Identifier
Identifier
Values
([],1) generating graphics... => 0
([],2) generating graphics... => 0
([(0,1)],2) generating graphics... => 0
([],3) generating graphics... => 0
([(1,2)],3) generating graphics... => 0
([(0,2),(1,2)],3) generating graphics... => 0
([(0,1),(0,2),(1,2)],3) generating graphics... => 1
([],4) generating graphics... => 0
([(2,3)],4) generating graphics... => 0
([(1,3),(2,3)],4) generating graphics... => 0
([(1,2),(1,3),(2,3)],4) generating graphics... => 1
([(0,3),(1,3),(2,3)],4) generating graphics... => 0
([(0,3),(1,2)],4) generating graphics... => 0
([(0,3),(1,2),(2,3)],4) generating graphics... => 0
([(0,3),(1,2),(1,3),(2,3)],4) generating graphics... => 1
([(0,2),(0,3),(1,2),(1,3)],4) generating graphics... => 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) generating graphics... => 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) generating graphics... => 4
([],5) generating graphics... => 0
([(3,4)],5) generating graphics... => 0
([(2,4),(3,4)],5) generating graphics... => 0
([(2,3),(2,4),(3,4)],5) generating graphics... => 1
([(1,4),(2,4),(3,4)],5) generating graphics... => 0
([(0,4),(1,4),(2,4),(3,4)],5) generating graphics... => 0
([(1,4),(2,3)],5) generating graphics... => 0
([(1,4),(2,3),(3,4)],5) generating graphics... => 0
([(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 1
([(1,3),(1,4),(2,3),(2,4)],5) generating graphics... => 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 2
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 4
([(0,1),(2,4),(3,4)],5) generating graphics... => 0
([(0,4),(1,4),(2,3),(3,4)],5) generating graphics... => 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 1
([(0,4),(1,3),(2,3),(2,4)],5) generating graphics... => 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) generating graphics... => 1
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) generating graphics... => 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 2
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) generating graphics... => 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) generating graphics... => 1
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) generating graphics... => 1
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) generating graphics... => 2
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 5
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) generating graphics... => 4
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 7
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 10
([(0,1),(2,3),(2,4),(3,4)],5) generating graphics... => 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) generating graphics... => 1
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) generating graphics... => 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 4
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) generating graphics... => 2
([],6) generating graphics... => 0
([(4,5)],6) generating graphics... => 0
([(3,5),(4,5)],6) generating graphics... => 0
([(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(2,5),(3,5),(4,5)],6) generating graphics... => 0
([(1,5),(2,5),(3,5),(4,5)],6) generating graphics... => 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) generating graphics... => 0
([(2,5),(3,4)],6) generating graphics... => 0
([(2,5),(3,4),(4,5)],6) generating graphics... => 0
([(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(1,2),(3,5),(4,5)],6) generating graphics... => 0
([(1,5),(2,5),(3,4),(4,5)],6) generating graphics... => 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(1,5),(2,4),(3,4),(3,5)],6) generating graphics... => 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) generating graphics... => 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 2
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 5
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 4
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 7
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 10
([(1,2),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 2
([(0,1),(2,5),(3,5),(4,5)],6) generating graphics... => 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) generating graphics... => 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,5),(2,4),(3,4)],6) generating graphics... => 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) generating graphics... => 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) generating graphics... => 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) generating graphics... => 1
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) generating graphics... => 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 2
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 5
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) generating graphics... => 1
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) generating graphics... => 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) generating graphics... => 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 5
([(0,5),(1,4),(2,3)],6) generating graphics... => 0
([(0,1),(2,5),(3,4),(4,5)],6) generating graphics... => 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 0
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) generating graphics... => 0
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 5
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 5
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 7
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 10
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 7
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 2
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 2
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 4
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) generating graphics... => 0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) generating graphics... => 0
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 1
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6) generating graphics... => 1
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 6
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) generating graphics... => 0
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 3
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 4
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 5
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 7
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 11
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 8
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 5
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 6
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 3
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 6
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 8
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) generating graphics... => 2
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 5
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) generating graphics... => 0
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 4
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6) generating graphics... => 2
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 6
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 2
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 4
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 8
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 5
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) generating graphics... => 4
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 7
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 6
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 10
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 8
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 12
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 16
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 20
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 0
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 6
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) generating graphics... => 0
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 6
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 9
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 13
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 6
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 10
([],7) generating graphics... => 0
([(5,6)],7) generating graphics... => 0
([(4,6),(5,6)],7) generating graphics... => 0
([(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(3,6),(4,5)],7) generating graphics... => 0
([(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(2,3),(4,6),(5,6)],7) generating graphics... => 0
([(2,6),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(2,6),(3,5),(4,5),(4,6)],7) generating graphics... => 0
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 0
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(2,5),(2,6),(3,4),(3,6),(4,5)],7) generating graphics... => 1
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 2
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 4
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 10
([(2,3),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(1,2),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(1,6),(2,6),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) generating graphics... => 0
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) generating graphics... => 0
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) generating graphics... => 0
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) generating graphics... => 0
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7) generating graphics... => 1
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(1,6),(2,6),(3,5),(4,5)],7) generating graphics... => 0
([(1,6),(2,6),(3,5),(4,5),(5,6)],7) generating graphics... => 0
([(1,6),(2,6),(3,4),(4,5),(5,6)],7) generating graphics... => 0
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 0
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) generating graphics... => 1
([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 2
([(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) generating graphics... => 2
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) generating graphics... => 2
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(1,6),(2,5),(3,4)],7) generating graphics... => 0
([(1,2),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(1,3),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 3
([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 10
([(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 4
([(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 0
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(1,6),(2,5),(3,4),(4,6),(5,6)],7) generating graphics... => 0
([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,5),(3,4),(3,5),(4,6)],7) generating graphics... => 0
([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 2
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 0
([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) generating graphics... => 1
([(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 1
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 2
([(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7) generating graphics... => 0
([(1,2),(1,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 3
([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 4
([(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 7
([(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 11
([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 6
([(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 3
([(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 4
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(4,5),(5,6)],7) generating graphics... => 2
([(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7) generating graphics... => 0
([(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 4
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7) generating graphics... => 2
([(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 2
([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 4
([(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7) generating graphics... => 4
([(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 6
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 10
([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 8
([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 12
([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 16
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 0
([(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 9
([(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 13
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 6
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 10
([(0,3),(1,2),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(2,6),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,6),(2,3),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(0,1),(2,5),(3,4),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,1),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,5),(1,6),(2,3),(2,4),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7) generating graphics... => 0
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 2
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7) generating graphics... => 0
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 3
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 3
([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) generating graphics... => 0
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(5,6)],7) generating graphics... => 1
([(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,5),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,6),(1,4),(2,3),(2,6),(3,5),(4,5),(5,6)],7) generating graphics... => 0
([(0,6),(1,2),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 3
([(0,4),(1,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,4),(1,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,6),(1,5),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,6),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7) generating graphics... => 2
([(0,5),(1,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,6),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 2
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 2
([(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 4
([(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,6),(1,5),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,4),(1,3),(2,5),(2,6),(3,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,2),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 2
([(0,5),(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(0,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,5),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 4
([(0,6),(1,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 7
([(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 10
([(0,6),(1,5),(2,3),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,6),(1,5),(2,3),(2,4),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,2),(1,3),(2,5),(3,4),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,2),(1,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7) generating graphics... => 0
([(0,6),(1,2),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 4
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7) generating graphics... => 2
([(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5)],7) generating graphics... => 2
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(5,6)],7) generating graphics... => 2
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,1),(0,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,1),(0,6),(1,5),(2,4),(2,6),(3,4),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(0,3),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,4),(0,6),(1,4),(1,6),(2,5),(2,6),(3,4),(3,5),(5,6)],7) generating graphics... => 2
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,3),(0,6),(1,3),(1,6),(2,4),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,4),(0,5),(1,4),(1,5),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,3),(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 4
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 0
([(0,4),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) generating graphics... => 3
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 6
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7) generating graphics... => 3
([(0,5),(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 5
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 9
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7) generating graphics... => 3
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 7
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 6
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 11
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 0
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) generating graphics... => 4
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 8
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 13
([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6)],7) generating graphics... => 1
([(0,1),(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 2
([(0,1),(0,6),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,1),(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 3
([(0,1),(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,4),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 3
([(0,4),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 4
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 9
([(0,4),(0,6),(1,3),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 2
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 2
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5)],7) generating graphics... => 3
([(0,5),(0,6),(1,4),(1,5),(2,3),(2,5),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 3
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,5),(0,6),(1,2),(1,4),(2,3),(3,5),(4,6)],7) generating graphics... => 1
([(0,1),(0,3),(1,2),(2,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,2),(1,6),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,2),(0,6),(1,2),(1,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 2
([(0,1),(0,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,1),(0,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(0,1),(0,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,4),(0,6),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 7
([(0,4),(0,6),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7) generating graphics... => 4
([(0,4),(0,6),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 6
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 5
([(0,4),(0,6),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 9
([(0,3),(0,4),(0,6),(1,2),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 4
([(0,3),(0,4),(0,6),(1,2),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,1),(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 6
([(0,1),(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 11
([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 2
([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 9
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 4
([(0,1),(0,6),(1,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,1),(0,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,1),(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 8
([(0,1),(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 10
([(0,1),(0,6),(1,5),(2,3),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,4),(0,5),(1,2),(1,3),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 4
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 6
([(0,4),(0,5),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(5,6)],7) generating graphics... => 4
([(0,4),(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 5
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,4),(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(0,3),(0,6),(1,3),(1,5),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,4),(0,5),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 6
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 10
([(0,5),(0,6),(1,3),(1,6),(2,3),(2,4),(2,5),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 6
([(0,3),(0,6),(1,2),(1,6),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7) generating graphics... => 6
([(0,4),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 8
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 12
([(0,5),(0,6),(1,2),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 9
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(3,6),(4,5),(5,6)],7) generating graphics... => 4
([(0,3),(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7) generating graphics... => 5
([(0,3),(0,5),(1,2),(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,2),(0,6),(1,3),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 6
([(0,2),(0,6),(1,3),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 9
([(0,1),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 8
([(0,1),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 12
([(0,4),(0,5),(1,2),(1,3),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 9
([(0,3),(0,6),(1,2),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 11
([(0,4),(0,6),(1,2),(1,3),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,4),(0,6),(1,2),(1,3),(1,5),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,3),(0,6),(1,2),(1,4),(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,2),(0,6),(1,4),(1,5),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 9
([(0,3),(0,6),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,4),(0,5),(1,2),(1,3),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,1),(0,2),(0,6),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 9
([(0,1),(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 6
([(0,1),(0,3),(0,6),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 11
([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 9
([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 14
([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,1),(0,4),(0,6),(1,3),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,1),(0,4),(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 11
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 4
([(0,1),(0,2),(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 4
([(0,1),(0,4),(0,6),(1,3),(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 10
([(0,3),(0,5),(0,6),(1,2),(1,5),(1,6),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,1),(0,4),(0,6),(1,3),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,1),(0,5),(0,6),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 10
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 8
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 13
([(0,1),(0,4),(0,6),(1,2),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,1),(0,2),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 9
([(0,1),(0,2),(0,5),(1,4),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 6
([(0,1),(0,2),(0,5),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,1),(0,4),(0,6),(1,3),(1,5),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,2),(0,4),(0,5),(1,4),(1,5),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 9
([(0,3),(0,4),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 6
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 10
([(0,4),(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 10
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 14
([(0,3),(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,3),(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,2),(0,3),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 9
([(0,3),(0,5),(0,6),(1,2),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 13
([(0,1),(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 3
([(0,4),(0,6),(1,3),(1,6),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,4),(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(3,5),(4,6)],7) generating graphics... => 3
([(0,3),(0,6),(1,3),(1,5),(2,4),(2,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,4),(0,5),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,3),(0,4),(1,2),(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,6),(1,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,3),(0,5),(1,4),(1,6),(2,3),(2,5),(2,6),(3,4),(4,6),(5,6)],7) generating graphics... => 3
([(0,4),(0,6),(1,3),(1,5),(2,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,3),(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(4,6),(5,6)],7) generating graphics... => 3
([(0,3),(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,4),(0,5),(1,3),(1,6),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 4
([(0,4),(0,5),(1,2),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,3),(0,4),(1,2),(1,6),(2,5),(3,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,6),(1,2),(1,6),(2,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5)],7) generating graphics... => 3
([(0,4),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 3
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 4
([(0,5),(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 4
([(0,5),(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 6
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 11
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,3),(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,2),(1,4),(2,3),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,3),(0,4),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,1),(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,3),(0,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,3),(1,4),(2,3),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,2),(0,3),(1,4),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,4),(0,5),(1,3),(1,6),(2,3),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,3),(0,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 7
([(0,4),(0,5),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 9
([(0,4),(0,5),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 5
([(0,4),(0,5),(1,3),(1,6),(2,3),(2,5),(2,6),(3,4),(4,6),(5,6)],7) generating graphics... => 2
([(0,3),(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,5),(0,6),(1,3),(1,4),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 2
([(0,5),(0,6),(1,2),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(4,5)],7) generating graphics... => 1
([(0,4),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 4
([(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,5),(0,6),(1,2),(1,3),(1,5),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 6
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 6
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 10
([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 8
([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 13
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,3),(0,4),(1,3),(1,5),(1,6),(2,3),(2,5),(2,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,1),(0,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,1),(0,5),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 9
([(0,1),(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 11
([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(5,6)],7) generating graphics... => 7
([(0,4),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 10
([(0,3),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 14
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(5,6)],7) generating graphics... => 4
([(0,4),(0,6),(1,3),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 11
([(0,3),(0,5),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 6
([(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(4,5),(5,6)],7) generating graphics... => 1
([(0,4),(0,6),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5)],7) generating graphics... => 2
([(0,5),(0,6),(1,2),(1,5),(2,3),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,1),(0,6),(1,5),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,1),(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,1),(0,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 3
([(0,1),(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 5
([(0,1),(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,1),(0,6),(1,5),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,4),(0,6),(1,2),(1,3),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 3
([(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7) generating graphics... => 5
([(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 9
([(0,4),(0,6),(1,2),(1,3),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,5),(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 3
([(0,4),(0,6),(1,2),(1,3),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(5,6)],7) generating graphics... => 3
([(0,4),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 4
([(0,4),(0,6),(1,2),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,3),(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,6),(3,5),(4,5),(4,6)],7) generating graphics... => 2
([(0,4),(0,6),(1,2),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(5,6)],7) generating graphics... => 5
([(0,3),(0,6),(1,3),(1,4),(1,6),(2,4),(2,5),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 8
([(0,5),(0,6),(1,2),(1,4),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 5
([(0,4),(0,5),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 6
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 9
([(0,3),(0,4),(1,2),(1,3),(1,5),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,2),(0,6),(1,2),(1,4),(1,5),(2,3),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,1),(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 7
([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 10
([(0,5),(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 7
([(0,4),(0,5),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 8
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 10
([(0,3),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 10
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 14
([(0,2),(0,6),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 4
([(0,2),(0,4),(1,3),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,4),(0,5),(1,2),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 6
([(0,2),(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 10
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 10
([(0,2),(0,3),(1,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 6
([(0,4),(0,6),(1,2),(1,5),(1,6),(2,3),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,2),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 6
([(0,4),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 9
([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 13
([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 12
([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 17
([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 9
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,4),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 11
([(0,2),(0,6),(1,3),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,3),(0,5),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,4),(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 2
([(0,5),(0,6),(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7) generating graphics... => 5
([(0,4),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 7
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 11
([(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 3
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7) generating graphics... => 6
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 10
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 9
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 14
([(0,5),(0,6),(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,5),(0,6),(1,2),(1,3),(1,4),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(0,1),(0,3),(0,4),(1,2),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,1),(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 8
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 4
([(0,1),(0,3),(0,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) generating graphics... => 7
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 11
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 10
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 15
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 6
([(0,3),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => 10
([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 14
([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 19
([(0,1),(0,2),(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 10
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 9
([(0,3),(0,4),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 8
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 11
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 16
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,4),(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 12
([(0,1),(0,2),(0,6),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(0,2),(0,5),(0,6),(1,2),(1,5),(1,6),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 8
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 3
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) generating graphics... => 7
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 11
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 16
([(0,1),(0,4),(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) generating graphics... => 5
([(0,3),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,1),(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 10
([(0,3),(0,4),(0,6),(1,3),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,3),(0,5),(0,6),(1,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 9
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 8
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 13
([(0,1),(0,3),(0,4),(1,2),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,1),(0,2),(0,6),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 11
([(0,2),(0,3),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,2),(0,3),(0,4),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 9
([(0,3),(0,4),(0,6),(1,2),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 12
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 6
([(0,1),(0,2),(0,3),(0,4),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 10
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 14
([(0,2),(0,3),(0,4),(0,6),(1,2),(1,3),(1,4),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 9
([(0,1),(0,2),(0,3),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 13
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 12
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 17
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 22
([(0,1),(0,4),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 9
([(0,1),(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 13
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,5),(5,6)],7) generating graphics... => 8
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 12
([(0,3),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 11
([(0,3),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 16
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 4
([(0,1),(0,2),(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,1),(0,2),(0,5),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 10
([(0,2),(0,4),(0,6),(1,2),(1,3),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,3),(0,5),(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,4),(0,5),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6)],7) generating graphics... => 3
([(0,4),(0,5),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 5
([(0,5),(0,6),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6)],7) generating graphics... => 4
([(0,5),(0,6),(1,2),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,4),(0,6),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 5
([(0,5),(0,6),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 9
([(0,4),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 3
([(0,5),(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 4
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5)],7) generating graphics... => 4
([(0,3),(0,4),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,3),(0,5),(1,4),(1,5),(1,6),(2,3),(2,4),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,4),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 9
([(0,4),(0,6),(1,2),(1,3),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(5,6)],7) generating graphics... => 4
([(0,3),(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 9
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 4
([(0,3),(0,4),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 12
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,5),(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(5,6)],7) generating graphics... => 5
([(0,4),(0,5),(1,2),(1,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 4
([(0,5),(0,6),(1,2),(1,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,4),(0,6),(1,2),(1,5),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7) generating graphics... => 6
([(0,4),(0,6),(1,3),(1,5),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 10
([(0,3),(0,6),(1,2),(1,5),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 4
([(0,3),(0,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 12
([(0,1),(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,6),(1,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 5
([(0,1),(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,4),(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5)],7) generating graphics... => 1
([(0,5),(0,6),(1,3),(1,5),(2,3),(2,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,4),(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 5
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7) generating graphics... => 1
([(0,1),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 2
([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,1),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 4
([(0,1),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,1),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 10
([(0,5),(1,2),(1,4),(2,3),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(1,5),(1,6),(2,4),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,6),(1,2),(1,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 3
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 4
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 6
([(0,6),(1,4),(1,5),(2,3),(2,5),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7) generating graphics... => 3
([(0,4),(1,3),(1,6),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 4
([(0,5),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 5
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,6),(1,4),(1,5),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 3
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 4
([(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,6),(1,5),(2,4),(3,4),(5,6)],7) generating graphics... => 0
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(0,6),(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,6),(1,5),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,6),(1,4),(2,3),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,5),(1,4),(2,3),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) generating graphics... => 0
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(0,6),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 2
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,6),(1,4),(1,6),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,1),(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 2
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,1),(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,4),(1,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,6),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 2
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,5),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6)],7) generating graphics... => 1
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 2
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,5),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) generating graphics... => 0
([(0,6),(1,6),(2,3),(2,4),(3,5),(4,5),(5,6)],7) generating graphics... => 0
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 4
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5)],7) generating graphics... => 2
([(0,5),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 3
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,2),(1,4),(2,5),(3,4),(3,6),(4,5),(5,6)],7) generating graphics... => 0
([(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,6),(1,4),(1,5),(2,3),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,6),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7) generating graphics... => 2
([(0,6),(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 2
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,5),(1,4),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7) generating graphics... => 2
([(0,5),(1,5),(1,6),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 2
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 4
([(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,6),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 3
([(0,6),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,3),(1,2),(1,5),(2,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,5),(1,2),(1,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,3),(1,4),(2,3),(2,5),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,6),(1,3),(1,5),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(0,4),(1,3),(1,6),(2,3),(2,5),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 4
([(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,3),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 3
([(0,5),(1,4),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,2),(1,4),(1,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(0,2),(1,5),(1,6),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,1),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 4
([(0,2),(1,5),(1,6),(2,4),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 3
([(0,5),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 4
([(0,3),(1,3),(1,4),(2,5),(2,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,5),(1,3),(1,4),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 3
([(0,6),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,5),(1,3),(1,5),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,4),(1,5),(2,3),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,6),(1,3),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6)],7) generating graphics... => 3
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(5,6)],7) generating graphics... => 3
([(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 4
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,6),(1,3),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,5),(1,2),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 4
([(0,6),(1,2),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 4
([(0,6),(1,2),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 6
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 10
([(0,5),(1,2),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,3),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,5),(1,3),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 7
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 10
([(0,1),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 7
([(0,5),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 9
([(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 12
([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 16
([(0,3),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 13
([(0,1),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 11
([(0,3),(1,2),(1,4),(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 9
([(0,6),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 8
([(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 12
([(0,4),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 10
([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 13
([(0,5),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,2),(1,4),(1,5),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,4),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 4
([(0,5),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 5
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 7
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 11
([(0,1),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,6),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 4
([(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 6
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,6),(1,3),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 6
([(0,4),(1,2),(1,3),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 9
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7) generating graphics... => 6
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 9
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 13
([(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,5),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 10
([(0,1),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,1),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,1),(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,1),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,1),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 10
([(0,2),(1,2),(1,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,5),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 5
([(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,5),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,5),(1,4),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 4
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 0
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) generating graphics... => 3
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 4
([(0,4),(1,2),(1,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,6),(1,2),(1,5),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 7
([(0,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,5),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 8
([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 11
([(0,6),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 6
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7) generating graphics... => 3
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 6
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 10
([(0,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) generating graphics... => 3
([(0,5),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 5
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,4),(1,4),(1,6),(2,5),(2,6),(3,5),(3,6),(5,6)],7) generating graphics... => 2
([(0,5),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 3
([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 4
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7) generating graphics... => 2
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(5,6)],7) generating graphics... => 2
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6)],7) generating graphics... => 2
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 2
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 4
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 9
([(0,4),(0,6),(1,4),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 3
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7) generating graphics... => 2
([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,5),(1,5),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 4
([(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 10
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(2,3),(2,5),(3,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,2),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,5),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6)],7) generating graphics... => 1
([(0,4),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 2
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,3),(1,4),(1,5),(2,4),(2,6),(3,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(1,5),(1,6),(2,4),(2,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,5),(1,3),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(1,5),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,5),(1,3),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 3
([(0,3),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,6),(1,4),(1,5),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,2),(1,5),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 2
([(0,2),(1,5),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 2
([(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,6),(4,5),(5,6)],7) generating graphics... => 1
([(0,6),(1,2),(1,6),(2,4),(3,4),(3,5),(4,5),(5,6)],7) generating graphics... => 2
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 2
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,6),(1,2),(1,6),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,3),(1,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,3),(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,6),(1,2),(1,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 3
([(0,6),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 3
([(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,6),(1,2),(1,4),(2,4),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 2
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 3
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 3
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 4
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,6),(1,2),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,1),(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(0,1),(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) generating graphics... => 2
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7) generating graphics... => 2
([(0,1),(0,6),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(5,6)],7) generating graphics... => 2
([(0,1),(0,6),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7) generating graphics... => 1
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,1),(0,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 6
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,4),(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5)],7) generating graphics... => 3
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,3),(0,6),(1,2),(1,5),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,4),(0,5),(1,2),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,1),(0,5),(1,5),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,1),(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,1),(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,6),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 5
([(0,1),(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5)],7) generating graphics... => 2
([(0,4),(0,6),(1,3),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,3),(0,4),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 3
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,4),(3,6),(4,5),(5,6)],7) generating graphics... => 3
([(0,4),(0,6),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6)],7) generating graphics... => 4
([(0,4),(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) generating graphics... => 4
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6)],7) generating graphics... => 4
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 5
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 9
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 7
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 12
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,5),(5,6)],7) generating graphics... => 4
([(0,4),(0,6),(1,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 7
([(0,1),(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 3
([(0,3),(0,6),(1,3),(1,6),(2,4),(2,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 4
([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 3
([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 5
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 5
([(0,4),(0,5),(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 6
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 8
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 11
click to show generating function       
Description
The minimal number of occurrences of the bipartite-pattern in a linear ordering of the vertices of the graph.
A graph is bipartite if and only if in any linear ordering of its vertices, there are no three vertices $a < b < c$ such that $(a,b)$ and $(b,c)$ are edges. This statistic is the minimal number of occurrences of this pattern, in the set of all linear orderings of the vertices.
References
[1] Feuilloley, L., Habib, M. Graph classes and forbidden patterns on three vertices arXiv:1812.05913
Code
def pattern_positions_number(E, n, pattern_n, pattern_E, pattern_N,
                             upper_bound=None):
    """
    Return the number of subsets of vertices realising the given pattern.

    INPUT:

    - E, the edges of a graph with vertices 0,...,n-1
    - n, the number of vertices of a graph
    - pattern_n, the size of the pattern graph
    - pattern_E, a list of pairs of vertices which must occur
    - pattern_N, a list of pairs of vertices which must not occur

    """
    res = 0
    for V in Subsets(range(n), pattern_n)._fast_iterator():
        HV = sorted(V)
        if (all((HV[u], HV[v]) in E for u, v in pattern_E) and
            not any((HV[u], HV[v]) in E for u, v in pattern_N)):
            res += 1
            if upper_bound is not None and res >= upper_bound:
                return res
    return res

def occurrences(G, pattern_n, pattern_E, pattern_N):
    """
    The minimal number of occurrences of the given pattern in the set of all orderings of the vertices.

    paths
    sage: [(G, occurrences3(G, 3, [(0,2)], [])) for G in graphs(5)]

    stars
    sage: view([G for G in graphs(4) if avoids(G, 3, [(0,1)], [])])

    """
    n = G.num_verts()
    o = None
    tested = set()
    EG = G.edges(False)
    for pi in Permutations(n):
        EH = [(pi[u]-1, pi[v]-1) for u, v in EG]
        EH = frozenset([(u, v) if u < v else (v, u) for u,v in EH])
        if EH in tested:
            continue
        tested.add(EH)
        if o is None:
            o = pattern_positions_number(EH, n, pattern_n, pattern_E, pattern_N)
        else:
            o = min(o, pattern_positions_number(EH, n, pattern_n, pattern_E, pattern_N, o))
    return o

def statistic(G):
    return occurrences(G, 3, [(0,1),(1,2)], [])
Created
Dec 18, 2018 at 20:39 by Martin Rubey
Updated
Dec 18, 2018 at 20:39 by Martin Rubey