Your data matches 165 different statistics following compositions of up to 3 maps.
(click to perform a complete search on your data)
St001135: Dyck paths ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> 1
[1,0,1,0]
=> 2
[1,1,0,0]
=> 1
[1,0,1,0,1,0]
=> 3
[1,0,1,1,0,0]
=> 1
[1,1,0,0,1,0]
=> 2
[1,1,0,1,0,0]
=> 2
[1,1,1,0,0,0]
=> 1
[1,0,1,0,1,0,1,0]
=> 4
[1,0,1,0,1,1,0,0]
=> 1
[1,0,1,1,0,0,1,0]
=> 2
[1,0,1,1,0,1,0,0]
=> 3
[1,0,1,1,1,0,0,0]
=> 1
[1,1,0,0,1,0,1,0]
=> 3
[1,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,0,1,0]
=> 3
[1,1,0,1,0,1,0,0]
=> 3
[1,1,0,1,1,0,0,0]
=> 1
[1,1,1,0,0,0,1,0]
=> 2
[1,1,1,0,0,1,0,0]
=> 2
[1,1,1,0,1,0,0,0]
=> 2
[1,1,1,1,0,0,0,0]
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> 5
[1,0,1,0,1,0,1,1,0,0]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> 2
[1,0,1,0,1,1,0,1,0,0]
=> 4
[1,0,1,0,1,1,1,0,0,0]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> 3
[1,0,1,1,0,0,1,1,0,0]
=> 1
[1,0,1,1,0,1,0,0,1,0]
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> 4
[1,0,1,1,0,1,1,0,0,0]
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> 1
[1,1,0,0,1,0,1,0,1,0]
=> 4
[1,1,0,0,1,0,1,1,0,0]
=> 1
[1,1,0,0,1,1,0,0,1,0]
=> 2
[1,1,0,0,1,1,0,1,0,0]
=> 3
[1,1,0,0,1,1,1,0,0,0]
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> 4
[1,1,0,1,0,0,1,1,0,0]
=> 1
[1,1,0,1,0,1,0,0,1,0]
=> 4
[1,1,0,1,0,1,0,1,0,0]
=> 3
[1,1,0,1,0,1,1,0,0,0]
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> 3
[1,1,0,1,1,0,1,0,0,0]
=> 3
[1,1,0,1,1,1,0,0,0,0]
=> 1
Description
The projective dimension of the first simple module in the Nakayama algebra corresponding to the Dyck path.
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00239: Permutations CorteelPermutations
Mp00236: Permutations Clarke-Steingrimsson-Zeng inversePermutations
St000007: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1] => 1
[1,0,1,0]
=> [1,2] => [1,2] => [1,2] => 1
[1,1,0,0]
=> [2,1] => [2,1] => [2,1] => 2
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [1,2,3] => 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => [1,3,2] => 2
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [2,1,3] => 1
[1,1,0,1,0,0]
=> [2,3,1] => [3,2,1] => [2,3,1] => 2
[1,1,1,0,0,0]
=> [3,2,1] => [2,3,1] => [3,2,1] => 3
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [1,2,3,4] => 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => [1,2,4,3] => 2
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => [1,3,2,4] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => [1,3,4,2] => 2
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,3,4,2] => [1,4,3,2] => 3
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [2,1,3,4] => 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => [2,1,4,3] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => [2,3,1,4] => 1
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,2,3,1] => [2,3,4,1] => 2
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [3,2,4,1] => [2,4,3,1] => 3
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [2,3,1,4] => [3,2,1,4] => 1
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [2,4,3,1] => [3,4,2,1] => 3
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [2,3,4,1] => [4,3,2,1] => 4
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [3,4,1,2] => [4,1,3,2] => 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => [1,2,3,5,4] => 2
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => [1,2,4,5,3] => 2
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,4,5,3] => [1,2,5,4,3] => 3
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [1,3,2,5,4] => 2
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => [1,3,4,2,5] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => [1,3,4,5,2] => 2
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,4,3,5,2] => [1,3,5,4,2] => 3
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,3,4,2,5] => [1,4,3,2,5] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,3,5,4,2] => [1,4,5,3,2] => 3
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,3,4,5,2] => [1,5,4,3,2] => 4
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,4,5,2,3] => [1,5,2,4,3] => 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [2,1,3,4,5] => 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [2,1,3,5,4] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [2,1,4,3,5] => 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => [2,1,4,5,3] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,4,5,3] => [2,1,5,4,3] => 3
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => [2,3,1,4,5] => 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => [2,3,1,5,4] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => [2,3,4,1,5] => 1
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => [2,3,4,5,1] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [4,2,3,5,1] => [2,3,5,4,1] => 3
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [3,2,4,1,5] => [2,4,3,1,5] => 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [3,2,5,4,1] => [2,4,5,3,1] => 3
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [3,2,4,5,1] => [2,5,4,3,1] => 4
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [4,2,5,1,3] => [2,5,1,4,3] => 3
Description
The number of saliances of the permutation. A saliance is a right-to-left maximum. This can be described as an occurrence of the mesh pattern $([1], {(1,1)})$, i.e., the upper right quadrant is shaded, see [1].
Mp00023: Dyck paths to non-crossing permutationPermutations
Mp00239: Permutations CorteelPermutations
Mp00089: Permutations Inverse Kreweras complementPermutations
St000991: Permutations ⟶ ℤResult quality: 100% values known / values provided: 100%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => [1] => [1] => 1
[1,0,1,0]
=> [1,2] => [1,2] => [2,1] => 1
[1,1,0,0]
=> [2,1] => [2,1] => [1,2] => 2
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => [2,3,1] => 1
[1,0,1,1,0,0]
=> [1,3,2] => [1,3,2] => [3,2,1] => 1
[1,1,0,0,1,0]
=> [2,1,3] => [2,1,3] => [1,3,2] => 2
[1,1,0,1,0,0]
=> [2,3,1] => [3,2,1] => [2,1,3] => 2
[1,1,1,0,0,0]
=> [3,2,1] => [2,3,1] => [1,2,3] => 3
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => [2,3,4,1] => 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,4,3] => [2,4,3,1] => 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,3,2,4] => [3,2,4,1] => 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,4,3,2] => [4,3,2,1] => 1
[1,0,1,1,1,0,0,0]
=> [1,4,3,2] => [1,3,4,2] => [4,2,3,1] => 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,3,4] => [1,3,4,2] => 2
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,1,4,3] => [1,4,3,2] => 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,2,1,4] => [2,1,4,3] => 2
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4,2,3,1] => [2,3,1,4] => 2
[1,1,0,1,1,0,0,0]
=> [2,4,3,1] => [3,2,4,1] => [2,1,3,4] => 3
[1,1,1,0,0,0,1,0]
=> [3,2,1,4] => [2,3,1,4] => [1,2,4,3] => 3
[1,1,1,0,0,1,0,0]
=> [3,2,4,1] => [2,4,3,1] => [1,3,2,4] => 3
[1,1,1,0,1,0,0,0]
=> [4,2,3,1] => [2,3,4,1] => [1,2,3,4] => 4
[1,1,1,1,0,0,0,0]
=> [4,3,2,1] => [3,4,1,2] => [4,1,2,3] => 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => [2,3,4,5,1] => 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,5,4] => [2,3,5,4,1] => 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,4,3,5] => [2,4,3,5,1] => 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,5,4,3] => [2,5,4,3,1] => 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,4,3] => [1,2,4,5,3] => [2,5,3,4,1] => 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,3,2,4,5] => [3,2,4,5,1] => 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,3,2,5,4] => [3,2,5,4,1] => 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,4,3,2,5] => [4,3,2,5,1] => 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,5,3,4,2] => [5,3,4,2,1] => 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,4,2] => [1,4,3,5,2] => [5,3,2,4,1] => 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,3,2,5] => [1,3,4,2,5] => [4,2,3,5,1] => 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,3,5,2] => [1,3,5,4,2] => [5,2,4,3,1] => 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,5,3,4,2] => [1,3,4,5,2] => [5,2,3,4,1] => 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,4,3,2] => [1,4,5,2,3] => [4,5,2,3,1] => 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,3,4,5] => [1,3,4,5,2] => 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,1,3,5,4] => [1,3,5,4,2] => 2
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,1,4,3,5] => [1,4,3,5,2] => 2
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [2,1,5,4,3] => [1,5,4,3,2] => 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,4,3] => [2,1,4,5,3] => [1,5,3,4,2] => 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,2,1,4,5] => [2,1,4,5,3] => 2
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2,1,5,4] => [2,1,5,4,3] => 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,2,3,1,5] => [2,3,1,5,4] => 2
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5,2,3,4,1] => [2,3,4,1,5] => 2
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,4,1] => [4,2,3,5,1] => [2,3,1,4,5] => 3
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,3,1,5] => [3,2,4,1,5] => [2,1,3,5,4] => 3
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,3,5,1] => [3,2,5,4,1] => [2,1,4,3,5] => 3
[1,1,0,1,1,0,1,0,0,0]
=> [2,5,3,4,1] => [3,2,4,5,1] => [2,1,3,4,5] => 4
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,4,3,1] => [4,2,5,1,3] => [2,5,1,3,4] => 3
Description
The number of right-to-left minima of a permutation. For the number of left-to-right maxima, see [[St000314]].
Matching statistic: St000741
Mp00100: Dyck paths touch compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00247: Graphs de-duplicateGraphs
St000741: Graphs ⟶ ℤResult quality: 79% values known / values provided: 79%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => ([],1)
=> ([],1)
=> 0 = 1 - 1
[1,0,1,0]
=> [1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,0,0]
=> [2] => ([],2)
=> ([],1)
=> 0 = 1 - 1
[1,0,1,0,1,0]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[1,0,1,1,0,0]
=> [1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 2 - 1
[1,1,0,0,1,0]
=> [2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,0,1,0,0]
=> [3] => ([],3)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,0,0,0]
=> [3] => ([],3)
=> ([],1)
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0]
=> [1,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,3} - 1
[1,0,1,1,1,0,0,0]
=> [1,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,3} - 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0]
=> [2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {2,2,3} - 1
[1,1,0,1,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [4] => ([],4)
=> ([],1)
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [4] => ([],4)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,1,0,0,1,0,0]
=> [4] => ([],4)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,0,1,0,0,0]
=> [4] => ([],4)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [4] => ([],4)
=> ([],1)
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,4,4} - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,4,4} - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,4,4} - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,4,4} - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,4,4} - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,4,4} - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,4,4} - 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,4,4} - 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,3,3,3,4,4} - 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,1,0,0,1,0,1,0,0]
=> [5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,0,0,1,1,0,0,0]
=> [5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,1,0,1,0,0,1,0,0]
=> [5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,0,1,0,1,0,0,0]
=> [5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,1,1,0,0,0,1,0,0]
=> [5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,1,0,0,1,0,0,0]
=> [5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,1,0,1,0,0,0,0]
=> [5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,4] => ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,4] => ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,4] => ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,4] => ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4] => ([(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
[1,1,0,1,0,0,1,1,0,1,0,0]
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
[1,1,1,0,0,0,1,1,0,1,0,0]
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
[1,1,1,0,0,0,1,1,1,0,0,0]
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
[1,1,1,0,0,1,0,0,1,1,0,0]
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
[1,1,1,0,1,0,0,0,1,1,0,0]
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
[1,1,1,1,0,0,0,0,1,1,0,0]
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5} - 1
Description
The Colin de Verdière graph invariant.
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00090: Permutations cycle-as-one-line notationPermutations
Mp00160: Permutations graph of inversionsGraphs
St001118: Graphs ⟶ ℤResult quality: 68% values known / values provided: 68%distinct values known / distinct values provided: 83%
Values
[1,0]
=> [1] => [1] => ([],1)
=> ? = 1
[1,0,1,0]
=> [1,2] => [1,2] => ([],2)
=> ? ∊ {1,2}
[1,1,0,0]
=> [2,1] => [1,2] => ([],2)
=> ? ∊ {1,2}
[1,0,1,0,1,0]
=> [1,2,3] => [1,2,3] => ([],3)
=> ? ∊ {1,2,2,3}
[1,0,1,1,0,0]
=> [1,3,2] => [1,2,3] => ([],3)
=> ? ∊ {1,2,2,3}
[1,1,0,0,1,0]
=> [2,1,3] => [1,2,3] => ([],3)
=> ? ∊ {1,2,2,3}
[1,1,0,1,0,0]
=> [2,3,1] => [1,2,3] => ([],3)
=> ? ∊ {1,2,2,3}
[1,1,1,0,0,0]
=> [3,1,2] => [1,3,2] => ([(1,2)],3)
=> 1
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,2,2,2,3,3,3,4}
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [1,2,3,4] => ([],4)
=> ? ∊ {1,2,2,2,3,3,3,4}
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,2,2,2,3,3,3,4}
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [1,2,3,4] => ([],4)
=> ? ∊ {1,2,2,2,3,3,3,4}
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [1,2,4,3] => ([(2,3)],4)
=> 1
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,2,2,2,3,3,3,4}
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [1,2,3,4] => ([],4)
=> ? ∊ {1,2,2,2,3,3,3,4}
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [1,2,3,4] => ([],4)
=> ? ∊ {1,2,2,2,3,3,3,4}
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [1,2,3,4] => ([],4)
=> ? ∊ {1,2,2,2,3,3,3,4}
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [1,2,4,3] => ([(2,3)],4)
=> 1
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [1,3,2,4] => ([(2,3)],4)
=> 1
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [1,3,4,2] => ([(1,3),(2,3)],4)
=> 2
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [1,3,2,4] => ([(2,3)],4)
=> 1
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [1,4,3,2] => ([(1,2),(1,3),(2,3)],4)
=> 3
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4}
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4}
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4}
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4}
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4}
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4}
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4}
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4}
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 3
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4}
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4}
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4}
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4}
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4}
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4}
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4}
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [1,2,3,4,5] => ([],5)
=> ? ∊ {1,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4}
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [1,2,3,5,4] => ([(3,4)],5)
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [1,2,4,5,3] => ([(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [1,2,4,3,5] => ([(3,4)],5)
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [1,2,5,4,3] => ([(2,3),(2,4),(3,4)],5)
=> 3
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [1,3,4,2,5] => ([(2,4),(3,4)],5)
=> 2
[1,1,1,0,0,1,0,1,0,0]
=> [3,1,4,5,2] => [1,3,4,5,2] => ([(1,4),(2,4),(3,4)],5)
=> 3
[1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => [1,3,5,4,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> 3
[1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[1,1,1,0,1,0,0,1,0,0]
=> [3,4,1,5,2] => [1,3,2,4,5] => ([(3,4)],5)
=> 1
[1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,1,2] => [1,3,5,2,4] => ([(1,4),(2,3),(3,4)],5)
=> 2
[1,1,1,0,1,1,0,0,0,0]
=> [3,5,1,2,4] => [1,3,2,5,4] => ([(1,4),(2,3)],5)
=> 1
[1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => [1,4,3,2,5] => ([(2,3),(2,4),(3,4)],5)
=> 3
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,3] => [1,4,5,3,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,1,1,1,0,0,1,0,0,0]
=> [4,1,5,2,3] => [1,4,2,3,5] => ([(2,4),(3,4)],5)
=> 2
[1,1,1,1,0,1,0,0,0,0]
=> [4,5,1,2,3] => [1,4,2,5,3] => ([(1,4),(2,3),(3,4)],5)
=> 2
[1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => [1,5,4,3,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 5
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,4,5] => [1,2,3,4,6,5] => ([(4,5)],6)
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [1,2,3,4,5,6] => ([],6)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [1,2,3,4,5,6] => ([],6)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => [1,2,3,4,5,6] => ([],6)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => [1,2,3,4,5,6] => ([],6)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,4,6,3,5] => [1,2,3,4,6,5] => ([(4,5)],6)
=> 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,3,4,6] => [1,2,3,5,4,6] => ([(4,5)],6)
=> 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,5,3,6,4] => [1,2,3,5,6,4] => ([(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,5,6,3,4] => [1,2,3,5,4,6] => ([(4,5)],6)
=> 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,3,4,5] => [1,2,3,6,5,4] => ([(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,6,4] => [1,2,3,4,5,6] => ([],6)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,4,5] => [1,2,3,4,6,5] => ([(4,5)],6)
=> 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,4,2,5,6] => [1,2,3,4,5,6] => ([],6)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,3,4,2,6,5] => [1,2,3,4,5,6] => ([],6)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,3,4,5,2,6] => [1,2,3,4,5,6] => ([],6)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,2] => [1,2,3,4,5,6] => ([],6)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,3,4,6,2,5] => [1,2,3,4,6,5] => ([(4,5)],6)
=> 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,3,5,2,4,6] => [1,2,3,5,4,6] => ([(4,5)],6)
=> 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,3,5,2,6,4] => [1,2,3,5,6,4] => ([(3,5),(4,5)],6)
=> 2
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,3,5,6,2,4] => [1,2,3,5,4,6] => ([(4,5)],6)
=> 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,3,6,2,4,5] => [1,2,3,6,5,4] => ([(3,4),(3,5),(4,5)],6)
=> 3
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,4,2,3,5,6] => [1,2,4,3,5,6] => ([(4,5)],6)
=> 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,4,2,3,6,5] => [1,2,4,3,5,6] => ([(4,5)],6)
=> 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,4,2,5,3,6] => [1,2,4,5,3,6] => ([(3,5),(4,5)],6)
=> 2
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,4,2,5,6,3] => [1,2,4,5,6,3] => ([(2,5),(3,5),(4,5)],6)
=> 3
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,6,3,5] => [1,2,4,6,5,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,3,4,5,6] => [1,2,3,4,5,6] => ([],6)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,3,4,6,5] => [1,2,3,4,5,6] => ([],6)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,3,5,4,6] => [1,2,3,4,5,6] => ([],6)
=> ? ∊ {1,1,1,1,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,5,6}
Description
The acyclic chromatic index of a graph. An acyclic edge coloring of a graph is a proper colouring of the edges of a graph such that the union of the edges colored with any two given colours is a forest. The smallest number of colours such that such a colouring exists is the acyclic chromatic index.
Mp00199: Dyck paths prime Dyck pathDyck paths
Mp00102: Dyck paths rise compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
St000772: Graphs ⟶ ℤResult quality: 67% values known / values provided: 67%distinct values known / distinct values provided: 83%
Values
[1,0]
=> [1,1,0,0]
=> [2] => ([],2)
=> ? = 1
[1,0,1,0]
=> [1,1,0,1,0,0]
=> [2,1] => ([(0,2),(1,2)],3)
=> 1
[1,1,0,0]
=> [1,1,1,0,0,0]
=> [3] => ([],3)
=> ? = 2
[1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1
[1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,0]
=> [2,2] => ([(1,3),(2,3)],4)
=> ? ∊ {1,3}
[1,1,0,0,1,0]
=> [1,1,1,0,0,1,0,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,1,0,1,0,0]
=> [1,1,1,0,1,0,0,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> 2
[1,1,1,0,0,0]
=> [1,1,1,1,0,0,0,0]
=> [4] => ([],4)
=> ? ∊ {1,3}
[1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,0]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,3,4}
[1,0,1,1,0,0,1,0]
=> [1,1,0,1,1,0,0,1,0,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,0,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1
[1,0,1,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ? ∊ {1,1,2,3,4}
[1,1,0,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,3,4}
[1,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,0,1,0,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,0,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,1,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {1,1,2,3,4}
[1,1,1,0,0,0,1,0]
=> [1,1,1,1,0,0,0,1,0,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,1,0,0,1,0,0]
=> [1,1,1,1,0,0,1,0,0,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,0,0,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> 3
[1,1,1,1,0,0,0,0]
=> [1,1,1,1,1,0,0,0,0,0]
=> [5] => ([],5)
=> ? ∊ {1,1,2,3,4}
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,5}
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,0,0]
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,5}
[1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,1,0,0,1,0,1,0,0]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,1,0,0,0]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,5}
[1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,1,0,1,0,0,1,0,0]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,1,0,1,0,1,0,0,0]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,1,0,0,0,0]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,5}
[1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,1,1,0,0,0,1,0,0]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,1,1,0,0,1,0,0,0]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,1,1,0,1,0,0,0,0]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,1,1,1,0,0,0,0,0]
=> [2,4] => ([(3,5),(4,5)],6)
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,5}
[1,1,0,0,1,0,1,0,1,0]
=> [1,1,1,0,0,1,0,1,0,1,0,0]
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,1,0,0,0]
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,5}
[1,1,0,0,1,1,0,0,1,0]
=> [1,1,1,0,0,1,1,0,0,1,0,0]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,0,0,1,1,0,1,0,0]
=> [1,1,1,0,0,1,1,0,1,0,0,0]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,1,1,0,0,0,0]
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,5}
[1,1,0,1,0,0,1,0,1,0]
=> [1,1,1,0,1,0,0,1,0,1,0,0]
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,1,0,0,0]
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,5}
[1,1,0,1,0,1,0,0,1,0]
=> [1,1,1,0,1,0,1,0,0,1,0,0]
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [1,1,1,0,1,0,1,0,1,0,0,0]
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,1,0,0,0,0]
=> [3,1,2] => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,5}
[1,1,0,1,1,0,0,0,1,0]
=> [1,1,1,0,1,1,0,0,0,1,0,0]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,0,1,1,0,0,1,0,0]
=> [1,1,1,0,1,1,0,0,1,0,0,0]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [1,1,1,0,1,1,0,1,0,0,0,0]
=> [3,2,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,1,1,0,0,0,0,0]
=> [3,3] => ([(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,5}
[1,1,1,0,0,0,1,0,1,0]
=> [1,1,1,1,0,0,0,1,0,1,0,0]
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,0,0,0,1,1,0,0]
=> [1,1,1,1,0,0,0,1,1,0,0,0]
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,5}
[1,1,1,0,0,1,0,0,1,0]
=> [1,1,1,1,0,0,1,0,0,1,0,0]
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,0,0,1,0,1,0,0]
=> [1,1,1,1,0,0,1,0,1,0,0,0]
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,0,0,1,1,0,0,0]
=> [1,1,1,1,0,0,1,1,0,0,0,0]
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,5}
[1,1,1,0,1,0,0,0,1,0]
=> [1,1,1,1,0,1,0,0,0,1,0,0]
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,0,1,0,0,1,0,0]
=> [1,1,1,1,0,1,0,0,1,0,0,0]
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,0,1,0,1,0,0,0]
=> [1,1,1,1,0,1,0,1,0,0,0,0]
=> [4,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3
[1,1,1,0,1,1,0,0,0,0]
=> [1,1,1,1,0,1,1,0,0,0,0,0]
=> [4,2] => ([(1,5),(2,5),(3,5),(4,5)],6)
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,5}
[1,1,1,1,0,0,0,0,1,0]
=> [1,1,1,1,1,0,0,0,0,1,0,0]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
[1,1,1,1,0,0,0,1,0,0]
=> [1,1,1,1,1,0,0,0,1,0,0,0]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
[1,1,1,1,0,0,1,0,0,0]
=> [1,1,1,1,1,0,0,1,0,0,0,0]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
[1,1,1,1,0,1,0,0,0,0]
=> [1,1,1,1,1,0,1,0,0,0,0,0]
=> [5,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6)
=> 4
[1,1,1,1,1,0,0,0,0,0]
=> [1,1,1,1,1,1,0,0,0,0,0,0]
=> [6] => ([],6)
=> ? ∊ {1,1,1,2,2,3,3,3,3,3,3,4,4,5}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,0,1,0,1,0,1,0,1,0,1,0,0]
=> [2,1,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,0,1,0,1,0,1,0,1,1,0,0,0]
=> [2,1,1,1,2] => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,0,1,0,1,0,1,1,0,0,1,0,0]
=> [2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,0,1,0,1,0,1,1,0,1,0,0,0]
=> [2,1,1,2,1] => ([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,0,1,0,1,0,1,1,1,0,0,0,0]
=> [2,1,1,3] => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,0,1,0,1,1,0,0,1,0,1,0,0]
=> [2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,0,1,0,1,1,0,0,1,1,0,0,0]
=> [2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,0,1,0,1,1,0,1,0,0,1,0,0]
=> [2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,0,1,0,1,1,0,1,0,1,0,0,0]
=> [2,1,2,1,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,0,1,0,1,1,0,1,1,0,0,0,0]
=> [2,1,2,2] => ([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,0,1,0,1,1,1,0,0,0,1,0,0]
=> [2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,0,1,0,1,1,1,0,0,1,0,0,0]
=> [2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,0,1,0,1,1,1,0,1,0,0,0,0]
=> [2,1,3,1] => ([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> 2
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,0,1,0,1,1,1,1,0,0,0,0,0]
=> [2,1,4] => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,1,0,1,1,0,0,1,0,1,1,0,0,0]
=> [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,1,0,1,1,0,0,1,1,1,0,0,0,0]
=> [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,1,0,1,1,0,1,0,0,1,1,0,0,0]
=> [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,1,0,1,1,0,1,0,1,1,0,0,0,0]
=> [2,2,1,2] => ([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,1,0,1,1,0,1,1,1,0,0,0,0,0]
=> [2,2,3] => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,1,0,1,1,1,0,0,0,1,1,0,0,0]
=> [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,1,0,1,1,1,0,0,1,1,0,0,0,0]
=> [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,1,0,1,1,1,0,1,1,0,0,0,0,0]
=> [2,3,2] => ([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,1,0,1,1,1,1,1,0,0,0,0,0,0]
=> [2,5] => ([(4,6),(5,6)],7)
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [1,1,1,0,0,1,0,1,0,1,1,0,0,0]
=> [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [1,1,1,0,0,1,0,1,1,1,0,0,0,0]
=> [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [1,1,1,0,0,1,1,0,0,1,1,0,0,0]
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [1,1,1,0,0,1,1,0,1,1,0,0,0,0]
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [1,1,1,0,0,1,1,1,1,0,0,0,0,0]
=> [3,4] => ([(3,6),(4,6),(5,6)],7)
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,1,0,1,0,0,1,0,1,1,0,0]
=> [1,1,1,0,1,0,0,1,0,1,1,0,0,0]
=> [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,1,0,1,0,0,1,1,1,0,0,0]
=> [1,1,1,0,1,0,0,1,1,1,0,0,0,0]
=> [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,1,0,1,0,1,0,0,1,1,0,0]
=> [1,1,1,0,1,0,1,0,0,1,1,0,0,0]
=> [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [1,1,1,0,1,0,1,0,1,1,0,0,0,0]
=> [3,1,1,2] => ([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [1,1,1,0,1,0,1,1,1,0,0,0,0,0]
=> [3,1,3] => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,1,0,1,1,0,0,0,1,1,0,0]
=> [1,1,1,0,1,1,0,0,0,1,1,0,0,0]
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,1,0,1,1,0,0,1,1,0,0,0]
=> [1,1,1,0,1,1,0,0,1,1,0,0,0,0]
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
[1,1,0,1,1,0,1,1,0,0,0,0]
=> [1,1,1,0,1,1,0,1,1,0,0,0,0,0]
=> [3,2,2] => ([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7)
=> ? ∊ {1,1,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,6}
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph. The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue. For example, the cycle on four vertices has distance Laplacian $$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$ Its eigenvalues are $0,4,4,6$, so the statistic is $1$. The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$. The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Mp00100: Dyck paths touch compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00247: Graphs de-duplicateGraphs
St000777: Graphs ⟶ ℤResult quality: 66% values known / values provided: 66%distinct values known / distinct values provided: 67%
Values
[1,0]
=> [1] => ([],1)
=> ([],1)
=> 1
[1,0,1,0]
=> [1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 2
[1,1,0,0]
=> [2] => ([],2)
=> ([],1)
=> 1
[1,0,1,0,1,0]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,0,1,1,0,0]
=> [1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 3
[1,1,0,0,1,0]
=> [2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 2
[1,1,0,1,0,0]
=> [3] => ([],3)
=> ([],1)
=> 1
[1,1,1,0,0,0]
=> [3] => ([],3)
=> ([],1)
=> 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,0,1,0,1,1,0,0]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3}
[1,0,1,1,0,0,1,0]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,0,1,1,0,1,0,0]
=> [1,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3}
[1,0,1,1,1,0,0,0]
=> [1,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3}
[1,1,0,0,1,0,1,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,0,0,1,1,0,0]
=> [2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3}
[1,1,0,1,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[1,1,0,1,0,1,0,0]
=> [4] => ([],4)
=> ([],1)
=> 1
[1,1,0,1,1,0,0,0]
=> [4] => ([],4)
=> ([],1)
=> 1
[1,1,1,0,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 2
[1,1,1,0,0,1,0,0]
=> [4] => ([],4)
=> ([],1)
=> 1
[1,1,1,0,1,0,0,0]
=> [4] => ([],4)
=> ([],1)
=> 1
[1,1,1,1,0,0,0,0]
=> [4] => ([],4)
=> ([],1)
=> 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,4,5}
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,4,5}
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,4,5}
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,4,5}
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,4,5}
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,4,5}
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,4,5}
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,4,5}
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,4,5}
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 2
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,4,5}
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 4
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,4,5}
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,4,5}
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,4,5}
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2
[1,1,0,1,0,1,0,1,0,0]
=> [5] => ([],5)
=> ([],1)
=> 1
[1,1,0,1,0,1,1,0,0,0]
=> [5] => ([],5)
=> ([],1)
=> 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2
[1,1,0,1,1,0,0,1,0,0]
=> [5] => ([],5)
=> ([],1)
=> 1
[1,1,0,1,1,0,1,0,0,0]
=> [5] => ([],5)
=> ([],1)
=> 1
[1,1,0,1,1,1,0,0,0,0]
=> [5] => ([],5)
=> ([],1)
=> 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 2
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,4,5}
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2
[1,1,1,0,0,1,0,1,0,0]
=> [5] => ([],5)
=> ([],1)
=> 1
[1,1,1,0,0,1,1,0,0,0]
=> [5] => ([],5)
=> ([],1)
=> 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2
[1,1,1,0,1,0,0,1,0,0]
=> [5] => ([],5)
=> ([],1)
=> 1
[1,1,1,0,1,0,1,0,0,0]
=> [5] => ([],5)
=> ([],1)
=> 1
[1,1,1,0,1,1,0,0,0,0]
=> [5] => ([],5)
=> ([],1)
=> 1
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 2
[1,1,1,1,0,0,0,1,0,0]
=> [5] => ([],5)
=> ([],1)
=> 1
[1,1,1,1,0,0,1,0,0,0]
=> [5] => ([],5)
=> ([],1)
=> 1
[1,1,1,1,0,1,0,0,0,0]
=> [5] => ([],5)
=> ([],1)
=> 1
[1,1,1,1,1,0,0,0,0,0]
=> [5] => ([],5)
=> ([],1)
=> 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5}
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5}
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5}
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5}
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5}
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5}
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5}
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5}
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5}
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5}
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5}
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5}
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5}
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5}
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5}
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5}
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5}
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5}
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5}
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5}
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5}
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5}
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5}
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5}
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5}
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5}
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5}
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5}
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5}
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5}
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5}
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Mp00100: Dyck paths touch compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00247: Graphs de-duplicateGraphs
St000259: Graphs ⟶ ℤResult quality: 50% values known / values provided: 66%distinct values known / distinct values provided: 50%
Values
[1,0]
=> [1] => ([],1)
=> ([],1)
=> 0 = 1 - 1
[1,0,1,0]
=> [1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,0,0]
=> [2] => ([],2)
=> ([],1)
=> 0 = 1 - 1
[1,0,1,0,1,0]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
[1,0,1,1,0,0]
=> [1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> ? = 3 - 1
[1,1,0,0,1,0]
=> [2,1] => ([(0,2),(1,2)],3)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,0,1,0,0]
=> [3] => ([],3)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,0,0,0]
=> [3] => ([],3)
=> ([],1)
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[1,0,1,0,1,1,0,0]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,4} - 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,0,1,1,0,1,0,0]
=> [1,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,4} - 1
[1,0,1,1,1,0,0,0]
=> [1,3] => ([(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,4} - 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
[1,1,0,0,1,1,0,0]
=> [2,2] => ([(1,3),(2,3)],4)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,4} - 1
[1,1,0,1,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,0,1,0,1,0,0]
=> [4] => ([],4)
=> ([],1)
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [4] => ([],4)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,1,0,0,1,0,0]
=> [4] => ([],4)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,0,1,0,0,0]
=> [4] => ([],4)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [4] => ([],4)
=> ([],1)
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 1 = 2 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4,4,4,4,5} - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4,4,4,4,5} - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4,4,4,4,5} - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4,4,4,4,5} - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4,4,4,4,5} - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4,4,4,4,5} - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4,4,4,4,5} - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4,4,4,4,5} - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4,4,4,4,5} - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 1 = 2 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4,4,4,4,5} - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4,4,4,4,5} - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4,4,4,4,5} - 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4,4,4,4,5} - 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(1,2)],3)
=> 1 = 2 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,4,4,4,4,4,4,5} - 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,1,0,0,1,0,1,0,0]
=> [5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,0,0,1,1,0,0,0]
=> [5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,1,0,1,0,0,1,0,0]
=> [5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,0,1,0,1,0,0,0]
=> [5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,1,1,0,0,0,1,0,0]
=> [5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,1,0,0,1,0,0,0]
=> [5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,1,0,1,0,0,0,0]
=> [5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,1,1,1,1,0,0,0,0,0]
=> [5] => ([],5)
=> ([],1)
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 1 = 2 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 2 = 3 - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,1,4] => ([(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,0,1,1,0,1,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,1,0,1,0,0,1,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,1,0,1,1,0,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,1,1,0,0,1,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,5] => ([(4,5)],6)
=> ([(1,2)],3)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,1,0,0,1,0,1,0,1,1,0,0]
=> [2,1,1,2] => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(2,3)],4)
=> ? ∊ {3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6} - 1
Description
The diameter of a connected graph. This is the greatest distance between any pair of vertices.
Mp00100: Dyck paths touch compositionInteger compositions
Mp00184: Integer compositions to threshold graphGraphs
Mp00318: Graphs dual on componentsGraphs
St000454: Graphs ⟶ ℤResult quality: 61% values known / values provided: 61%distinct values known / distinct values provided: 100%
Values
[1,0]
=> [1] => ([],1)
=> ([],1)
=> 0 = 1 - 1
[1,0,1,0]
=> [1,1] => ([(0,1)],2)
=> ([(0,1)],2)
=> 1 = 2 - 1
[1,1,0,0]
=> [2] => ([],2)
=> ([],2)
=> 0 = 1 - 1
[1,0,1,0,1,0]
=> [1,1,1] => ([(0,1),(0,2),(1,2)],3)
=> ([(0,1),(0,2),(1,2)],3)
=> 2 = 3 - 1
[1,0,1,1,0,0]
=> [1,2] => ([(1,2)],3)
=> ([(1,2)],3)
=> 1 = 2 - 1
[1,1,0,0,1,0]
=> [2,1] => ([(0,2),(1,2)],3)
=> ([(0,2),(1,2)],3)
=> ? = 2 - 1
[1,1,0,1,0,0]
=> [3] => ([],3)
=> ([],3)
=> 0 = 1 - 1
[1,1,1,0,0,0]
=> [3] => ([],3)
=> ([],3)
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0]
=> [1,1,1,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0]
=> [1,1,2] => ([(1,2),(1,3),(2,3)],4)
=> ([(1,2),(1,3),(2,3)],4)
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0]
=> [1,2,1] => ([(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3} - 1
[1,0,1,1,0,1,0,0]
=> [1,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0]
=> [1,3] => ([(2,3)],4)
=> ([(2,3)],4)
=> 1 = 2 - 1
[1,1,0,0,1,0,1,0]
=> [2,1,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ([(0,2),(0,3),(1,2),(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3} - 1
[1,1,0,0,1,1,0,0]
=> [2,2] => ([(1,3),(2,3)],4)
=> ([(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3} - 1
[1,1,0,1,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3} - 1
[1,1,0,1,0,1,0,0]
=> [4] => ([],4)
=> ([],4)
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0]
=> [4] => ([],4)
=> ([],4)
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0]
=> [3,1] => ([(0,3),(1,3),(2,3)],4)
=> ([(0,3),(1,3),(2,3)],4)
=> ? ∊ {2,2,3,3,3} - 1
[1,1,1,0,0,1,0,0]
=> [4] => ([],4)
=> ([],4)
=> 0 = 1 - 1
[1,1,1,0,1,0,0,0]
=> [4] => ([],4)
=> ([],4)
=> 0 = 1 - 1
[1,1,1,1,0,0,0,0]
=> [4] => ([],4)
=> ([],4)
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 4 = 5 - 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,2] => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,1,2,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,4,4} - 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,1,3] => ([(2,3),(2,4),(3,4)],5)
=> ([(2,3),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,2,1,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,4,4} - 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,2,2] => ([(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,4,4} - 1
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,4,4} - 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1 = 2 - 1
[1,0,1,1,0,1,1,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1 = 2 - 1
[1,0,1,1,1,0,0,0,1,0]
=> [1,3,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,4,4} - 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1 = 2 - 1
[1,0,1,1,1,0,1,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1 = 2 - 1
[1,0,1,1,1,1,0,0,0,0]
=> [1,4] => ([(3,4)],5)
=> ([(3,4)],5)
=> 1 = 2 - 1
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,1,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6)
=> 3 = 4 - 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,2] => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,4,4} - 1
[1,1,0,0,1,1,0,0,1,0]
=> [2,2,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,4,4} - 1
[1,1,0,0,1,1,0,1,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,4,4} - 1
[1,1,0,0,1,1,1,0,0,0]
=> [2,3] => ([(2,4),(3,4)],5)
=> ([(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,4,4} - 1
[1,1,0,1,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,1,0,1,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,4,4} - 1
[1,1,0,1,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,0,1,0,1,0,1,0,0]
=> [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[1,1,0,1,0,1,1,0,0,0]
=> [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[1,1,0,1,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,0,1,1,0,0,1,0,0]
=> [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[1,1,0,1,1,0,1,0,0,0]
=> [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[1,1,0,1,1,1,0,0,0,0]
=> [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5)
=> 3 = 4 - 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,2] => ([(1,4),(2,4),(3,4)],5)
=> ([(1,4),(2,4),(3,4)],5)
=> ? ∊ {2,2,2,2,3,3,3,3,3,4,4} - 1
[1,1,1,0,0,1,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,1,0,0,1,0,1,0,0]
=> [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[1,1,1,0,0,1,1,0,0,0]
=> [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[1,1,1,0,1,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,1,0,1,0,0,1,0,0]
=> [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[1,1,1,0,1,0,1,0,0,0]
=> [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[1,1,1,0,1,1,0,0,0,0]
=> [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[1,1,1,1,0,0,0,0,1,0]
=> [4,1] => ([(0,4),(1,4),(2,4),(3,4)],5)
=> ([(0,4),(1,4),(2,4),(3,4)],5)
=> 2 = 3 - 1
[1,1,1,1,0,0,0,1,0,0]
=> [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[1,1,1,1,0,0,1,0,0,0]
=> [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[1,1,1,1,0,1,0,0,0,0]
=> [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[1,1,1,1,1,0,0,0,0,0]
=> [5] => ([],5)
=> ([],5)
=> 0 = 1 - 1
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,1,1,1,1,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 5 = 6 - 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,1,1,1,2] => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 4 = 5 - 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,1,1,2,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,1,1,3] => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> 3 = 4 - 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,1,2,1,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,1,2,2] => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,1,3,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,2,1,1,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,2,1,2] => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,2,2,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,2,3] => ([(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,0,1,1,0,1,0,0,1,0,1,0]
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,0,1,1,0,1,0,0,1,1,0,0]
=> [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,0,1,1,0,1,0,1,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,0,1,1,0,1,1,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,0,1,1,1,0,0,0,1,0,1,0]
=> [1,3,1,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,0,1,1,1,0,0,0,1,1,0,0]
=> [1,3,2] => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,0,1,1,1,0,0,1,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,0,1,1,1,0,1,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,0,1,1,1,1,0,0,0,0,1,0]
=> [1,4,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,1,0,0,1,0,1,0,1,0,1,0]
=> [2,1,1,1,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,1,0,0,1,0,1,1,0,0,1,0]
=> [2,1,2,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,1,0,0,1,0,1,1,0,1,0,0]
=> [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,1,0,0,1,0,1,1,1,0,0,0]
=> [2,1,3] => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,1,0,0,1,1,0,0,1,0,1,0]
=> [2,2,1,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,1,0,0,1,1,0,0,1,1,0,0]
=> [2,2,2] => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,1,0,0,1,1,0,1,0,0,1,0]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,1,0,0,1,1,0,1,0,1,0,0]
=> [2,4] => ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,1,0,0,1,1,0,1,1,0,0,0]
=> [2,4] => ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,1,0,0,1,1,1,0,0,0,1,0]
=> [2,3,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,1,0,0,1,1,1,0,0,1,0,0]
=> [2,4] => ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,1,0,0,1,1,1,0,1,0,0,0]
=> [2,4] => ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,1,0,0,1,1,1,1,0,0,0,0]
=> [2,4] => ([(3,5),(4,5)],6)
=> ([(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
[1,1,0,1,0,0,1,0,1,0,1,0]
=> [3,1,1,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6)
=> ? ∊ {2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5} - 1
Description
The largest eigenvalue of a graph if it is integral. If a graph is $d$-regular, then its largest eigenvalue equals $d$. One can show that the largest eigenvalue always lies between the average degree and the maximal degree. This statistic is undefined if the largest eigenvalue of the graph is not integral.
Mp00119: Dyck paths to 321-avoiding permutation (Krattenthaler)Permutations
Mp00108: Permutations cycle typeInteger partitions
Mp00202: Integer partitions first row removalInteger partitions
St000815: Integer partitions ⟶ ℤResult quality: 61% values known / values provided: 61%distinct values known / distinct values provided: 67%
Values
[1,0]
=> [1] => [1]
=> []
=> ? = 1
[1,0,1,0]
=> [1,2] => [1,1]
=> [1]
=> ? ∊ {1,2}
[1,1,0,0]
=> [2,1] => [2]
=> []
=> ? ∊ {1,2}
[1,0,1,0,1,0]
=> [1,2,3] => [1,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0]
=> [1,3,2] => [2,1]
=> [1]
=> ? ∊ {1,2,2,3}
[1,1,0,0,1,0]
=> [2,1,3] => [2,1]
=> [1]
=> ? ∊ {1,2,2,3}
[1,1,0,1,0,0]
=> [2,3,1] => [3]
=> []
=> ? ∊ {1,2,2,3}
[1,1,1,0,0,0]
=> [3,1,2] => [3]
=> []
=> ? ∊ {1,2,2,3}
[1,0,1,0,1,0,1,0]
=> [1,2,3,4] => [1,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,0,1,1,0,0]
=> [1,2,4,3] => [2,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,0]
=> [1,3,2,4] => [2,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,1,0,0]
=> [1,3,4,2] => [3,1]
=> [1]
=> ? ∊ {1,2,2,3,3,3,3,4}
[1,0,1,1,1,0,0,0]
=> [1,4,2,3] => [3,1]
=> [1]
=> ? ∊ {1,2,2,3,3,3,3,4}
[1,1,0,0,1,0,1,0]
=> [2,1,3,4] => [2,1,1]
=> [1,1]
=> 1
[1,1,0,0,1,1,0,0]
=> [2,1,4,3] => [2,2]
=> [2]
=> 2
[1,1,0,1,0,0,1,0]
=> [2,3,1,4] => [3,1]
=> [1]
=> ? ∊ {1,2,2,3,3,3,3,4}
[1,1,0,1,0,1,0,0]
=> [2,3,4,1] => [4]
=> []
=> ? ∊ {1,2,2,3,3,3,3,4}
[1,1,0,1,1,0,0,0]
=> [2,4,1,3] => [4]
=> []
=> ? ∊ {1,2,2,3,3,3,3,4}
[1,1,1,0,0,0,1,0]
=> [3,1,2,4] => [3,1]
=> [1]
=> ? ∊ {1,2,2,3,3,3,3,4}
[1,1,1,0,0,1,0,0]
=> [3,1,4,2] => [4]
=> []
=> ? ∊ {1,2,2,3,3,3,3,4}
[1,1,1,0,1,0,0,0]
=> [3,4,1,2] => [2,2]
=> [2]
=> 2
[1,1,1,1,0,0,0,0]
=> [4,1,2,3] => [4]
=> []
=> ? ∊ {1,2,2,3,3,3,3,4}
[1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5] => [1,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,5,4] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,0,1,1,0,0,1,0]
=> [1,2,4,3,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,0,1,1,0,1,0,0]
=> [1,2,4,5,3] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,1,0,0,0]
=> [1,2,5,3,4] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,0,1,0]
=> [1,3,2,4,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,1,0,0,1,1,0,0]
=> [1,3,2,5,4] => [2,2,1]
=> [2,1]
=> 3
[1,0,1,1,0,1,0,0,1,0]
=> [1,3,4,2,5] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,1,0,1,0,0]
=> [1,3,4,5,2] => [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,0,1,1,0,1,1,0,0,0]
=> [1,3,5,2,4] => [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,0,1,1,1,0,0,0,1,0]
=> [1,4,2,3,5] => [3,1,1]
=> [1,1]
=> 1
[1,0,1,1,1,0,0,1,0,0]
=> [1,4,2,5,3] => [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,0,1,1,1,0,1,0,0,0]
=> [1,4,5,2,3] => [2,2,1]
=> [2,1]
=> 3
[1,0,1,1,1,1,0,0,0,0]
=> [1,5,2,3,4] => [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,1,0,0,1,0,1,0,1,0]
=> [2,1,3,4,5] => [2,1,1,1]
=> [1,1,1]
=> 1
[1,1,0,0,1,0,1,1,0,0]
=> [2,1,3,5,4] => [2,2,1]
=> [2,1]
=> 3
[1,1,0,0,1,1,0,0,1,0]
=> [2,1,4,3,5] => [2,2,1]
=> [2,1]
=> 3
[1,1,0,0,1,1,0,1,0,0]
=> [2,1,4,5,3] => [3,2]
=> [2]
=> 2
[1,1,0,0,1,1,1,0,0,0]
=> [2,1,5,3,4] => [3,2]
=> [2]
=> 2
[1,1,0,1,0,0,1,0,1,0]
=> [2,3,1,4,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,0,1,0,0,1,1,0,0]
=> [2,3,1,5,4] => [3,2]
=> [2]
=> 2
[1,1,0,1,0,1,0,0,1,0]
=> [2,3,4,1,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,1] => [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,1,0,1,0,1,1,0,0,0]
=> [2,3,5,1,4] => [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,1,0,1,1,0,0,0,1,0]
=> [2,4,1,3,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,1,0,1,1,0,0,1,0,0]
=> [2,4,1,5,3] => [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,1,0,1,1,0,1,0,0,0]
=> [2,4,5,1,3] => [3,2]
=> [2]
=> 2
[1,1,0,1,1,1,0,0,0,0]
=> [2,5,1,3,4] => [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,1,1,0,0,0,1,0,1,0]
=> [3,1,2,4,5] => [3,1,1]
=> [1,1]
=> 1
[1,1,1,0,0,0,1,1,0,0]
=> [3,1,2,5,4] => [3,2]
=> [2]
=> 2
[1,1,1,0,0,1,0,0,1,0]
=> [3,1,4,2,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,1,1,0,0,1,0,1,0,0]
=> [3,1,4,5,2] => [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,1,1,0,0,1,1,0,0,0]
=> [3,1,5,2,4] => [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,1,1,0,1,0,0,0,1,0]
=> [3,4,1,2,5] => [2,2,1]
=> [2,1]
=> 3
[1,1,1,0,1,0,0,1,0,0]
=> [3,4,1,5,2] => [3,2]
=> [2]
=> 2
[1,1,1,0,1,0,1,0,0,0]
=> [3,4,5,1,2] => [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,1,1,0,1,1,0,0,0,0]
=> [3,5,1,2,4] => [3,2]
=> [2]
=> 2
[1,1,1,1,0,0,0,0,1,0]
=> [4,1,2,3,5] => [4,1]
=> [1]
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,1,1,1,0,0,0,1,0,0]
=> [4,1,2,5,3] => [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,1,1,1,0,0,1,0,0,0]
=> [4,1,5,2,3] => [3,2]
=> [2]
=> 2
[1,1,1,1,0,1,0,0,0,0]
=> [4,5,1,2,3] => [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,1,1,1,1,0,0,0,0,0]
=> [5,1,2,3,4] => [5]
=> []
=> ? ∊ {1,1,1,2,3,3,3,3,3,3,3,4,4,4,4,4,4,5}
[1,0,1,0,1,0,1,0,1,0,1,0]
=> [1,2,3,4,5,6] => [1,1,1,1,1,1]
=> [1,1,1,1,1]
=> 1
[1,0,1,0,1,0,1,0,1,1,0,0]
=> [1,2,3,4,6,5] => [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,0,1,0,1,0,1,1,0,0,1,0]
=> [1,2,3,5,4,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,0,1,0,1,0,1,1,0,1,0,0]
=> [1,2,3,5,6,4] => [3,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,0,1,0,1,1,1,0,0,0]
=> [1,2,3,6,4,5] => [3,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,0,1,1,0,0,1,0,1,0]
=> [1,2,4,3,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,0,1,0,1,1,0,0,1,1,0,0]
=> [1,2,4,3,6,5] => [2,2,1,1]
=> [2,1,1]
=> 4
[1,0,1,0,1,1,0,1,0,0,1,0]
=> [1,2,4,5,3,6] => [3,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,0,1,1,0,1,0,1,0,0]
=> [1,2,4,5,6,3] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,0,1,1,0,0,0]
=> [1,2,4,6,3,5] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,1,0,0,0,1,0]
=> [1,2,5,3,4,6] => [3,1,1,1]
=> [1,1,1]
=> 1
[1,0,1,0,1,1,1,0,0,1,0,0]
=> [1,2,5,3,6,4] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,0,1,1,1,0,1,0,0,0]
=> [1,2,5,6,3,4] => [2,2,1,1]
=> [2,1,1]
=> 4
[1,0,1,0,1,1,1,1,0,0,0,0]
=> [1,2,6,3,4,5] => [4,1,1]
=> [1,1]
=> 1
[1,0,1,1,0,0,1,0,1,0,1,0]
=> [1,3,2,4,5,6] => [2,1,1,1,1]
=> [1,1,1,1]
=> 1
[1,0,1,1,0,0,1,0,1,1,0,0]
=> [1,3,2,4,6,5] => [2,2,1,1]
=> [2,1,1]
=> 4
[1,0,1,1,0,0,1,1,0,0,1,0]
=> [1,3,2,5,4,6] => [2,2,1,1]
=> [2,1,1]
=> 4
[1,0,1,1,0,0,1,1,0,1,0,0]
=> [1,3,2,5,6,4] => [3,2,1]
=> [2,1]
=> 3
[1,0,1,1,0,0,1,1,1,0,0,0]
=> [1,3,2,6,4,5] => [3,2,1]
=> [2,1]
=> 3
[1,0,1,1,0,1,0,1,0,1,0,0]
=> [1,3,4,5,6,2] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6}
[1,0,1,1,0,1,0,1,1,0,0,0]
=> [1,3,4,6,2,5] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6}
[1,0,1,1,0,1,1,0,0,1,0,0]
=> [1,3,5,2,6,4] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6}
[1,0,1,1,0,1,1,1,0,0,0,0]
=> [1,3,6,2,4,5] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6}
[1,0,1,1,1,0,0,1,0,1,0,0]
=> [1,4,2,5,6,3] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6}
[1,0,1,1,1,0,0,1,1,0,0,0]
=> [1,4,2,6,3,5] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6}
[1,0,1,1,1,0,1,0,1,0,0,0]
=> [1,4,5,6,2,3] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6}
[1,0,1,1,1,1,0,0,0,1,0,0]
=> [1,5,2,3,6,4] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6}
[1,0,1,1,1,1,0,1,0,0,0,0]
=> [1,5,6,2,3,4] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6}
[1,0,1,1,1,1,1,0,0,0,0,0]
=> [1,6,2,3,4,5] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6}
[1,1,0,1,0,1,0,1,0,0,1,0]
=> [2,3,4,5,1,6] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6}
[1,1,0,1,0,1,0,1,0,1,0,0]
=> [2,3,4,5,6,1] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6}
[1,1,0,1,0,1,0,1,1,0,0,0]
=> [2,3,4,6,1,5] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6}
[1,1,0,1,0,1,1,0,0,0,1,0]
=> [2,3,5,1,4,6] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6}
[1,1,0,1,0,1,1,0,0,1,0,0]
=> [2,3,5,1,6,4] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6}
[1,1,0,1,0,1,1,1,0,0,0,0]
=> [2,3,6,1,4,5] => [6]
=> []
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6}
[1,1,0,1,1,0,0,1,0,0,1,0]
=> [2,4,1,5,3,6] => [5,1]
=> [1]
=> ? ∊ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,6}
Description
The number of semistandard Young tableaux of partition weight of given shape. The weight of a semistandard Young tableaux is the sequence $(m_1, m_2,\dots)$, where $m_i$ is the number of occurrences of the number $i$ in the tableau. This statistic counts those tableaux whose weight is a weakly decreasing sequence. Alternatively, this is the sum of the entries in the column specified by the partition of the change of basis matrix from Schur functions to monomial symmetric functions.
The following 155 statistics, ordered by result quality, also match your data. Click on any of them to see the details.
St001462The number of factors of a standard tableaux under concatenation. St000374The number of exclusive right-to-left minima of a permutation. St000742The number of big ascents of a permutation after prepending zero. St000996The number of exclusive left-to-right maxima of a permutation. St000871The number of very big ascents of a permutation. St001086The number of occurrences of the consecutive pattern 132 in a permutation. St000460The hook length of the last cell along the main diagonal of an integer partition. St000667The greatest common divisor of the parts of the partition. St001571The Cartan determinant of the integer partition. St001501The dominant dimension of magnitude 1 Nakayama algebras. St001232The number of indecomposable modules with projective dimension 2 for Nakayama algebras with global dimension at most 2. St000770The major index of an integer partition when read from bottom to top. St000993The multiplicity of the largest part of an integer partition. St000771The largest multiplicity of a distance Laplacian eigenvalue in a connected graph. St000695The number of blocks in the first part of the atomic decomposition of a set partition. St000456The monochromatic index of a connected graph. St000260The radius of a connected graph. St001330The hat guessing number of a graph. St000352The Elizalde-Pak rank of a permutation. St000054The first entry of the permutation. St000647The number of big descents of a permutation. St001603The number of colourings of a polygon such that the multiplicities of a colour are given by a partition. St001875The number of simple modules with projective dimension at most 1. St001199The dominant dimension of $eAe$ for the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001390The number of bumps occurring when Schensted-inserting the letter 1 of a permutation. St000969We make a CNakayama algebra out of the LNakayama algebra (corresponding to the Dyck path) $[c_0,c_1,...,c_{n-1}]$ by adding $c_0$ to $c_{n-1}$. St000207Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight. St000208Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer partition weight. St000755The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition. St000870The product of the hook lengths of the diagonal cells in an integer partition. St001360The number of covering relations in Young's lattice below a partition. St001389The number of partitions of the same length below the given integer partition. St001527The cyclic permutation representation number of an integer partition. St001914The size of the orbit of an integer partition in Bulgarian solitaire. St001933The largest multiplicity of a part in an integer partition. St000528The height of a poset. St000907The number of maximal antichains of minimal length in a poset. St000911The number of maximal antichains of maximal size in a poset. St001636The number of indecomposable injective modules with projective dimension at most one in the incidence algebra of the poset. St000080The rank of the poset. St001631The number of simple modules $S$ with $dim Ext^1(S,A)=1$ in the incidence algebra $A$ of the poset. St001782The order of rowmotion on the set of order ideals of a poset. St000327The number of cover relations in a poset. St001637The number of (upper) dissectors of a poset. St001668The number of points of the poset minus the width of the poset. St000717The number of ordinal summands of a poset. St000906The length of the shortest maximal chain in a poset. St001198The number of simple modules in the algebra $eAe$ with projective dimension at most 1 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001206The maximal dimension of an indecomposable projective $eAe$-module (that is the height of the corresponding Dyck path) of the corresponding Nakayama algebra with minimal faithful projective-injective module $eA$. St000319The spin of an integer partition. St000320The dinv adjustment of an integer partition. St000474Dyson's crank of a partition. St000698The number of 2-rim hooks removed from an integer partition to obtain its associated 2-core. St000706The product of the factorials of the multiplicities of an integer partition. St000781The number of proper colouring schemes of a Ferrers diagram. St001175The size of a partition minus the hook length of the base cell. St001280The number of parts of an integer partition that are at least two. St001384The number of boxes in the diagram of a partition that do not lie in the largest triangle it contains. St001392The largest nonnegative integer which is not a part and is smaller than the largest part of the partition. St001432The order dimension of the partition. St001498The normalised height of a Nakayama algebra with magnitude 1. St001767The largest minimal number of arrows pointing to a cell in the Ferrers diagram in any assignment. St001901The largest multiplicity of an irreducible representation contained in the higher Lie character for an integer partition. St001913The number of preimages of an integer partition in Bulgarian solitaire. St001924The number of cells in an integer partition whose arm and leg length coincide. St001934The number of monotone factorisations of genus zero of a permutation of given cycle type. St000145The Dyson rank of a partition. St000264The girth of a graph, which is not a tree. St000284The Plancherel distribution on integer partitions. St000477The weight of a partition according to Alladi. St000478Another weight of a partition according to Alladi. St000509The diagonal index (content) of a partition. St000510The number of invariant oriented cycles when acting with a permutation of given cycle type. St000566The number of ways to select a row of a Ferrers shape and two cells in this row. St000618The number of self-evacuating tableaux of given shape. St000668The least common multiple of the parts of the partition. St000681The Grundy value of Chomp on Ferrers diagrams. St000704The number of semistandard tableaux on a given integer partition with minimal maximal entry. St000708The product of the parts of an integer partition. St000714The number of semistandard Young tableau of given shape, with entries at most 2. St000813The number of zero-one matrices with weakly decreasing column sums and row sums given by the partition. St000901The cube of the number of standard Young tableaux with shape given by the partition. St000933The number of multipartitions of sizes given by an integer partition. St000934The 2-degree of an integer partition. St000937The number of positive values of the symmetric group character corresponding to the partition. St000939The number of characters of the symmetric group whose value on the partition is positive. St001128The exponens consonantiae of a partition. St001279The sum of the parts of an integer partition that are at least two. St001380The number of monomer-dimer tilings of a Ferrers diagram. St001442The number of standard Young tableaux whose major index is divisible by the size of a given integer partition. St001541The Gini index of an integer partition. St001562The value of the complete homogeneous symmetric function evaluated at 1. St001563The value of the power-sum symmetric function evaluated at 1. St001564The value of the forgotten symmetric functions when all variables set to 1. St001568The smallest positive integer that does not appear twice in the partition. St001593This is the number of standard Young tableaux of the given shifted shape. St001599The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on rooted trees. St001600The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple graphs. St001601The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on trees. St001606The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on set partitions. St001607The number of coloured graphs such that the multiplicities of colours are given by a partition. St001608The number of coloured rooted trees such that the multiplicities of colours are given by a partition. St001609The number of coloured trees such that the multiplicities of colours are given by a partition. St001611The number of multiset partitions such that the multiplicities of elements are given by a partition. St001627The number of coloured connected graphs such that the multiplicities of colours are given by a partition. St001628The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on simple connected graphs. St001763The Hurwitz number of an integer partition. St001780The order of promotion on the set of standard tableaux of given shape. St001899The total number of irreducible representations contained in the higher Lie character for an integer partition. St001900The number of distinct irreducible representations contained in the higher Lie character for an integer partition. St001908The number of semistandard tableaux of distinct weight whose maximal entry is the length of the partition. St001918The degree of the cyclic sieving polynomial corresponding to an integer partition. St001936The number of transitive factorisations of a permutation of given cycle type into star transpositions. St001938The number of transitive monotone factorizations of genus zero of a permutation of given cycle type. St001967The coefficient of the monomial corresponding to the integer partition in a certain power series. St001968The coefficient of the monomial corresponding to the integer partition in a certain power series. St000383The last part of an integer composition. St001876The number of 2-regular simple modules in the incidence algebra of the lattice. St001060The distinguishing index of a graph. St001355Number of non-empty prefixes of a binary word that contain equally many 0's and 1's. St001431Half of the Loewy length minus one of a modified stable Auslander algebra of the Nakayama algebra corresponding to the Dyck path. St001491The number of indecomposable projective-injective modules in the algebra corresponding to a subset. St000455The second largest eigenvalue of a graph if it is integral. St001630The global dimension of the incidence algebra of the lattice over the rational numbers. St001878The projective dimension of the simple modules corresponding to the minimum of L in the incidence algebra of the lattice L. St001879The number of indecomposable summands of the top of the first syzygy of the dual of the regular module in the incidence algebra of the lattice. St001880The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice. St001686The order of promotion on a Gelfand-Tsetlin pattern. St000892The maximal number of nonzero entries on a diagonal of an alternating sign matrix. St000733The row containing the largest entry of a standard tableau. St000075The orbit size of a standard tableau under promotion. St001613The binary logarithm of the size of the center of a lattice. St001877Number of indecomposable injective modules with projective dimension 2. St001881The number of factors of a lattice as a Cartesian product of lattices. St001604The multiplicity of the irreducible representation corresponding to a partition in the relabelling action on polygons. St001605The number of colourings of a cycle such that the multiplicities of colours are given by a partition. St000707The product of the factorials of the parts. St001085The number of occurrences of the vincular pattern |21-3 in a permutation. St000942The number of critical left to right maxima of the parking functions. St001200The number of simple modules in $eAe$ with projective dimension at most 2 in the corresponding Nakayama algebra $A$ with minimal faithful projective-injective module $eA$. St001514The dimension of the top of the Auslander-Reiten translate of the regular modules as a bimodule. St000193The row of the unique '1' in the first column of the alternating sign matrix. St000200The row of the unique '1' in the last column of the alternating sign matrix. St000331The number of upper interactions of a Dyck path. St000638The number of up-down runs of a permutation. St000648The number of 2-excedences of a permutation. St001509The degree of the standard monomial associated to a Dyck path relative to the trivial lower boundary. St001557The number of inversions of the second entry of a permutation. St001730The number of times the path corresponding to a binary word crosses the base line. St000234The number of global ascents of a permutation. St001621The number of atoms of a lattice. St000035The number of left outer peaks of a permutation. St000834The number of right outer peaks of a permutation. St000534The number of 2-rises of a permutation. St001115The number of even descents of a permutation.