Identifier
Identifier
Values
[1,2] => 0
[2,1] => 0
[1,2,3] => 0
[1,3,2] => 0
[2,1,3] => 0
[2,3,1] => 1
[3,1,2] => 1
[3,2,1] => 0
[1,2,3,4] => 0
[1,2,4,3] => 0
[1,3,2,4] => 0
[1,3,4,2] => 1
[1,4,2,3] => 1
[1,4,3,2] => 0
[2,1,3,4] => 0
[2,1,4,3] => 0
[2,3,1,4] => 1
[2,3,4,1] => 1
[2,4,1,3] => 1
[2,4,3,1] => 1
[3,1,2,4] => 1
[3,1,4,2] => 1
[3,2,1,4] => 0
[3,2,4,1] => 1
[3,4,1,2] => 1
[3,4,2,1] => 1
[4,1,2,3] => 1
[4,1,3,2] => 1
[4,2,1,3] => 1
[4,2,3,1] => 1
[4,3,1,2] => 1
[4,3,2,1] => 0
[1,2,3,4,5] => 0
[1,2,3,5,4] => 0
[1,2,4,3,5] => 0
[1,2,4,5,3] => 1
[1,2,5,3,4] => 1
[1,2,5,4,3] => 0
[1,3,2,4,5] => 0
[1,3,2,5,4] => 0
[1,3,4,2,5] => 1
[1,3,4,5,2] => 1
[1,3,5,2,4] => 1
[1,3,5,4,2] => 1
[1,4,2,3,5] => 1
[1,4,2,5,3] => 1
[1,4,3,2,5] => 0
[1,4,3,5,2] => 1
[1,4,5,2,3] => 1
[1,4,5,3,2] => 1
[1,5,2,3,4] => 1
[1,5,2,4,3] => 1
[1,5,3,2,4] => 1
[1,5,3,4,2] => 1
[1,5,4,2,3] => 1
[1,5,4,3,2] => 0
[2,1,3,4,5] => 0
[2,1,3,5,4] => 0
[2,1,4,3,5] => 0
[2,1,4,5,3] => 1
[2,1,5,3,4] => 1
[2,1,5,4,3] => 0
[2,3,1,4,5] => 1
[2,3,1,5,4] => 1
[2,3,4,1,5] => 1
[2,3,4,5,1] => 1
[2,3,5,1,4] => 1
[2,3,5,4,1] => 1
[2,4,1,3,5] => 1
[2,4,1,5,3] => 1
[2,4,3,1,5] => 1
[2,4,3,5,1] => 1
[2,4,5,1,3] => 1
[2,4,5,3,1] => 1
[2,5,1,3,4] => 1
[2,5,1,4,3] => 1
[2,5,3,1,4] => 1
[2,5,3,4,1] => 1
[2,5,4,1,3] => 1
[2,5,4,3,1] => 1
[3,1,2,4,5] => 1
[3,1,2,5,4] => 1
[3,1,4,2,5] => 1
[3,1,4,5,2] => 1
[3,1,5,2,4] => 1
[3,1,5,4,2] => 1
[3,2,1,4,5] => 0
[3,2,1,5,4] => 0
[3,2,4,1,5] => 1
[3,2,4,5,1] => 1
[3,2,5,1,4] => 1
[3,2,5,4,1] => 1
[3,4,1,2,5] => 1
[3,4,1,5,2] => 1
[3,4,2,1,5] => 1
[3,4,2,5,1] => 1
[3,4,5,1,2] => 1
[3,4,5,2,1] => 1
[3,5,1,2,4] => 1
[3,5,1,4,2] => 1
[3,5,2,1,4] => 1
[3,5,2,4,1] => 1
[3,5,4,1,2] => 1
[3,5,4,2,1] => 1
[4,1,2,3,5] => 1
[4,1,2,5,3] => 1
[4,1,3,2,5] => 1
[4,1,3,5,2] => 1
[4,1,5,2,3] => 1
[4,1,5,3,2] => 1
[4,2,1,3,5] => 1
[4,2,1,5,3] => 1
[4,2,3,1,5] => 1
[4,2,3,5,1] => 1
[4,2,5,1,3] => 1
[4,2,5,3,1] => 1
[4,3,1,2,5] => 1
[4,3,1,5,2] => 1
[4,3,2,1,5] => 0
[4,3,2,5,1] => 1
[4,3,5,1,2] => 1
[4,3,5,2,1] => 1
[4,5,1,2,3] => 1
[4,5,1,3,2] => 1
[4,5,2,1,3] => 1
[4,5,2,3,1] => 1
[4,5,3,1,2] => 1
[4,5,3,2,1] => 1
[5,1,2,3,4] => 1
[5,1,2,4,3] => 1
[5,1,3,2,4] => 1
[5,1,3,4,2] => 1
[5,1,4,2,3] => 1
[5,1,4,3,2] => 1
[5,2,1,3,4] => 1
[5,2,1,4,3] => 1
[5,2,3,1,4] => 1
[5,2,3,4,1] => 1
[5,2,4,1,3] => 1
[5,2,4,3,1] => 1
[5,3,1,2,4] => 1
[5,3,1,4,2] => 1
[5,3,2,1,4] => 1
[5,3,2,4,1] => 1
[5,3,4,1,2] => 1
[5,3,4,2,1] => 1
[5,4,1,2,3] => 1
[5,4,1,3,2] => 1
[5,4,2,1,3] => 1
[5,4,2,3,1] => 1
[5,4,3,1,2] => 1
[5,4,3,2,1] => 0
[1,2,3,4,5,6] => 0
[1,2,3,4,6,5] => 0
[1,2,3,5,4,6] => 0
[1,2,3,5,6,4] => 1
[1,2,3,6,4,5] => 1
[1,2,3,6,5,4] => 0
[1,2,4,3,5,6] => 0
[1,2,4,3,6,5] => 0
[1,2,4,5,3,6] => 1
[1,2,4,5,6,3] => 1
[1,2,4,6,3,5] => 1
[1,2,4,6,5,3] => 1
[1,2,5,3,4,6] => 1
[1,2,5,3,6,4] => 1
[1,2,5,4,3,6] => 0
[1,2,5,4,6,3] => 1
[1,2,5,6,3,4] => 1
[1,2,5,6,4,3] => 1
[1,2,6,3,4,5] => 1
[1,2,6,3,5,4] => 1
[1,2,6,4,3,5] => 1
[1,2,6,4,5,3] => 1
[1,2,6,5,3,4] => 1
[1,2,6,5,4,3] => 0
[1,3,2,4,5,6] => 0
[1,3,2,4,6,5] => 0
[1,3,2,5,4,6] => 0
[1,3,2,5,6,4] => 1
[1,3,2,6,4,5] => 1
[1,3,2,6,5,4] => 0
[1,3,4,2,5,6] => 1
[1,3,4,2,6,5] => 1
[1,3,4,5,2,6] => 1
[1,3,4,5,6,2] => 1
[1,3,4,6,2,5] => 1
[1,3,4,6,5,2] => 1
[1,3,5,2,4,6] => 1
[1,3,5,2,6,4] => 1
[1,3,5,4,2,6] => 1
[1,3,5,4,6,2] => 1
[1,3,5,6,2,4] => 1
[1,3,5,6,4,2] => 1
[1,3,6,2,4,5] => 1
[1,3,6,2,5,4] => 1
[1,3,6,4,2,5] => 1
[1,3,6,4,5,2] => 1
[1,3,6,5,2,4] => 1
[1,3,6,5,4,2] => 1
[1,4,2,3,5,6] => 1
[1,4,2,3,6,5] => 1
[1,4,2,5,3,6] => 1
[1,4,2,5,6,3] => 1
[1,4,2,6,3,5] => 1
[1,4,2,6,5,3] => 1
[1,4,3,2,5,6] => 0
[1,4,3,2,6,5] => 0
[1,4,3,5,2,6] => 1
[1,4,3,5,6,2] => 1
[1,4,3,6,2,5] => 1
[1,4,3,6,5,2] => 1
[1,4,5,2,3,6] => 1
[1,4,5,2,6,3] => 1
[1,4,5,3,2,6] => 1
[1,4,5,3,6,2] => 1
[1,4,5,6,2,3] => 1
[1,4,5,6,3,2] => 1
[1,4,6,2,3,5] => 1
[1,4,6,2,5,3] => 1
[1,4,6,3,2,5] => 1
[1,4,6,3,5,2] => 1
[1,4,6,5,2,3] => 1
[1,4,6,5,3,2] => 1
[1,5,2,3,4,6] => 1
[1,5,2,3,6,4] => 1
[1,5,2,4,3,6] => 1
[1,5,2,4,6,3] => 1
[1,5,2,6,3,4] => 1
[1,5,2,6,4,3] => 1
[1,5,3,2,4,6] => 1
[1,5,3,2,6,4] => 1
[1,5,3,4,2,6] => 1
[1,5,3,4,6,2] => 1
[1,5,3,6,2,4] => 1
[1,5,3,6,4,2] => 1
[1,5,4,2,3,6] => 1
[1,5,4,2,6,3] => 1
[1,5,4,3,2,6] => 0
[1,5,4,3,6,2] => 1
[1,5,4,6,2,3] => 1
[1,5,4,6,3,2] => 1
[1,5,6,2,3,4] => 1
[1,5,6,2,4,3] => 1
[1,5,6,3,2,4] => 1
[1,5,6,3,4,2] => 1
[1,5,6,4,2,3] => 1
[1,5,6,4,3,2] => 1
[1,6,2,3,4,5] => 1
[1,6,2,3,5,4] => 1
[1,6,2,4,3,5] => 1
[1,6,2,4,5,3] => 1
[1,6,2,5,3,4] => 1
[1,6,2,5,4,3] => 1
[1,6,3,2,4,5] => 1
[1,6,3,2,5,4] => 1
[1,6,3,4,2,5] => 1
[1,6,3,4,5,2] => 1
[1,6,3,5,2,4] => 1
[1,6,3,5,4,2] => 1
[1,6,4,2,3,5] => 1
[1,6,4,2,5,3] => 1
[1,6,4,3,2,5] => 1
[1,6,4,3,5,2] => 1
[1,6,4,5,2,3] => 1
[1,6,4,5,3,2] => 1
[1,6,5,2,3,4] => 1
[1,6,5,2,4,3] => 1
[1,6,5,3,2,4] => 1
[1,6,5,3,4,2] => 1
[1,6,5,4,2,3] => 1
[1,6,5,4,3,2] => 0
[2,1,3,4,5,6] => 0
[2,1,3,4,6,5] => 0
[2,1,3,5,4,6] => 0
[2,1,3,5,6,4] => 1
[2,1,3,6,4,5] => 1
[2,1,3,6,5,4] => 0
[2,1,4,3,5,6] => 0
[2,1,4,3,6,5] => 0
[2,1,4,5,3,6] => 1
[2,1,4,5,6,3] => 1
[2,1,4,6,3,5] => 1
[2,1,4,6,5,3] => 1
[2,1,5,3,4,6] => 1
[2,1,5,3,6,4] => 1
[2,1,5,4,3,6] => 0
[2,1,5,4,6,3] => 1
[2,1,5,6,3,4] => 1
[2,1,5,6,4,3] => 1
[2,1,6,3,4,5] => 1
[2,1,6,3,5,4] => 1
[2,1,6,4,3,5] => 1
[2,1,6,4,5,3] => 1
[2,1,6,5,3,4] => 1
[2,1,6,5,4,3] => 0
[2,3,1,4,5,6] => 1
[2,3,1,4,6,5] => 1
[2,3,1,5,4,6] => 1
[2,3,1,5,6,4] => 1
[2,3,1,6,4,5] => 1
[2,3,1,6,5,4] => 1
[2,3,4,1,5,6] => 1
[2,3,4,1,6,5] => 1
[2,3,4,5,1,6] => 1
[2,3,4,5,6,1] => 1
[2,3,4,6,1,5] => 1
[2,3,4,6,5,1] => 1
[2,3,5,1,4,6] => 1
[2,3,5,1,6,4] => 1
[2,3,5,4,1,6] => 1
[2,3,5,4,6,1] => 1
[2,3,5,6,1,4] => 1
[2,3,5,6,4,1] => 1
[2,3,6,1,4,5] => 1
[2,3,6,1,5,4] => 1
[2,3,6,4,1,5] => 1
[2,3,6,4,5,1] => 1
[2,3,6,5,1,4] => 1
[2,3,6,5,4,1] => 1
[2,4,1,3,5,6] => 1
[2,4,1,3,6,5] => 1
[2,4,1,5,3,6] => 1
[2,4,1,5,6,3] => 1
[2,4,1,6,3,5] => 1
[2,4,1,6,5,3] => 1
[2,4,3,1,5,6] => 1
[2,4,3,1,6,5] => 1
[2,4,3,5,1,6] => 1
[2,4,3,5,6,1] => 1
[2,4,3,6,1,5] => 1
[2,4,3,6,5,1] => 1
[2,4,5,1,3,6] => 1
[2,4,5,1,6,3] => 1
[2,4,5,3,1,6] => 1
[2,4,5,3,6,1] => 1
[2,4,5,6,1,3] => 1
[2,4,5,6,3,1] => 1
[2,4,6,1,3,5] => 1
[2,4,6,1,5,3] => 1
[2,4,6,3,1,5] => 1
[2,4,6,3,5,1] => 1
[2,4,6,5,1,3] => 1
[2,4,6,5,3,1] => 1
[2,5,1,3,4,6] => 1
[2,5,1,3,6,4] => 1
[2,5,1,4,3,6] => 1
[2,5,1,4,6,3] => 1
[2,5,1,6,3,4] => 1
[2,5,1,6,4,3] => 1
[2,5,3,1,4,6] => 1
[2,5,3,1,6,4] => 1
[2,5,3,4,1,6] => 1
[2,5,3,4,6,1] => 1
[2,5,3,6,1,4] => 1
[2,5,3,6,4,1] => 1
[2,5,4,1,3,6] => 1
[2,5,4,1,6,3] => 1
[2,5,4,3,1,6] => 1
[2,5,4,3,6,1] => 1
[2,5,4,6,1,3] => 1
[2,5,4,6,3,1] => 1
[2,5,6,1,3,4] => 1
[2,5,6,1,4,3] => 1
[2,5,6,3,1,4] => 1
[2,5,6,3,4,1] => 1
[2,5,6,4,1,3] => 1
[2,5,6,4,3,1] => 1
[2,6,1,3,4,5] => 1
[2,6,1,3,5,4] => 1
[2,6,1,4,3,5] => 1
[2,6,1,4,5,3] => 1
[2,6,1,5,3,4] => 1
[2,6,1,5,4,3] => 1
[2,6,3,1,4,5] => 1
[2,6,3,1,5,4] => 1
[2,6,3,4,1,5] => 1
[2,6,3,4,5,1] => 1
[2,6,3,5,1,4] => 1
[2,6,3,5,4,1] => 1
[2,6,4,1,3,5] => 1
[2,6,4,1,5,3] => 1
[2,6,4,3,1,5] => 1
[2,6,4,3,5,1] => 1
[2,6,4,5,1,3] => 1
[2,6,4,5,3,1] => 1
[2,6,5,1,3,4] => 1
[2,6,5,1,4,3] => 1
[2,6,5,3,1,4] => 1
[2,6,5,3,4,1] => 1
[2,6,5,4,1,3] => 1
[2,6,5,4,3,1] => 1
[3,1,2,4,5,6] => 1
[3,1,2,4,6,5] => 1
[3,1,2,5,4,6] => 1
[3,1,2,5,6,4] => 1
[3,1,2,6,4,5] => 1
[3,1,2,6,5,4] => 1
[3,1,4,2,5,6] => 1
[3,1,4,2,6,5] => 1
[3,1,4,5,2,6] => 1
[3,1,4,5,6,2] => 1
[3,1,4,6,2,5] => 1
[3,1,4,6,5,2] => 1
[3,1,5,2,4,6] => 1
[3,1,5,2,6,4] => 1
[3,1,5,4,2,6] => 1
[3,1,5,4,6,2] => 1
[3,1,5,6,2,4] => 1
[3,1,5,6,4,2] => 1
[3,1,6,2,4,5] => 1
[3,1,6,2,5,4] => 1
[3,1,6,4,2,5] => 1
[3,1,6,4,5,2] => 1
[3,1,6,5,2,4] => 1
[3,1,6,5,4,2] => 1
[3,2,1,4,5,6] => 0
[3,2,1,4,6,5] => 0
[3,2,1,5,4,6] => 0
[3,2,1,5,6,4] => 1
[3,2,1,6,4,5] => 1
[3,2,1,6,5,4] => 0
[3,2,4,1,5,6] => 1
[3,2,4,1,6,5] => 1
[3,2,4,5,1,6] => 1
[3,2,4,5,6,1] => 1
[3,2,4,6,1,5] => 1
[3,2,4,6,5,1] => 1
[3,2,5,1,4,6] => 1
[3,2,5,1,6,4] => 1
[3,2,5,4,1,6] => 1
[3,2,5,4,6,1] => 1
[3,2,5,6,1,4] => 1
[3,2,5,6,4,1] => 1
[3,2,6,1,4,5] => 1
[3,2,6,1,5,4] => 1
[3,2,6,4,1,5] => 1
[3,2,6,4,5,1] => 1
[3,2,6,5,1,4] => 1
[3,2,6,5,4,1] => 1
[3,4,1,2,5,6] => 1
[3,4,1,2,6,5] => 1
[3,4,1,5,2,6] => 1
[3,4,1,5,6,2] => 1
[3,4,1,6,2,5] => 1
[3,4,1,6,5,2] => 1
[3,4,2,1,5,6] => 1
[3,4,2,1,6,5] => 1
[3,4,2,5,1,6] => 1
[3,4,2,5,6,1] => 1
[3,4,2,6,1,5] => 1
[3,4,2,6,5,1] => 1
[3,4,5,1,2,6] => 1
[3,4,5,1,6,2] => 1
[3,4,5,2,1,6] => 1
[3,4,5,2,6,1] => 1
[3,4,5,6,1,2] => 1
[3,4,5,6,2,1] => 1
[3,4,6,1,2,5] => 1
[3,4,6,1,5,2] => 1
[3,4,6,2,1,5] => 1
[3,4,6,2,5,1] => 1
[3,4,6,5,1,2] => 1
[3,4,6,5,2,1] => 1
[3,5,1,2,4,6] => 1
[3,5,1,2,6,4] => 1
[3,5,1,4,2,6] => 1
[3,5,1,4,6,2] => 1
[3,5,1,6,2,4] => 1
[3,5,1,6,4,2] => 1
[3,5,2,1,4,6] => 1
[3,5,2,1,6,4] => 1
[3,5,2,4,1,6] => 1
[3,5,2,4,6,1] => 1
[3,5,2,6,1,4] => 1
[3,5,2,6,4,1] => 1
[3,5,4,1,2,6] => 1
[3,5,4,1,6,2] => 1
[3,5,4,2,1,6] => 1
[3,5,4,2,6,1] => 1
[3,5,4,6,1,2] => 1
[3,5,4,6,2,1] => 1
[3,5,6,1,2,4] => 1
[3,5,6,1,4,2] => 1
[3,5,6,2,1,4] => 1
[3,5,6,2,4,1] => 1
[3,5,6,4,1,2] => 1
[3,5,6,4,2,1] => 1
[3,6,1,2,4,5] => 1
[3,6,1,2,5,4] => 1
[3,6,1,4,2,5] => 1
[3,6,1,4,5,2] => 1
[3,6,1,5,2,4] => 1
[3,6,1,5,4,2] => 1
[3,6,2,1,4,5] => 1
[3,6,2,1,5,4] => 1
[3,6,2,4,1,5] => 1
[3,6,2,4,5,1] => 1
[3,6,2,5,1,4] => 1
[3,6,2,5,4,1] => 1
[3,6,4,1,2,5] => 1
[3,6,4,1,5,2] => 1
[3,6,4,2,1,5] => 1
[3,6,4,2,5,1] => 1
[3,6,4,5,1,2] => 1
[3,6,4,5,2,1] => 1
[3,6,5,1,2,4] => 1
[3,6,5,1,4,2] => 1
[3,6,5,2,1,4] => 1
[3,6,5,2,4,1] => 1
[3,6,5,4,1,2] => 1
[3,6,5,4,2,1] => 1
[4,1,2,3,5,6] => 1
[4,1,2,3,6,5] => 1
[4,1,2,5,3,6] => 1
[4,1,2,5,6,3] => 1
[4,1,2,6,3,5] => 1
[4,1,2,6,5,3] => 1
[4,1,3,2,5,6] => 1
[4,1,3,2,6,5] => 1
[4,1,3,5,2,6] => 1
[4,1,3,5,6,2] => 1
[4,1,3,6,2,5] => 1
[4,1,3,6,5,2] => 1
[4,1,5,2,3,6] => 1
[4,1,5,2,6,3] => 1
[4,1,5,3,2,6] => 1
[4,1,5,3,6,2] => 1
[4,1,5,6,2,3] => 1
[4,1,5,6,3,2] => 1
[4,1,6,2,3,5] => 1
[4,1,6,2,5,3] => 1
[4,1,6,3,2,5] => 1
[4,1,6,3,5,2] => 1
[4,1,6,5,2,3] => 1
[4,1,6,5,3,2] => 1
[4,2,1,3,5,6] => 1
[4,2,1,3,6,5] => 1
[4,2,1,5,3,6] => 1
[4,2,1,5,6,3] => 1
[4,2,1,6,3,5] => 1
[4,2,1,6,5,3] => 1
[4,2,3,1,5,6] => 1
[4,2,3,1,6,5] => 1
[4,2,3,5,1,6] => 1
[4,2,3,5,6,1] => 1
[4,2,3,6,1,5] => 1
[4,2,3,6,5,1] => 1
[4,2,5,1,3,6] => 1
[4,2,5,1,6,3] => 1
[4,2,5,3,1,6] => 1
[4,2,5,3,6,1] => 1
[4,2,5,6,1,3] => 1
[4,2,5,6,3,1] => 1
[4,2,6,1,3,5] => 1
[4,2,6,1,5,3] => 1
[4,2,6,3,1,5] => 1
[4,2,6,3,5,1] => 1
[4,2,6,5,1,3] => 1
[4,2,6,5,3,1] => 1
[4,3,1,2,5,6] => 1
[4,3,1,2,6,5] => 1
[4,3,1,5,2,6] => 1
[4,3,1,5,6,2] => 1
[4,3,1,6,2,5] => 1
[4,3,1,6,5,2] => 1
[4,3,2,1,5,6] => 0
[4,3,2,1,6,5] => 0
[4,3,2,5,1,6] => 1
[4,3,2,5,6,1] => 1
[4,3,2,6,1,5] => 1
[4,3,2,6,5,1] => 1
[4,3,5,1,2,6] => 1
[4,3,5,1,6,2] => 1
[4,3,5,2,1,6] => 1
[4,3,5,2,6,1] => 1
[4,3,5,6,1,2] => 1
[4,3,5,6,2,1] => 1
[4,3,6,1,2,5] => 1
[4,3,6,1,5,2] => 1
[4,3,6,2,1,5] => 1
[4,3,6,2,5,1] => 1
[4,3,6,5,1,2] => 1
[4,3,6,5,2,1] => 1
[4,5,1,2,3,6] => 1
[4,5,1,2,6,3] => 1
[4,5,1,3,2,6] => 1
[4,5,1,3,6,2] => 1
[4,5,1,6,2,3] => 1
[4,5,1,6,3,2] => 1
[4,5,2,1,3,6] => 1
[4,5,2,1,6,3] => 1
[4,5,2,3,1,6] => 1
[4,5,2,3,6,1] => 1
[4,5,2,6,1,3] => 1
[4,5,2,6,3,1] => 1
[4,5,3,1,2,6] => 1
[4,5,3,1,6,2] => 1
[4,5,3,2,1,6] => 1
[4,5,3,2,6,1] => 1
[4,5,3,6,1,2] => 1
[4,5,3,6,2,1] => 1
[4,5,6,1,2,3] => 1
[4,5,6,1,3,2] => 1
[4,5,6,2,1,3] => 1
[4,5,6,2,3,1] => 1
[4,5,6,3,1,2] => 1
[4,5,6,3,2,1] => 1
[4,6,1,2,3,5] => 1
[4,6,1,2,5,3] => 1
[4,6,1,3,2,5] => 1
[4,6,1,3,5,2] => 1
[4,6,1,5,2,3] => 1
[4,6,1,5,3,2] => 1
[4,6,2,1,3,5] => 1
[4,6,2,1,5,3] => 1
[4,6,2,3,1,5] => 1
[4,6,2,3,5,1] => 1
[4,6,2,5,1,3] => 1
[4,6,2,5,3,1] => 1
[4,6,3,1,2,5] => 1
[4,6,3,1,5,2] => 1
[4,6,3,2,1,5] => 1
[4,6,3,2,5,1] => 1
[4,6,3,5,1,2] => 1
[4,6,3,5,2,1] => 1
[4,6,5,1,2,3] => 1
[4,6,5,1,3,2] => 1
[4,6,5,2,1,3] => 1
[4,6,5,2,3,1] => 1
[4,6,5,3,1,2] => 1
[4,6,5,3,2,1] => 1
[5,1,2,3,4,6] => 1
[5,1,2,3,6,4] => 1
[5,1,2,4,3,6] => 1
[5,1,2,4,6,3] => 1
[5,1,2,6,3,4] => 1
[5,1,2,6,4,3] => 1
[5,1,3,2,4,6] => 1
[5,1,3,2,6,4] => 1
[5,1,3,4,2,6] => 1
[5,1,3,4,6,2] => 1
[5,1,3,6,2,4] => 1
[5,1,3,6,4,2] => 1
[5,1,4,2,3,6] => 1
[5,1,4,2,6,3] => 1
[5,1,4,3,2,6] => 1
[5,1,4,3,6,2] => 1
[5,1,4,6,2,3] => 1
[5,1,4,6,3,2] => 1
[5,1,6,2,3,4] => 1
[5,1,6,2,4,3] => 1
[5,1,6,3,2,4] => 1
[5,1,6,3,4,2] => 1
[5,1,6,4,2,3] => 1
[5,1,6,4,3,2] => 1
[5,2,1,3,4,6] => 1
[5,2,1,3,6,4] => 1
[5,2,1,4,3,6] => 1
[5,2,1,4,6,3] => 1
[5,2,1,6,3,4] => 1
[5,2,1,6,4,3] => 1
[5,2,3,1,4,6] => 1
[5,2,3,1,6,4] => 1
[5,2,3,4,1,6] => 1
[5,2,3,4,6,1] => 1
[5,2,3,6,1,4] => 1
[5,2,3,6,4,1] => 1
[5,2,4,1,3,6] => 1
[5,2,4,1,6,3] => 1
[5,2,4,3,1,6] => 1
[5,2,4,3,6,1] => 1
[5,2,4,6,1,3] => 1
[5,2,4,6,3,1] => 1
[5,2,6,1,3,4] => 1
[5,2,6,1,4,3] => 1
[5,2,6,3,1,4] => 1
[5,2,6,3,4,1] => 1
[5,2,6,4,1,3] => 1
[5,2,6,4,3,1] => 1
[5,3,1,2,4,6] => 1
[5,3,1,2,6,4] => 1
[5,3,1,4,2,6] => 1
[5,3,1,4,6,2] => 1
[5,3,1,6,2,4] => 1
[5,3,1,6,4,2] => 1
[5,3,2,1,4,6] => 1
[5,3,2,1,6,4] => 1
[5,3,2,4,1,6] => 1
[5,3,2,4,6,1] => 1
[5,3,2,6,1,4] => 1
[5,3,2,6,4,1] => 1
[5,3,4,1,2,6] => 1
[5,3,4,1,6,2] => 1
[5,3,4,2,1,6] => 1
[5,3,4,2,6,1] => 1
[5,3,4,6,1,2] => 1
[5,3,4,6,2,1] => 1
[5,3,6,1,2,4] => 1
[5,3,6,1,4,2] => 1
[5,3,6,2,1,4] => 1
[5,3,6,2,4,1] => 1
[5,3,6,4,1,2] => 1
[5,3,6,4,2,1] => 1
[5,4,1,2,3,6] => 1
[5,4,1,2,6,3] => 1
[5,4,1,3,2,6] => 1
[5,4,1,3,6,2] => 1
[5,4,1,6,2,3] => 1
[5,4,1,6,3,2] => 1
[5,4,2,1,3,6] => 1
[5,4,2,1,6,3] => 1
[5,4,2,3,1,6] => 1
[5,4,2,3,6,1] => 1
[5,4,2,6,1,3] => 1
[5,4,2,6,3,1] => 1
[5,4,3,1,2,6] => 1
[5,4,3,1,6,2] => 1
[5,4,3,2,1,6] => 0
[5,4,3,2,6,1] => 1
[5,4,3,6,1,2] => 1
[5,4,3,6,2,1] => 1
[5,4,6,1,2,3] => 1
[5,4,6,1,3,2] => 1
[5,4,6,2,1,3] => 1
[5,4,6,2,3,1] => 1
[5,4,6,3,1,2] => 1
[5,4,6,3,2,1] => 1
[5,6,1,2,3,4] => 1
[5,6,1,2,4,3] => 1
[5,6,1,3,2,4] => 1
[5,6,1,3,4,2] => 1
[5,6,1,4,2,3] => 1
[5,6,1,4,3,2] => 1
[5,6,2,1,3,4] => 1
[5,6,2,1,4,3] => 1
[5,6,2,3,1,4] => 1
[5,6,2,3,4,1] => 1
[5,6,2,4,1,3] => 1
[5,6,2,4,3,1] => 1
[5,6,3,1,2,4] => 1
[5,6,3,1,4,2] => 1
[5,6,3,2,1,4] => 1
[5,6,3,2,4,1] => 1
[5,6,3,4,1,2] => 1
[5,6,3,4,2,1] => 1
[5,6,4,1,2,3] => 1
[5,6,4,1,3,2] => 1
[5,6,4,2,1,3] => 1
[5,6,4,2,3,1] => 1
[5,6,4,3,1,2] => 1
[5,6,4,3,2,1] => 1
[6,1,2,3,4,5] => 1
[6,1,2,3,5,4] => 1
[6,1,2,4,3,5] => 1
[6,1,2,4,5,3] => 1
[6,1,2,5,3,4] => 1
[6,1,2,5,4,3] => 1
[6,1,3,2,4,5] => 1
[6,1,3,2,5,4] => 1
[6,1,3,4,2,5] => 1
[6,1,3,4,5,2] => 1
[6,1,3,5,2,4] => 1
[6,1,3,5,4,2] => 1
[6,1,4,2,3,5] => 1
[6,1,4,2,5,3] => 1
[6,1,4,3,2,5] => 1
[6,1,4,3,5,2] => 1
[6,1,4,5,2,3] => 1
[6,1,4,5,3,2] => 1
[6,1,5,2,3,4] => 1
[6,1,5,2,4,3] => 1
[6,1,5,3,2,4] => 1
[6,1,5,3,4,2] => 1
[6,1,5,4,2,3] => 1
[6,1,5,4,3,2] => 1
[6,2,1,3,4,5] => 1
[6,2,1,3,5,4] => 1
[6,2,1,4,3,5] => 1
[6,2,1,4,5,3] => 1
[6,2,1,5,3,4] => 1
[6,2,1,5,4,3] => 1
[6,2,3,1,4,5] => 1
[6,2,3,1,5,4] => 1
[6,2,3,4,1,5] => 1
[6,2,3,4,5,1] => 1
[6,2,3,5,1,4] => 1
[6,2,3,5,4,1] => 1
[6,2,4,1,3,5] => 1
[6,2,4,1,5,3] => 1
[6,2,4,3,1,5] => 1
[6,2,4,3,5,1] => 1
[6,2,4,5,1,3] => 1
[6,2,4,5,3,1] => 1
[6,2,5,1,3,4] => 1
[6,2,5,1,4,3] => 1
[6,2,5,3,1,4] => 1
[6,2,5,3,4,1] => 1
[6,2,5,4,1,3] => 1
[6,2,5,4,3,1] => 1
[6,3,1,2,4,5] => 1
[6,3,1,2,5,4] => 1
[6,3,1,4,2,5] => 1
[6,3,1,4,5,2] => 1
[6,3,1,5,2,4] => 1
[6,3,1,5,4,2] => 1
[6,3,2,1,4,5] => 1
[6,3,2,1,5,4] => 1
[6,3,2,4,1,5] => 1
[6,3,2,4,5,1] => 1
[6,3,2,5,1,4] => 1
[6,3,2,5,4,1] => 1
[6,3,4,1,2,5] => 1
[6,3,4,1,5,2] => 1
[6,3,4,2,1,5] => 1
[6,3,4,2,5,1] => 1
[6,3,4,5,1,2] => 1
[6,3,4,5,2,1] => 1
[6,3,5,1,2,4] => 1
[6,3,5,1,4,2] => 1
[6,3,5,2,1,4] => 1
[6,3,5,2,4,1] => 1
[6,3,5,4,1,2] => 1
[6,3,5,4,2,1] => 1
[6,4,1,2,3,5] => 1
[6,4,1,2,5,3] => 1
[6,4,1,3,2,5] => 1
[6,4,1,3,5,2] => 1
[6,4,1,5,2,3] => 1
[6,4,1,5,3,2] => 1
[6,4,2,1,3,5] => 1
[6,4,2,1,5,3] => 1
[6,4,2,3,1,5] => 1
[6,4,2,3,5,1] => 1
[6,4,2,5,1,3] => 1
[6,4,2,5,3,1] => 1
[6,4,3,1,2,5] => 1
[6,4,3,1,5,2] => 1
[6,4,3,2,1,5] => 1
[6,4,3,2,5,1] => 1
[6,4,3,5,1,2] => 1
[6,4,3,5,2,1] => 1
[6,4,5,1,2,3] => 1
[6,4,5,1,3,2] => 1
[6,4,5,2,1,3] => 1
[6,4,5,2,3,1] => 1
[6,4,5,3,1,2] => 1
[6,4,5,3,2,1] => 1
[6,5,1,2,3,4] => 1
[6,5,1,2,4,3] => 1
[6,5,1,3,2,4] => 1
[6,5,1,3,4,2] => 1
[6,5,1,4,2,3] => 1
[6,5,1,4,3,2] => 1
[6,5,2,1,3,4] => 1
[6,5,2,1,4,3] => 1
[6,5,2,3,1,4] => 1
[6,5,2,3,4,1] => 1
[6,5,2,4,1,3] => 1
[6,5,2,4,3,1] => 1
[6,5,3,1,2,4] => 1
[6,5,3,1,4,2] => 1
[6,5,3,2,1,4] => 1
[6,5,3,2,4,1] => 1
[6,5,3,4,1,2] => 1
[6,5,3,4,2,1] => 1
[6,5,4,1,2,3] => 1
[6,5,4,1,3,2] => 1
[6,5,4,2,1,3] => 1
[6,5,4,2,3,1] => 1
[6,5,4,3,1,2] => 1
[6,5,4,3,2,1] => 0
click to show generating function       
Description
The Gorenstein dimension of the algebra $A/I$ when $I$ is the tilting module corresponding to the permutation in the Auslander algebra of $K[x]/(x^n)$.
References
[1] Iyama, O., Zhang, X. Classifying τ-tilting modules over the Auslander algebra of $K[x]/(x^n)$ arXiv:1602.05037
Created
May 04, 2018 at 09:06 by Rene Marczinzik
Updated
May 24, 2018 at 17:26 by Jan Geuenich