Identifier
Identifier
Values
['A',1] generating graphics... => 2
['A',2] generating graphics... => 5
['B',2] generating graphics... => 7
['G',2] generating graphics... => 11
['A',3] generating graphics... => 12
['B',3] generating graphics... => 24
['C',3] generating graphics... => 24
['A',4] generating graphics... => 27
['B',4] generating graphics... => 77
['C',4] generating graphics... => 77
['D',4] generating graphics... => 45
['F',4] generating graphics... => 237
['A',5] generating graphics... => 58
['B',5] generating graphics... => 238
['C',5] generating graphics... => 238
['D',5] generating graphics... => 158
['A',6] generating graphics... => 121
['B',6] generating graphics... => 723
['C',6] generating graphics... => 723
['D',6] generating graphics... => 531
['E',6] generating graphics... => 1273
['A',7] generating graphics... => 248
['B',7] generating graphics... => 2180
['C',7] generating graphics... => 2180
['D',7] generating graphics... => 1732
['E',7] generating graphics... => 17636
click to show generating function       
Description
The number of Grassmannian elements in the Coxeter group of the given type.
An element is Grassmannian if it has at most one descent.
Code
def statistic(C):
    return CoxeterGroup(C, implementation='coxeter3').grassmannian_elements().cardinality()

Created
Apr 19, 2018 at 00:24 by Martin Rubey
Updated
Apr 19, 2018 at 00:24 by Martin Rubey