Identifier
Identifier
Values
['A',9] generating graphics... => 5
['A',10] generating graphics... => 28
['A',1] generating graphics... => 1
['A',2] generating graphics... => 1
['B',2] generating graphics... => 1
['G',2] generating graphics... => 1
['A',3] generating graphics... => 1
['B',3] generating graphics... => 1
['C',3] generating graphics... => 1
['A',4] generating graphics... => 1
['B',4] generating graphics... => 1
['C',4] generating graphics... => 1
['D',4] generating graphics... => 1
['F',4] generating graphics... => 1
['A',5] generating graphics... => 1
['B',5] generating graphics... => 2
['C',5] generating graphics... => 2
['D',5] generating graphics... => 1
['A',6] generating graphics... => 1
['A',7] generating graphics... => 1
['A',8] generating graphics... => 1
Description
The largest mu-coefficient of the Kazhdan Lusztig polynomial occurring in the Weyl group of given type.
The $\mu$-coefficient of the Kazhdan-Lusztig polynomial $P_{u,w}(q)$ is the coefficient of $q^{\frac{l(w)-l(u)-1}{2}}$ in $P_{u,w}(q)$.
References
[1] Warrington, G. S. Equivalence classes for the ยต-coefficient of Kazhdan-Lusztig polynomials in $S_n$ MathSciNet:2859901
Code
def statistic(C):
    W = CoxeterGroup(C, implementation='coxeter3')
    r = []
    for u in W:
	U = (W(v) for v in W.bruhat_interval(u, W.long_element()))
        next(U)
        for v in U:
            ldiff = v.length()-u.length()-1
            if is_even(ldiff):
                p = W.kazhdan_lusztig_polynomial(u, v)
                r.append(p[ldiff//2])
    return max(r)

Created
Apr 18, 2018 at 22:49 by Martin Rubey
Updated
Apr 18, 2018 at 22:49 by Martin Rubey