Nakayama algebra. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St001960The number of descents of a permutation minus one if its first entry is not one. St001845The number of join irreducibles minus the rank of a lattice. St000068The number of minimal elements in a poset. St000741The Colin de Verdière graph invariant. St001490The number of connected components of a skew partition. St000842The breadth of a permutation. St000181The number of connected components of the Hasse diagram for the poset. St001862The number of crossings of a signed permutation. St001868The number of alignments of type NE of a signed permutation. St001882The number of occurrences of a type-B 231 pattern in a signed permutation. St001890The maximum magnitude of the Möbius function of a poset. St001095The number of non-isomorphic posets with precisely one further covering relation. St001301The first Betti number of the order complex associated with the poset. St001396Number of triples of incomparable elements in a finite poset. St000908The length of the shortest maximal antichain in a poset. St000914The sum of the values of the Möbius function of a poset. St001532The leading coefficient of the Poincare polynomial of the poset cone. St001533The largest coefficient of the Poincare polynomial of the poset cone. St001634The trace of the Coxeter matrix of the incidence algebra of a poset. St000629The defect of a binary word. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001875The number of simple modules with projective dimension at most 1. St000383The last part of an integer composition. St001867The number of alignments of type EN of a signed permutation. St001137Number of simple modules that are 3-regular in the corresponding Nakayama algebra. St001141The number of occurrences of hills of size 3 in a Dyck path. St001171The vector space dimension of $Ext_A^1(I_o,A)$ when $I_o$ is the tilting module corresponding to the permutation $o$ in the Auslander algebra $A$ of $K[x]/(x^n)$. St001193The dimension of $Ext_A^1(A/AeA,A)$ in the corresponding Nakayama algebra $A$ such that $eA$ is a minimal faithful projective-injective module. St001570The minimal number of edges to add to make a graph Hamiltonian. St001811The Castelnuovo-Mumford regularity of a permutation. St000805The number of peaks of the associated bargraph. St000900The minimal number of repetitions of a part in an integer composition. St000968We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) $[c_0,c_1,...,c_{n−1}]$ by adding $c_0$ to $c_{n−1}$. St001162The minimum jump of a permutation. St001344The neighbouring number of a permutation. St000445The number of rises of length 1 of a Dyck path. St000980The number of boxes weakly below the path and above the diagonal that lie below at least two peaks. St001107The number of times one can erase the first up and the last down step in a Dyck path and still remain a Dyck path. St001172The number of 1-rises at odd height of a Dyck path. St001207The Lowey length of the algebra $A/T$ when $T$ is the 1-tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$. St001584The area statistic between a Dyck path and its bounce path. St001613The binary logarithm of the size of the center of a lattice. St001881The number of factors of a lattice as a Cartesian product of lattices.