edit this statistic or download as text // json
Identifier
Values
=>
Cc0022;cc-rep
['A',1]=>1 ['A',2]=>2 ['B',2]=>2 ['G',2]=>2 ['A',3]=>16 ['B',3]=>42 ['C',3]=>42 ['A',4]=>768 ['B',4]=>24024 ['C',4]=>24024 ['D',4]=>2316 ['F',4]=>2144892 ['A',5]=>292864 ['B',5]=>701149020 ['C',5]=>701149020 ['D',5]=>12985968 ['A',6]=>1100742656
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of reduced decompositions of the longest element of the Weyl group of the given Cartan type.
Equivalently, this is the number of chains in the weak order from the identity to the longest element.
In type $A_n$, this is
$$\binom{n+1}{2}!/(1^n 3^{n-1} \dots (2n-1)^1).$$
In type $B_n$ and $C_n$ this is
$$(n^2)!\prod_{k=1}^{n-1} k! / \prod_{k=n}^{2n-1} k!.$$
References
[1] Stanley, R. P. On the number of reduced decompositions of elements of Coxeter groups MathSciNet:0782057
[2] KraĆkiewicz, W. Reduced decompositions in Weyl groups MathSciNet:1330543
[3] Winkelman, B. Number of reduced decompositions of the longest element of the Weyl group MathOverflow:370333
Code
def statistic(c):
if c.type() == "A":
n = c.rank()
return binomial(n+1, 2).factorial()/prod((2*i-1)^(n+1-i) for i in range(1,n+1))
if c.type() in ["B", "C"]:
n = c.rank()
return ZZ(n^2).factorial()*prod(ZZ(k).factorial() for k in range(1, n))/ prod(ZZ(k).factorial() for k in range(n, 2*n))
P = WeylGroup(c).weak_poset()
p = P.chain_polynomial()