Identifier
Identifier
Values
[2] generating graphics... => 1
[1,1] generating graphics... => 1
[3] generating graphics... => 1
[2,1] generating graphics... => 2
[1,1,1] generating graphics... => 1
[4] generating graphics... => 1
[3,1] generating graphics... => 2
[2,2] generating graphics... => 2
[2,1,1] generating graphics... => 2
[1,1,1,1] generating graphics... => 1
[5] generating graphics... => 1
[4,1] generating graphics... => 2
[3,2] generating graphics... => 2
[3,1,1] generating graphics... => 2
[2,2,1] generating graphics... => 2
[2,1,1,1] generating graphics... => 2
[1,1,1,1,1] generating graphics... => 1
[6] generating graphics... => 1
[5,1] generating graphics... => 2
[4,2] generating graphics... => 2
[4,1,1] generating graphics... => 2
[3,3] generating graphics... => 2
[3,2,1] generating graphics... => 3
[3,1,1,1] generating graphics... => 2
[2,2,2] generating graphics... => 2
[2,2,1,1] generating graphics... => 2
[2,1,1,1,1] generating graphics... => 2
[1,1,1,1,1,1] generating graphics... => 1
[7] generating graphics... => 1
[6,1] generating graphics... => 2
[5,2] generating graphics... => 2
[5,1,1] generating graphics... => 2
[4,3] generating graphics... => 2
[4,2,1] generating graphics... => 3
[4,1,1,1] generating graphics... => 2
[3,3,1] generating graphics... => 3
[3,2,2] generating graphics... => 3
[3,2,1,1] generating graphics... => 3
[3,1,1,1,1] generating graphics... => 2
[2,2,2,1] generating graphics... => 2
[2,2,1,1,1] generating graphics... => 2
[2,1,1,1,1,1] generating graphics... => 2
[1,1,1,1,1,1,1] generating graphics... => 1
[8] generating graphics... => 1
[7,1] generating graphics... => 2
[6,2] generating graphics... => 2
[6,1,1] generating graphics... => 2
[5,3] generating graphics... => 2
[5,2,1] generating graphics... => 3
[5,1,1,1] generating graphics... => 2
[4,4] generating graphics... => 2
[4,3,1] generating graphics... => 3
[4,2,2] generating graphics... => 3
[4,2,1,1] generating graphics... => 3
[4,1,1,1,1] generating graphics... => 2
[3,3,2] generating graphics... => 3
[3,3,1,1] generating graphics... => 3
[3,2,2,1] generating graphics... => 3
[3,2,1,1,1] generating graphics... => 3
[3,1,1,1,1,1] generating graphics... => 2
[2,2,2,2] generating graphics... => 2
[2,2,2,1,1] generating graphics... => 2
[2,2,1,1,1,1] generating graphics... => 2
[2,1,1,1,1,1,1] generating graphics... => 2
[1,1,1,1,1,1,1,1] generating graphics... => 1
click to show generating function       
Description
The global dimension of the partition.
Given a partition p, let I(p) be the principal order ideal in the young lattice generated by p. The global dimension of a partition is defined as the global dimension of the incidence algebra of the poset I(p).
Created
Jun 22, 2019 at 09:23 by Rene Marczinzik
Updated
Jun 22, 2019 at 09:23 by Rene Marczinzik