Identifier
Identifier
Values
([],1) generating graphics... => 1
([],2) generating graphics... => 2
([(0,1)],2) generating graphics... => 1
([],3) generating graphics... => 3
([(1,2)],3) generating graphics... => 2
([(0,2),(1,2)],3) generating graphics... => 1
([(0,1),(0,2),(1,2)],3) generating graphics... => 1
([],4) generating graphics... => 4
([(2,3)],4) generating graphics... => 3
([(1,3),(2,3)],4) generating graphics... => 2
([(1,2),(1,3),(2,3)],4) generating graphics... => 2
([(0,3),(1,3),(2,3)],4) generating graphics... => 1
([(0,3),(1,2)],4) generating graphics... => 2
([(0,3),(1,2),(2,3)],4) generating graphics... => 1
([(0,3),(1,2),(1,3),(2,3)],4) generating graphics... => 1
([(0,2),(0,3),(1,2),(1,3)],4) generating graphics... => 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) generating graphics... => 1
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) generating graphics... => 1
([],5) generating graphics... => 5
([(3,4)],5) generating graphics... => 4
([(2,4),(3,4)],5) generating graphics... => 3
([(2,3),(2,4),(3,4)],5) generating graphics... => 3
([(1,4),(2,4),(3,4)],5) generating graphics... => 2
([(0,4),(1,4),(2,4),(3,4)],5) generating graphics... => 1
([(1,4),(2,3)],5) generating graphics... => 3
([(1,4),(2,3),(3,4)],5) generating graphics... => 2
([(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 2
([(1,3),(1,4),(2,3),(2,4)],5) generating graphics... => 1
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 2
([(0,1),(2,4),(3,4)],5) generating graphics... => 2
([(0,4),(1,4),(2,3),(3,4)],5) generating graphics... => 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 1
([(0,4),(1,3),(2,3),(2,4)],5) generating graphics... => 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) generating graphics... => 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) generating graphics... => 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) generating graphics... => -1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) generating graphics... => 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) generating graphics... => 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 1
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) generating graphics... => 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) generating graphics... => 1
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 1
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 1
([(0,1),(2,3),(2,4),(3,4)],5) generating graphics... => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) generating graphics... => 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) generating graphics... => 1
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) generating graphics... => 1
([],6) generating graphics... => 6
([(4,5)],6) generating graphics... => 5
([(3,5),(4,5)],6) generating graphics... => 4
([(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(2,5),(3,5),(4,5)],6) generating graphics... => 3
([(1,5),(2,5),(3,5),(4,5)],6) generating graphics... => 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) generating graphics... => 1
([(2,5),(3,4)],6) generating graphics... => 4
([(2,5),(3,4),(4,5)],6) generating graphics... => 3
([(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(1,2),(3,5),(4,5)],6) generating graphics... => 3
([(1,5),(2,5),(3,4),(4,5)],6) generating graphics... => 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(1,5),(2,4),(3,4),(3,5)],6) generating graphics... => 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) generating graphics... => 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 1
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 2
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(1,2),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 2
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 2
([(0,1),(2,5),(3,5),(4,5)],6) generating graphics... => 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) generating graphics... => 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,5),(2,4),(3,4)],6) generating graphics... => 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) generating graphics... => 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) generating graphics... => 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => -1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => -2
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) generating graphics... => 2
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) generating graphics... => 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 0
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) generating graphics... => 0
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) generating graphics... => 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) generating graphics... => 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,4),(2,3)],6) generating graphics... => 3
([(0,1),(2,5),(3,4),(4,5)],6) generating graphics... => 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) generating graphics... => 0
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 0
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => -1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) generating graphics... => 1
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) generating graphics... => 0
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => -1
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6) generating graphics... => -1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => -1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) generating graphics... => 0
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 0
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 0
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 0
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 1
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 0
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 0
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) generating graphics... => 0
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) generating graphics... => -1
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6) generating graphics... => -1
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => -1
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 0
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) generating graphics... => -1
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 2
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => -2
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) generating graphics... => -3
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => -1
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 1
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([],7) generating graphics... => 7
([(5,6)],7) generating graphics... => 6
([(4,6),(5,6)],7) generating graphics... => 5
([(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(3,6),(4,6),(5,6)],7) generating graphics... => 4
([(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 3
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(3,6),(4,5)],7) generating graphics... => 5
([(3,6),(4,5),(5,6)],7) generating graphics... => 4
([(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 3
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(2,3),(4,6),(5,6)],7) generating graphics... => 4
([(2,6),(3,6),(4,5),(5,6)],7) generating graphics... => 3
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(2,6),(3,5),(4,5),(4,6)],7) generating graphics... => 3
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 2
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(2,5),(2,6),(3,4),(3,6),(4,5)],7) generating graphics... => 2
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 2
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 3
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(2,3),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 3
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 3
([(1,2),(3,6),(4,6),(5,6)],7) generating graphics... => 3
([(1,6),(2,6),(3,6),(4,5),(5,6)],7) generating graphics... => 2
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) generating graphics... => 2
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -1
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -2
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -3
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -1
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7) generating graphics... => 2
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(1,6),(2,6),(3,5),(4,5)],7) generating graphics... => 3
([(1,6),(2,6),(3,5),(4,5),(5,6)],7) generating graphics... => 2
([(1,6),(2,6),(3,4),(4,5),(5,6)],7) generating graphics... => 2
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -1
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 1
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) generating graphics... => 3
([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7) generating graphics... => 2
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) generating graphics... => 3
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) generating graphics... => 2
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,5),(3,4)],7) generating graphics... => 4
([(1,2),(3,6),(4,5),(5,6)],7) generating graphics... => 3
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 2
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(1,3),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 1
([(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 0
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,5),(3,4),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,5),(3,4),(3,5),(4,6)],7) generating graphics... => 2
([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 2
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 1
([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) generating graphics... => 1
([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7) generating graphics... => 1
([(1,2),(1,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(4,5),(5,6)],7) generating graphics... => 1
([(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 1
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7) generating graphics... => 0
([(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7) generating graphics... => 0
([(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7) generating graphics... => 0
([(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 2
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 3
([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -1
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => -2
([(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,3),(1,2),(4,6),(5,6)],7) generating graphics... => 3
([(0,1),(2,6),(3,6),(4,5),(5,6)],7) generating graphics... => 2
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,3),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(2,5),(3,4),(4,6),(5,6)],7) generating graphics... => 2
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,1),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,5),(1,6),(2,3),(2,4),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7) generating graphics... => 0
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -1
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7) generating graphics... => -1
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -2
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) generating graphics... => 1
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(5,6)],7) generating graphics... => 1
([(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(2,3),(2,6),(3,5),(4,5),(5,6)],7) generating graphics... => 0
([(0,6),(1,2),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(1,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -1
([(0,4),(1,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7) generating graphics... => 0
([(0,5),(1,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(1,3),(2,5),(2,6),(3,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,2),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,5),(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,3),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,3),(2,4),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(1,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,4),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,2),(1,3),(2,5),(3,4),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,2),(1,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7) generating graphics... => -1
([(0,6),(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7) generating graphics... => -1
([(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5)],7) generating graphics... => 0
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(5,6)],7) generating graphics... => 0
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -1
([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,6),(1,5),(2,4),(2,6),(3,4),(3,6),(4,5),(5,6)],7) generating graphics... => -2
([(0,3),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -3
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(0,6),(1,4),(1,6),(2,5),(2,6),(3,4),(3,5),(5,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,3),(0,6),(1,3),(1,6),(2,4),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(1,4),(1,5),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6)],7) generating graphics... => -2
([(0,5),(0,6),(1,3),(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => -3
([(0,4),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7) generating graphics... => -2
([(0,5),(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -4
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7) generating graphics... => -2
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => -5
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) generating graphics... => -2
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6)],7) generating graphics... => -1
([(0,1),(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => -1
([(0,1),(0,6),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -1
([(0,1),(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -1
([(0,4),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,6),(1,3),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5)],7) generating graphics... => -1
([(0,5),(0,6),(1,4),(1,5),(2,3),(2,5),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,2),(1,4),(2,3),(3,5),(4,6)],7) generating graphics... => 0
([(0,1),(0,3),(1,2),(2,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,2),(1,6),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,2),(0,6),(1,2),(1,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,1),(0,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => -1
([(0,1),(0,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(0,6),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,6),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7) generating graphics... => -1
([(0,4),(0,6),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(0,4),(0,6),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,4),(0,6),(1,2),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -1
([(0,3),(0,4),(0,6),(1,2),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,1),(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -2
([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,6),(1,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,1),(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,6),(1,5),(2,3),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(0,5),(1,2),(1,3),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(5,6)],7) generating graphics... => 0
([(0,4),(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => -1
([(0,3),(0,6),(1,3),(1,5),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,4),(0,5),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,3),(1,6),(2,3),(2,4),(2,5),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,6),(1,2),(1,6),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7) generating graphics... => -1
([(0,4),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,2),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(0,3),(0,5),(1,2),(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,2),(0,6),(1,3),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,2),(0,6),(1,3),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,1),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(1,2),(1,3),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,6),(1,2),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,6),(1,2),(1,3),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(0,6),(1,2),(1,3),(1,5),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,3),(0,6),(1,2),(1,4),(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,2),(0,6),(1,4),(1,5),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,6),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(0,5),(1,2),(1,3),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,2),(0,6),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,3),(0,6),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,4),(0,6),(1,3),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,4),(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => -1
([(0,1),(0,2),(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => -1
([(0,1),(0,4),(0,6),(1,3),(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,5),(0,6),(1,2),(1,5),(1,6),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,4),(0,6),(1,3),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,5),(0,6),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,4),(0,6),(1,2),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,2),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,2),(0,5),(1,4),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => -1
([(0,1),(0,2),(0,5),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,4),(0,6),(1,3),(1,5),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,2),(0,4),(0,5),(1,4),(1,5),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,3),(0,4),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,3),(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,2),(0,3),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,5),(0,6),(1,2),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(0,6),(1,3),(1,6),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(3,5),(4,6)],7) generating graphics... => 0
([(0,3),(0,6),(1,3),(1,5),(2,4),(2,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(0,5),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,4),(1,2),(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,1),(0,6),(1,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,3),(0,5),(1,4),(1,6),(2,3),(2,5),(2,6),(3,4),(4,6),(5,6)],7) generating graphics... => -1
([(0,4),(0,6),(1,3),(1,5),(2,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,3),(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(4,6),(5,6)],7) generating graphics... => 0
([(0,3),(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(1,3),(1,6),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,4),(0,5),(1,2),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,4),(1,2),(1,6),(2,5),(3,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,3),(0,6),(1,2),(1,6),(2,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5)],7) generating graphics... => -2
([(0,4),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -2
([(0,5),(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,3),(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -2
([(0,5),(0,6),(1,2),(1,4),(2,3),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,3),(0,4),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,3),(0,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) generating graphics... => -2
([(0,5),(0,6),(1,3),(1,4),(2,3),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,2),(0,3),(1,4),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(0,5),(1,3),(1,6),(2,3),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,3),(0,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(0,5),(1,3),(1,6),(2,3),(2,5),(2,6),(3,4),(4,6),(5,6)],7) generating graphics... => -2
([(0,3),(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,3),(1,4),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -2
([(0,5),(0,6),(1,2),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(4,5)],7) generating graphics... => -3
([(0,4),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => -2
([(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,2),(1,3),(1,5),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,3),(0,4),(1,3),(1,5),(1,6),(2,3),(2,5),(2,6),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,1),(0,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,5),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(5,6)],7) generating graphics... => 0
([(0,4),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(5,6)],7) generating graphics... => -1
([(0,4),(0,6),(1,3),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,5),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(4,5),(5,6)],7) generating graphics... => -3
([(0,4),(0,6),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5)],7) generating graphics... => -1
([(0,5),(0,6),(1,2),(1,5),(2,3),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,6),(1,5),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,1),(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -1
([(0,1),(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,1),(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,6),(1,5),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(0,6),(1,2),(1,3),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -1
([(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,6),(1,2),(1,3),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => -1
([(0,4),(0,6),(1,2),(1,3),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(5,6)],7) generating graphics... => -1
([(0,4),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(0,6),(1,2),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,6),(3,5),(4,5),(4,6)],7) generating graphics... => -2
([(0,4),(0,6),(1,2),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(5,6)],7) generating graphics... => -1
([(0,3),(0,6),(1,3),(1,4),(1,6),(2,4),(2,5),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,2),(1,4),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(0,5),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,4),(1,2),(1,3),(1,5),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,2),(0,6),(1,2),(1,4),(1,5),(2,3),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,1),(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(0,5),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,2),(0,6),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => -1
([(0,2),(0,4),(1,3),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(1,2),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,2),(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,2),(0,3),(1,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(0,4),(0,6),(1,2),(1,5),(1,6),(2,3),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,2),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,4),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,2),(0,6),(1,3),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,3),(0,5),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => -2
([(0,5),(0,6),(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7) generating graphics... => -1
([(0,4),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -2
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => -3
([(0,1),(0,3),(0,4),(1,2),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,1),(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => -2
([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -2
([(0,1),(0,3),(0,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) generating graphics... => 0
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => -1
([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,2),(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,4),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,2),(0,6),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => -3
([(0,2),(0,5),(0,6),(1,2),(1,5),(1,6),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => -3
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) generating graphics... => -1
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,4),(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) generating graphics... => -2
([(0,3),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,4),(0,6),(1,3),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,3),(0,5),(0,6),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,3),(0,4),(1,2),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,1),(0,2),(0,6),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,2),(0,3),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,2),(0,3),(0,4),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,3),(0,4),(0,6),(1,2),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => -1
([(0,1),(0,2),(0,3),(0,4),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,2),(0,3),(0,4),(0,6),(1,2),(1,3),(1,4),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,2),(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 3
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,4),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,3),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => -2
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,1),(0,2),(0,5),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,2),(0,4),(0,6),(1,2),(1,3),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,3),(0,5),(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6)],7) generating graphics... => -1
([(0,4),(0,5),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,2),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5)],7) generating graphics... => -1
([(0,3),(0,4),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,3),(0,5),(1,4),(1,5),(1,6),(2,3),(2,4),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,6),(1,2),(1,3),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(5,6)],7) generating graphics... => -1
([(0,3),(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -1
([(0,3),(0,4),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(5,6)],7) generating graphics... => -1
([(0,4),(0,5),(1,2),(1,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,2),(1,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(0,6),(1,2),(1,5),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7) generating graphics... => 1
([(0,4),(0,6),(1,3),(1,5),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,6),(1,2),(1,5),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -1
([(0,3),(0,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,1),(0,6),(1,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5)],7) generating graphics... => -2
([(0,5),(0,6),(1,3),(1,5),(2,3),(2,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,4),(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(5,6)],7) generating graphics... => -2
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7) generating graphics... => 1
([(0,1),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,1),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(0,1),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,1),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,5),(1,2),(1,4),(2,3),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,3),(1,5),(1,6),(2,4),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,2),(1,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(1,5),(2,3),(2,5),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => -1
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7) generating graphics... => 0
([(0,4),(1,3),(1,6),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 1
([(0,5),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(1,5),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => -1
([(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,5),(2,4),(3,4),(5,6)],7) generating graphics... => 2
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,6),(1,5),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(2,3),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,4),(2,3),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(0,6),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -1
([(0,6),(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => -1
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -2
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6)],7) generating graphics... => -2
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -2
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(1,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6)],7) generating graphics... => 0
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6)],7) generating graphics... => -1
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -1
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -1
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) generating graphics... => 1
([(0,6),(1,6),(2,3),(2,4),(3,5),(4,5),(5,6)],7) generating graphics... => 0
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5)],7) generating graphics... => 1
([(0,5),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7) generating graphics... => -1
([(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,4),(1,5),(2,3),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => -2
([(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7) generating graphics... => -1
([(0,6),(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -1
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,4),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7) generating graphics... => 0
([(0,5),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -1
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,6),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(1,2),(1,5),(2,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(1,2),(1,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,6),(5,6)],7) generating graphics... => -1
([(0,6),(1,3),(1,4),(2,3),(2,5),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,3),(1,5),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => -1
([(0,4),(1,3),(1,6),(2,3),(2,5),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(1,4),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,2),(1,4),(1,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,2),(1,5),(1,6),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,2),(1,5),(1,6),(2,4),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(1,3),(1,4),(2,5),(2,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,3),(1,4),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,3),(1,5),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,4),(1,5),(2,3),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,3),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6)],7) generating graphics... => 0
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(5,6)],7) generating graphics... => 0
([(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,2),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,6),(1,2),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(0,6),(1,2),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,2),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(1,3),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,5),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(1,2),(1,4),(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,2),(1,4),(1,5),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(0,5),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => -1
([(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(1,2),(1,3),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7) generating graphics... => 0
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,2),(1,2),(1,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7) generating graphics... => -1
([(0,6),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,6),(4,6),(5,6)],7) generating graphics... => -1
([(0,5),(1,4),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(5,6)],7) generating graphics... => -1
([(0,6),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => -1
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => -2
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) generating graphics... => -1
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(1,2),(1,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,2),(1,5),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) generating graphics... => -3
([(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7) generating graphics... => -1
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) generating graphics... => 0
([(0,5),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(1,4),(1,6),(2,5),(2,6),(3,5),(3,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => -1
([(0,1),(0,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7) generating graphics... => -2
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(5,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6)],7) generating graphics... => -2
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -2
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,6),(1,4),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7) generating graphics... => 2
([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,5),(1,5),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7) generating graphics... => 2
([(0,6),(1,4),(2,3),(2,5),(3,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,2),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6)],7) generating graphics... => 1
([(0,4),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 1
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(1,4),(1,5),(2,4),(2,6),(3,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,3),(1,5),(1,6),(2,4),(2,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,3),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,4),(1,5),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,3),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(1,5),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,2),(1,5),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,2),(1,5),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -1
([(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(0,6),(1,2),(1,6),(2,4),(3,4),(3,5),(4,5),(5,6)],7) generating graphics... => 0
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,2),(1,6),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,3),(1,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,3),(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,2),(1,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,6),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,2),(1,4),(2,4),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 1
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,2),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) generating graphics... => 1
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7) generating graphics... => 1
([(0,1),(0,6),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(5,6)],7) generating graphics... => 0
([(0,1),(0,6),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7) generating graphics... => 1
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5)],7) generating graphics... => 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,6),(1,2),(1,5),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(1,2),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,5),(1,5),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,1),(0,6),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5)],7) generating graphics... => -1
([(0,4),(0,6),(1,3),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(0,4),(0,6),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6)],7) generating graphics... => -1
([(0,4),(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => -1
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(0,4),(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,6),(1,3),(1,6),(2,4),(2,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
click to show generating function       
Description
The Euler characteristic of a graph according to Knill.
This is $$\sum_{k\geq 1} (-1)^{k-1} c_k,$$
where $c_k$ is the number of cliques with $k$ vertices.
References
[1] Knill, O. A graph theoretical Gauss-Bonnet-Chern Theorem arXiv:1111.5395
WARNING - could not verify link timed out
[2] WARNING - could not verify link timed out
Code
def statistic(G):
    return -(G.clique_polynomial()-1).subs(t=-1)

Created
Mar 10, 2019 at 16:44 by Martin Rubey
Updated
Mar 10, 2019 at 16:44 by Martin Rubey