Identifier
Identifier
Values
[1] => 1
[1,1] => 2
[2] => 1
[1,1,1] => 3
[1,2] => 2
[2,1] => 2
[3] => 1
[1,1,1,1] => 4
[1,1,2] => 3
[1,2,1] => 2
[1,3] => 2
[2,1,1] => 3
[2,2] => 2
[3,1] => 2
[4] => 1
[1,1,1,1,1] => 5
[1,1,1,2] => 4
[1,1,2,1] => 3
[1,1,3] => 3
[1,2,1,1] => 3
[1,2,2] => 2
[1,3,1] => 2
[1,4] => 2
[2,1,1,1] => 4
[2,1,2] => 3
[2,2,1] => 2
[2,3] => 2
[3,1,1] => 3
[3,2] => 2
[4,1] => 2
[5] => 1
[1,1,1,1,1,1] => 6
[1,1,1,1,2] => 5
[1,1,1,2,1] => 4
[1,1,1,3] => 4
[1,1,2,1,1] => 3
[1,1,2,2] => 3
[1,1,3,1] => 3
[1,1,4] => 3
[1,2,1,1,1] => 4
[1,2,1,2] => 3
[1,2,2,1] => 2
[1,2,3] => 2
[1,3,1,1] => 3
[1,3,2] => 2
[1,4,1] => 2
[1,5] => 2
[2,1,1,1,1] => 5
[2,1,1,2] => 4
[2,1,2,1] => 3
[2,1,3] => 3
[2,2,1,1] => 3
[2,2,2] => 2
[2,3,1] => 2
[2,4] => 2
[3,1,1,1] => 4
[3,1,2] => 3
[3,2,1] => 2
[3,3] => 2
[4,1,1] => 3
[4,2] => 2
[5,1] => 2
[6] => 1
click to show generating function       
Description
The global dimension of the corresponding Comp-Nakayama algebra.
We identify the composition [n1-1,n2-1,...,nr-1] with the Nakayama algebra with Kupisch series [n1,n1-1,...,2,n2,n2-1,...,2,...,nr,nr-1,...,3,2,1]. We call such Nakayama algebras with Kupisch series corresponding to a integer composition "Comp-Nakayama algebra".
Created
Jul 30, 2018 at 20:58 by Rene Marczinzik
Updated
Jul 30, 2018 at 20:58 by Rene Marczinzik