Identifier
Identifier
Values
[(1,2),(3,4),(5,6),(7,9),(8,12),(10,11)] generating graphics... => 1
[(1,2),(3,4),(5,6),(7,10),(8,12),(9,11)] generating graphics... => 1
[(1,2),(3,4),(5,6),(7,11),(8,9),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,11),(8,10),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,11),(8,12),(9,10)] generating graphics... => 1
[(1,2),(3,4),(5,6),(7,12),(8,10),(9,11)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,8),(9,12),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,9),(8,12),(10,11)] generating graphics... => 1
[(1,2),(3,4),(5,7),(6,10),(8,9),(11,12)] generating graphics... => 1
[(1,2),(3,4),(5,7),(6,10),(8,12),(9,11)] generating graphics... => 1
[(1,2),(3,4),(5,7),(6,11),(8,9),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,11),(8,10),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,11),(8,12),(9,10)] generating graphics... => 1
[(1,2),(3,4),(5,7),(6,12),(8,9),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,12),(8,10),(9,11)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,12),(8,11),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,7),(9,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,9),(7,12),(10,11)] generating graphics... => 3
[(1,2),(3,4),(5,8),(6,10),(7,9),(11,12)] generating graphics... => 3
[(1,2),(3,4),(5,8),(6,10),(7,12),(9,11)] generating graphics... => 4
[(1,2),(3,4),(5,8),(6,11),(7,9),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,11),(7,10),(9,12)] generating graphics... => 4
[(1,2),(3,4),(5,8),(6,11),(7,12),(9,10)] generating graphics... => 4
[(1,2),(3,4),(5,8),(6,12),(7,9),(10,11)] generating graphics... => 3
[(1,2),(3,4),(5,8),(6,12),(7,10),(9,11)] generating graphics... => 4
[(1,2),(3,4),(5,8),(6,12),(7,11),(9,10)] generating graphics... => 4
[(1,2),(3,4),(5,9),(6,7),(8,10),(11,12)] generating graphics... => 1
[(1,2),(3,4),(5,9),(6,7),(8,11),(10,12)] generating graphics... => 1
[(1,2),(3,4),(5,9),(6,7),(8,12),(10,11)] generating graphics... => 1
[(1,2),(3,4),(5,9),(6,8),(7,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,8),(7,11),(10,12)] generating graphics... => 3
[(1,2),(3,4),(5,9),(6,8),(7,12),(10,11)] generating graphics... => 3
[(1,2),(3,4),(5,9),(6,10),(7,8),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,10),(7,12),(8,11)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,11),(7,8),(10,12)] generating graphics... => 3
[(1,2),(3,4),(5,9),(6,11),(7,10),(8,12)] generating graphics... => 1
[(1,2),(3,4),(5,9),(6,11),(7,12),(8,10)] generating graphics... => 3
[(1,2),(3,4),(5,9),(6,12),(7,8),(10,11)] generating graphics... => 3
[(1,2),(3,4),(5,9),(6,12),(7,10),(8,11)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,12),(7,11),(8,10)] generating graphics... => 3
[(1,2),(3,4),(5,10),(6,7),(8,11),(9,12)] generating graphics... => 1
[(1,2),(3,4),(5,10),(6,7),(8,12),(9,11)] generating graphics... => 1
[(1,2),(3,4),(5,10),(6,8),(7,9),(11,12)] generating graphics... => 3
[(1,2),(3,4),(5,10),(6,8),(7,11),(9,12)] generating graphics... => 4
[(1,2),(3,4),(5,10),(6,8),(7,12),(9,11)] generating graphics... => 4
[(1,2),(3,4),(5,10),(6,9),(7,11),(8,12)] generating graphics... => 1
[(1,2),(3,4),(5,10),(6,9),(7,12),(8,11)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,11),(7,8),(9,12)] generating graphics... => 4
[(1,2),(3,4),(5,10),(6,11),(7,9),(8,12)] generating graphics... => 1
[(1,2),(3,4),(5,10),(6,11),(7,12),(8,9)] generating graphics... => 4
[(1,2),(3,4),(5,10),(6,12),(7,8),(9,11)] generating graphics... => 4
[(1,2),(3,4),(5,10),(6,12),(7,9),(8,11)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,12),(7,11),(8,9)] generating graphics... => 4
[(1,2),(3,4),(5,11),(6,7),(8,9),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,7),(8,10),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,7),(8,12),(9,10)] generating graphics... => 1
[(1,2),(3,4),(5,11),(6,8),(7,9),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,8),(7,10),(9,12)] generating graphics... => 4
[(1,2),(3,4),(5,11),(6,8),(7,12),(9,10)] generating graphics... => 4
[(1,2),(3,4),(5,11),(6,9),(7,8),(10,12)] generating graphics... => 3
[(1,2),(3,4),(5,11),(6,9),(7,10),(8,12)] generating graphics... => 1
[(1,2),(3,4),(5,11),(6,9),(7,12),(8,10)] generating graphics... => 3
[(1,2),(3,4),(5,11),(6,10),(7,8),(9,12)] generating graphics... => 4
[(1,2),(3,4),(5,11),(6,10),(7,9),(8,12)] generating graphics... => 1
[(1,2),(3,4),(5,11),(6,10),(7,12),(8,9)] generating graphics... => 4
[(1,2),(3,4),(5,11),(6,12),(7,8),(9,10)] generating graphics... => 4
[(1,2),(3,4),(5,11),(6,12),(7,9),(8,10)] generating graphics... => 3
[(1,2),(3,4),(5,11),(6,12),(7,10),(8,9)] generating graphics... => 4
[(1,2),(3,4),(5,12),(6,7),(8,10),(9,11)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,8),(7,9),(10,11)] generating graphics... => 3
[(1,2),(3,4),(5,12),(6,8),(7,10),(9,11)] generating graphics... => 4
[(1,2),(3,4),(5,12),(6,8),(7,11),(9,10)] generating graphics... => 4
[(1,2),(3,4),(5,12),(6,9),(7,10),(8,11)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,9),(7,11),(8,10)] generating graphics... => 3
[(1,2),(3,4),(5,12),(6,10),(7,8),(9,11)] generating graphics... => 4
[(1,2),(3,4),(5,12),(6,10),(7,9),(8,11)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,10),(7,11),(8,9)] generating graphics... => 4
[(1,2),(3,4),(5,12),(6,11),(7,9),(8,10)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,8),(9,12),(10,11)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,9),(8,12),(10,11)] generating graphics... => 1
[(1,2),(3,5),(4,6),(7,10),(8,9),(11,12)] generating graphics... => 1
[(1,2),(3,5),(4,6),(7,10),(8,12),(9,11)] generating graphics... => 1
[(1,2),(3,5),(4,6),(7,11),(8,9),(10,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,11),(8,10),(9,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,11),(8,12),(9,10)] generating graphics... => 1
[(1,2),(3,5),(4,6),(7,12),(8,9),(10,11)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,12),(8,10),(9,11)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,12),(8,11),(9,10)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,8),(9,12),(10,11)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,9),(8,12),(10,11)] generating graphics... => 1
[(1,2),(3,5),(4,7),(6,10),(8,9),(11,12)] generating graphics... => 1
[(1,2),(3,5),(4,7),(6,10),(8,12),(9,11)] generating graphics... => 1
[(1,2),(3,5),(4,7),(6,11),(8,9),(10,12)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,11),(8,10),(9,12)] generating graphics... => 2
[(1,2)] generating graphics... => 1
[(1,2),(3,4)] generating graphics... => 2
[(1,3),(2,4)] generating graphics... => 2
[(1,4),(2,3)] generating graphics... => 0
[(1,2),(3,4),(5,6)] generating graphics... => 1
[(1,2),(3,5),(4,6)] generating graphics... => 3
[(1,2),(3,6),(4,5)] generating graphics... => 3
[(1,3),(2,4),(5,6)] generating graphics... => 1
[(1,3),(2,5),(4,6)] generating graphics... => 3
[(1,3),(2,6),(4,5)] generating graphics... => 3
[(1,4),(2,3),(5,6)] generating graphics... => 1
[(1,4),(2,5),(3,6)] generating graphics... => 3
[(1,4),(2,6),(3,5)] generating graphics... => 3
[(1,5),(2,3),(4,6)] generating graphics... => 1
[(1,5),(2,4),(3,6)] generating graphics... => 1
[(1,5),(2,6),(3,4)] generating graphics... => 1
[(1,6),(2,3),(4,5)] generating graphics... => 0
[(1,6),(2,4),(3,5)] generating graphics... => 0
[(1,6),(2,5),(3,4)] generating graphics... => 0
[(1,2),(3,4),(5,8),(6,7)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,8)] generating graphics... => 1
[(1,2),(3,4),(5,6),(7,8)] generating graphics... => 2
[(1,2),(3,5),(4,8),(6,7)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,8)] generating graphics... => 1
[(1,2),(3,5),(4,6),(7,8)] generating graphics... => 2
[(1,2),(3,6),(4,8),(5,7)] generating graphics... => 4
[(1,2),(3,6),(4,7),(5,8)] generating graphics... => 4
[(1,2),(3,6),(4,5),(7,8)] generating graphics... => 2
[(1,2),(3,7),(4,8),(5,6)] generating graphics... => 4
[(1,2),(3,7),(4,6),(5,8)] generating graphics... => 4
[(1,2),(3,7),(4,5),(6,8)] generating graphics... => 1
[(1,2),(3,8),(4,5),(6,7)] generating graphics... => 2
[(1,2),(3,8),(4,6),(5,7)] generating graphics... => 4
[(1,2),(3,8),(4,7),(5,6)] generating graphics... => 4
[(1,3),(2,4),(5,8),(6,7)] generating graphics... => 2
[(1,3),(2,4),(5,7),(6,8)] generating graphics... => 1
[(1,3),(2,4),(5,6),(7,8)] generating graphics... => 2
[(1,3),(2,5),(4,8),(6,7)] generating graphics... => 2
[(1,3),(2,5),(4,7),(6,8)] generating graphics... => 1
[(1,3),(2,5),(4,6),(7,8)] generating graphics... => 2
[(1,3),(2,6),(4,8),(5,7)] generating graphics... => 4
[(1,3),(2,6),(4,7),(5,8)] generating graphics... => 4
[(1,3),(2,6),(4,5),(7,8)] generating graphics... => 2
[(1,3),(2,7),(4,8),(5,6)] generating graphics... => 4
[(1,3),(2,7),(4,6),(5,8)] generating graphics... => 4
[(1,3),(2,7),(4,5),(6,8)] generating graphics... => 1
[(1,3),(2,8),(4,5),(6,7)] generating graphics... => 2
[(1,3),(2,8),(4,6),(5,7)] generating graphics... => 4
[(1,3),(2,8),(4,7),(5,6)] generating graphics... => 4
[(1,4),(2,3),(5,8),(6,7)] generating graphics... => 2
[(1,4),(2,3),(5,7),(6,8)] generating graphics... => 1
[(1,4),(2,3),(5,6),(7,8)] generating graphics... => 2
[(1,4),(2,5),(3,8),(6,7)] generating graphics... => 2
[(1,4),(2,5),(3,7),(6,8)] generating graphics... => 1
[(1,4),(2,5),(3,6),(7,8)] generating graphics... => 2
[(1,4),(2,6),(3,8),(5,7)] generating graphics... => 4
[(1,4),(2,6),(3,7),(5,8)] generating graphics... => 4
[(1,4),(2,6),(3,5),(7,8)] generating graphics... => 2
[(1,4),(2,7),(3,8),(5,6)] generating graphics... => 4
[(1,4),(2,7),(3,6),(5,8)] generating graphics... => 4
[(1,4),(2,7),(3,5),(6,8)] generating graphics... => 1
[(1,4),(2,8),(3,5),(6,7)] generating graphics... => 2
[(1,4),(2,8),(3,6),(5,7)] generating graphics... => 4
[(1,4),(2,8),(3,7),(5,6)] generating graphics... => 4
[(1,5),(2,3),(4,8),(6,7)] generating graphics... => 2
[(1,5),(2,3),(4,7),(6,8)] generating graphics... => 1
[(1,5),(2,3),(4,6),(7,8)] generating graphics... => 2
[(1,5),(2,4),(3,8),(6,7)] generating graphics... => 2
[(1,5),(2,4),(3,7),(6,8)] generating graphics... => 1
[(1,5),(2,4),(3,6),(7,8)] generating graphics... => 2
[(1,5),(2,6),(3,8),(4,7)] generating graphics... => 4
[(1,5),(2,6),(3,7),(4,8)] generating graphics... => 4
[(1,5),(2,6),(3,4),(7,8)] generating graphics... => 2
[(1,5),(2,7),(3,8),(4,6)] generating graphics... => 4
[(1,5),(2,7),(3,6),(4,8)] generating graphics... => 4
[(1,5),(2,7),(3,4),(6,8)] generating graphics... => 1
[(1,5),(2,8),(3,4),(6,7)] generating graphics... => 2
[(1,5),(2,8),(3,6),(4,7)] generating graphics... => 4
[(1,5),(2,8),(3,7),(4,6)] generating graphics... => 4
[(1,6),(2,3),(4,8),(5,7)] generating graphics... => 2
[(1,6),(2,3),(4,7),(5,8)] generating graphics... => 2
[(1,6),(2,3),(4,5),(7,8)] generating graphics... => 0
[(1,6),(2,4),(3,8),(5,7)] generating graphics... => 2
[(1,6),(2,4),(3,7),(5,8)] generating graphics... => 2
[(1,6),(2,4),(3,5),(7,8)] generating graphics... => 0
[(1,6),(2,5),(3,8),(4,7)] generating graphics... => 2
[(1,6),(2,5),(3,7),(4,8)] generating graphics... => 2
[(1,6),(2,5),(3,4),(7,8)] generating graphics... => 0
[(1,6),(2,7),(3,8),(4,5)] generating graphics... => 2
[(1,6),(2,7),(3,5),(4,8)] generating graphics... => 2
[(1,6),(2,7),(3,4),(5,8)] generating graphics... => 2
[(1,6),(2,8),(3,4),(5,7)] generating graphics... => 2
[(1,6),(2,8),(3,5),(4,7)] generating graphics... => 2
[(1,6),(2,8),(3,7),(4,5)] generating graphics... => 2
[(1,7),(2,3),(4,8),(5,6)] generating graphics... => 1
[(1,7),(2,3),(4,6),(5,8)] generating graphics... => 1
[(1,7),(2,3),(4,5),(6,8)] generating graphics... => 0
[(1,7),(2,4),(3,8),(5,6)] generating graphics... => 1
[(1,7),(2,4),(3,6),(5,8)] generating graphics... => 1
[(1,7),(2,4),(3,5),(6,8)] generating graphics... => 0
[(1,7),(2,5),(3,8),(4,6)] generating graphics... => 1
[(1,7),(2,5),(3,6),(4,8)] generating graphics... => 1
[(1,7),(2,5),(3,4),(6,8)] generating graphics... => 0
[(1,7),(2,6),(3,8),(4,5)] generating graphics... => 1
[(1,7),(2,6),(3,5),(4,8)] generating graphics... => 1
[(1,7),(2,6),(3,4),(5,8)] generating graphics... => 1
[(1,7),(2,8),(3,4),(5,6)] generating graphics... => 1
[(1,7),(2,8),(3,5),(4,6)] generating graphics... => 1
[(1,7),(2,8),(3,6),(4,5)] generating graphics... => 1
[(1,8),(2,3),(4,5),(6,7)] generating graphics... => 0
[(1,8),(2,3),(4,6),(5,7)] generating graphics... => 0
[(1,8),(2,3),(4,7),(5,6)] generating graphics... => 0
[(1,8),(2,4),(3,5),(6,7)] generating graphics... => 0
[(1,8),(2,4),(3,6),(5,7)] generating graphics... => 0
[(1,8),(2,4),(3,7),(5,6)] generating graphics... => 0
[(1,8),(2,5),(3,4),(6,7)] generating graphics... => 0
[(1,8),(2,5),(3,6),(4,7)] generating graphics... => 0
[(1,8),(2,5),(3,7),(4,6)] generating graphics... => 0
[(1,8),(2,6),(3,4),(5,7)] generating graphics... => 0
[(1,8),(2,6),(3,5),(4,7)] generating graphics... => 0
[(1,8),(2,6),(3,7),(4,5)] generating graphics... => 0
[(1,8),(2,7),(3,4),(5,6)] generating graphics... => 0
[(1,8),(2,7),(3,5),(4,6)] generating graphics... => 0
[(1,8),(2,7),(3,6),(4,5)] generating graphics... => 0
[(1,2),(3,4),(5,6),(7,10),(8,9)] generating graphics... => 1
[(1,2),(3,4),(5,6),(7,9),(8,10)] generating graphics... => 1
[(1,2),(3,4),(5,6),(7,8),(9,10)] generating graphics... => 1
[(1,2),(3,4),(5,7),(6,10),(8,9)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,9),(8,10)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,8),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,7),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,9),(7,10)] generating graphics... => 1
[(1,2),(3,4),(5,8),(6,10),(7,9)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,7),(8,10)] generating graphics... => 3
[(1,2),(3,4),(5,9),(6,8),(7,10)] generating graphics... => 1
[(1,2),(3,4),(5,9),(6,10),(7,8)] generating graphics... => 3
[(1,2),(3,4),(5,10),(6,7),(8,9)] generating graphics... => 3
[(1,2),(3,4),(5,10),(6,8),(7,9)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,9),(7,8)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,10),(8,9)] generating graphics... => 1
[(1,2),(3,5),(4,6),(7,9),(8,10)] generating graphics... => 1
[(1,2),(3,5),(4,6),(7,8),(9,10)] generating graphics... => 1
[(1,2),(3,5),(4,7),(6,10),(8,9)] generating graphics... => 3
[(1,2),(3,5),(4,7),(6,9),(8,10)] generating graphics... => 3
[(1,2),(3,5),(4,7),(6,8),(9,10)] generating graphics... => 2
[(1,2),(3,5),(4,8),(6,7),(9,10)] generating graphics... => 2
[(1,2),(3,5),(4,8),(6,9),(7,10)] generating graphics... => 1
[(1,2),(3,5),(4,8),(6,10),(7,9)] generating graphics... => 2
[(1,2),(3,5),(4,9),(6,7),(8,10)] generating graphics... => 3
[(1,2),(3,5),(4,9),(6,8),(7,10)] generating graphics... => 1
[(1,2),(3,5),(4,9),(6,10),(7,8)] generating graphics... => 3
[(1,2),(3,5),(4,10),(6,7),(8,9)] generating graphics... => 3
[(1,2),(3,5),(4,10),(6,8),(7,9)] generating graphics... => 2
[(1,2),(3,5),(4,10),(6,9),(7,8)] generating graphics... => 3
[(1,2),(3,6),(4,5),(7,10),(8,9)] generating graphics... => 1
[(1,2),(3,6),(4,5),(7,9),(8,10)] generating graphics... => 1
[(1,2),(3,6),(4,5),(7,8),(9,10)] generating graphics... => 1
[(1,2),(3,6),(4,7),(5,10),(8,9)] generating graphics... => 3
[(1,2),(3,6),(4,7),(5,9),(8,10)] generating graphics... => 3
[(1,2),(3,6),(4,7),(5,8),(9,10)] generating graphics... => 2
[(1,2),(3,6),(4,8),(5,7),(9,10)] generating graphics... => 2
[(1,2),(3,6),(4,8),(5,9),(7,10)] generating graphics... => 1
[(1,2),(3,6),(4,8),(5,10),(7,9)] generating graphics... => 2
[(1,2),(3,6),(4,9),(5,7),(8,10)] generating graphics... => 3
[(1,2),(3,6),(4,9),(5,8),(7,10)] generating graphics... => 1
[(1,2),(3,6),(4,9),(5,10),(7,8)] generating graphics... => 3
[(1,2),(3,6),(4,10),(5,7),(8,9)] generating graphics... => 3
[(1,2),(3,6),(4,10),(5,8),(7,9)] generating graphics... => 2
[(1,2),(3,6),(4,10),(5,9),(7,8)] generating graphics... => 3
[(1,2),(3,7),(4,5),(6,10),(8,9)] generating graphics... => 3
[(1,2),(3,7),(4,5),(6,9),(8,10)] generating graphics... => 2
[(1,2),(3,7),(4,5),(6,8),(9,10)] generating graphics... => 3
[(1,2),(3,7),(4,6),(5,10),(8,9)] generating graphics... => 3
[(1,2),(3,7),(4,6),(5,9),(8,10)] generating graphics... => 2
[(1,2),(3,7),(4,6),(5,8),(9,10)] generating graphics... => 3
[(1,2),(3,7),(4,8),(5,6),(9,10)] generating graphics... => 3
[(1,2),(3,7),(4,8),(5,9),(6,10)] generating graphics... => 5
[(1,2),(3,7),(4,8),(5,10),(6,9)] generating graphics... => 5
[(1,2),(3,7),(4,9),(5,6),(8,10)] generating graphics... => 2
[(1,2),(3,7),(4,9),(5,8),(6,10)] generating graphics... => 5
[(1,2),(3,7),(4,9),(5,10),(6,8)] generating graphics... => 5
[(1,2),(3,7),(4,10),(5,6),(8,9)] generating graphics... => 3
[(1,2),(3,7),(4,10),(5,8),(6,9)] generating graphics... => 5
[(1,2),(3,7),(4,10),(5,9),(6,8)] generating graphics... => 5
[(1,2),(3,8),(4,5),(6,7),(9,10)] generating graphics... => 2
[(1,2),(3,8),(4,5),(6,9),(7,10)] generating graphics... => 1
[(1,2),(3,8),(4,5),(6,10),(7,9)] generating graphics... => 2
[(1,2),(3,8),(4,6),(5,7),(9,10)] generating graphics... => 2
[(1,2),(3,8),(4,6),(5,9),(7,10)] generating graphics... => 1
[(1,2),(3,8),(4,6),(5,10),(7,9)] generating graphics... => 2
[(1,2),(3,8),(4,7),(5,6),(9,10)] generating graphics... => 3
[(1,2),(3,8),(4,7),(5,9),(6,10)] generating graphics... => 5
[(1,2),(3,8),(4,7),(5,10),(6,9)] generating graphics... => 5
[(1,2),(3,8),(4,9),(5,10),(6,7)] generating graphics... => 5
[(1,2),(3,8),(4,9),(5,7),(6,10)] generating graphics... => 5
[(1,2),(3,8),(4,9),(5,6),(7,10)] generating graphics... => 1
[(1,2),(3,8),(4,10),(5,9),(6,7)] generating graphics... => 5
[(1,2),(3,8),(4,10),(5,7),(6,9)] generating graphics... => 5
[(1,2),(3,8),(4,10),(5,6),(7,9)] generating graphics... => 2
[(1,2),(3,9),(4,5),(6,7),(8,10)] generating graphics... => 3
[(1,2),(3,9),(4,5),(6,8),(7,10)] generating graphics... => 1
[(1,2),(3,9),(4,5),(6,10),(7,8)] generating graphics... => 3
[(1,2),(3,9),(4,6),(5,7),(8,10)] generating graphics... => 3
[(1,2),(3,9),(4,6),(5,8),(7,10)] generating graphics... => 1
[(1,2),(3,9),(4,6),(5,10),(7,8)] generating graphics... => 3
[(1,2),(3,9),(4,7),(5,6),(8,10)] generating graphics... => 2
[(1,2),(3,9),(4,7),(5,8),(6,10)] generating graphics... => 5
[(1,2),(3,9),(4,7),(5,10),(6,8)] generating graphics... => 5
[(1,2),(3,9),(4,8),(5,10),(6,7)] generating graphics... => 5
[(1,2),(3,9),(4,8),(5,7),(6,10)] generating graphics... => 5
[(1,2),(3,9),(4,8),(5,6),(7,10)] generating graphics... => 1
[(1,2),(3,9),(4,10),(5,8),(6,7)] generating graphics... => 5
[(1,2),(3,9),(4,10),(5,7),(6,8)] generating graphics... => 5
[(1,2),(3,9),(4,10),(5,6),(7,8)] generating graphics... => 3
[(1,2),(3,10),(4,5),(6,7),(8,9)] generating graphics... => 3
[(1,2),(3,10),(4,5),(6,8),(7,9)] generating graphics... => 2
[(1,2),(3,10),(4,5),(6,9),(7,8)] generating graphics... => 3
[(1,2),(3,10),(4,6),(5,7),(8,9)] generating graphics... => 3
[(1,2),(3,10),(4,6),(5,8),(7,9)] generating graphics... => 2
[(1,2),(3,10),(4,6),(5,9),(7,8)] generating graphics... => 3
[(1,2),(3,10),(4,7),(5,6),(8,9)] generating graphics... => 3
[(1,2),(3,10),(4,7),(5,8),(6,9)] generating graphics... => 5
[(1,2),(3,10),(4,7),(5,9),(6,8)] generating graphics... => 5
[(1,2),(3,10),(4,8),(5,9),(6,7)] generating graphics... => 5
[(1,2),(3,10),(4,8),(5,7),(6,9)] generating graphics... => 5
[(1,2),(3,10),(4,8),(5,6),(7,9)] generating graphics... => 2
[(1,2),(3,10),(4,9),(5,8),(6,7)] generating graphics... => 5
[(1,2),(3,10),(4,9),(5,7),(6,8)] generating graphics... => 5
[(1,2),(3,10),(4,9),(5,6),(7,8)] generating graphics... => 3
[(1,3),(2,4),(5,6),(7,10),(8,9)] generating graphics... => 1
[(1,3),(2,4),(5,6),(7,9),(8,10)] generating graphics... => 1
[(1,3),(2,4),(5,6),(7,8),(9,10)] generating graphics... => 1
[(1,3),(2,4),(5,7),(6,10),(8,9)] generating graphics... => 3
[(1,3),(2,4),(5,7),(6,9),(8,10)] generating graphics... => 3
[(1,3),(2,4),(5,7),(6,8),(9,10)] generating graphics... => 2
[(1,3),(2,4),(5,8),(6,7),(9,10)] generating graphics... => 2
[(1,3),(2,4),(5,8),(6,9),(7,10)] generating graphics... => 1
[(1,3),(2,4),(5,8),(6,10),(7,9)] generating graphics... => 2
[(1,3),(2,4),(5,9),(6,7),(8,10)] generating graphics... => 3
[(1,3),(2,4),(5,9),(6,8),(7,10)] generating graphics... => 1
[(1,3),(2,4),(5,9),(6,10),(7,8)] generating graphics... => 3
[(1,3),(2,4),(5,10),(6,7),(8,9)] generating graphics... => 3
[(1,3),(2,4),(5,10),(6,8),(7,9)] generating graphics... => 2
[(1,3),(2,4),(5,10),(6,9),(7,8)] generating graphics... => 3
[(1,3),(2,5),(4,6),(7,10),(8,9)] generating graphics... => 1
[(1,3),(2,5),(4,6),(7,9),(8,10)] generating graphics... => 1
[(1,3),(2,5),(4,6),(7,8),(9,10)] generating graphics... => 1
[(1,3),(2,5),(4,7),(6,10),(8,9)] generating graphics... => 3
[(1,3),(2,5),(4,7),(6,9),(8,10)] generating graphics... => 3
[(1,3),(2,5),(4,7),(6,8),(9,10)] generating graphics... => 2
[(1,3),(2,5),(4,8),(6,7),(9,10)] generating graphics... => 2
[(1,3),(2,5),(4,8),(6,9),(7,10)] generating graphics... => 1
[(1,3),(2,5),(4,8),(6,10),(7,9)] generating graphics... => 2
[(1,3),(2,5),(4,9),(6,7),(8,10)] generating graphics... => 3
[(1,3),(2,5),(4,9),(6,8),(7,10)] generating graphics... => 1
[(1,3),(2,5),(4,9),(6,10),(7,8)] generating graphics... => 3
[(1,3),(2,5),(4,10),(6,7),(8,9)] generating graphics... => 3
[(1,3),(2,5),(4,10),(6,8),(7,9)] generating graphics... => 2
[(1,3),(2,5),(4,10),(6,9),(7,8)] generating graphics... => 3
[(1,3),(2,6),(4,5),(7,10),(8,9)] generating graphics... => 1
[(1,3),(2,6),(4,5),(7,9),(8,10)] generating graphics... => 1
[(1,3),(2,6),(4,5),(7,8),(9,10)] generating graphics... => 1
[(1,3),(2,6),(4,7),(5,10),(8,9)] generating graphics... => 3
[(1,3),(2,6),(4,7),(5,9),(8,10)] generating graphics... => 3
[(1,3),(2,6),(4,7),(5,8),(9,10)] generating graphics... => 2
[(1,3),(2,6),(4,8),(5,7),(9,10)] generating graphics... => 2
[(1,3),(2,6),(4,8),(5,9),(7,10)] generating graphics... => 1
[(1,3),(2,6),(4,8),(5,10),(7,9)] generating graphics... => 2
[(1,3),(2,6),(4,9),(5,7),(8,10)] generating graphics... => 3
[(1,3),(2,6),(4,9),(5,8),(7,10)] generating graphics... => 1
[(1,3),(2,6),(4,9),(5,10),(7,8)] generating graphics... => 3
[(1,3),(2,6),(4,10),(5,7),(8,9)] generating graphics... => 3
[(1,3),(2,6),(4,10),(5,8),(7,9)] generating graphics... => 2
[(1,3),(2,6),(4,10),(5,9),(7,8)] generating graphics... => 3
[(1,3),(2,7),(4,5),(6,10),(8,9)] generating graphics... => 3
[(1,3),(2,7),(4,5),(6,9),(8,10)] generating graphics... => 2
[(1,3),(2,7),(4,5),(6,8),(9,10)] generating graphics... => 3
[(1,3),(2,7),(4,6),(5,10),(8,9)] generating graphics... => 3
[(1,3),(2,7),(4,6),(5,9),(8,10)] generating graphics... => 2
[(1,3),(2,7),(4,6),(5,8),(9,10)] generating graphics... => 3
[(1,3),(2,7),(4,8),(5,6),(9,10)] generating graphics... => 3
[(1,3),(2,7),(4,8),(5,9),(6,10)] generating graphics... => 5
[(1,3),(2,7),(4,8),(5,10),(6,9)] generating graphics... => 5
[(1,3),(2,7),(4,9),(5,6),(8,10)] generating graphics... => 2
[(1,3),(2,7),(4,9),(5,8),(6,10)] generating graphics... => 5
[(1,3),(2,7),(4,9),(5,10),(6,8)] generating graphics... => 5
[(1,3),(2,7),(4,10),(5,6),(8,9)] generating graphics... => 3
[(1,3),(2,7),(4,10),(5,8),(6,9)] generating graphics... => 5
[(1,3),(2,7),(4,10),(5,9),(6,8)] generating graphics... => 5
[(1,3),(2,8),(4,5),(6,7),(9,10)] generating graphics... => 2
[(1,3),(2,8),(4,5),(6,9),(7,10)] generating graphics... => 1
[(1,3),(2,8),(4,5),(6,10),(7,9)] generating graphics... => 2
[(1,3),(2,8),(4,6),(5,7),(9,10)] generating graphics... => 2
[(1,3),(2,8),(4,6),(5,9),(7,10)] generating graphics... => 1
[(1,3),(2,8),(4,6),(5,10),(7,9)] generating graphics... => 2
[(1,3),(2,8),(4,7),(5,6),(9,10)] generating graphics... => 3
[(1,3),(2,8),(4,7),(5,9),(6,10)] generating graphics... => 5
[(1,3),(2,8),(4,7),(5,10),(6,9)] generating graphics... => 5
[(1,3),(2,8),(4,9),(5,10),(6,7)] generating graphics... => 5
[(1,3),(2,8),(4,9),(5,7),(6,10)] generating graphics... => 5
[(1,3),(2,8),(4,9),(5,6),(7,10)] generating graphics... => 1
[(1,3),(2,8),(4,10),(5,9),(6,7)] generating graphics... => 5
[(1,3),(2,8),(4,10),(5,7),(6,9)] generating graphics... => 5
[(1,3),(2,8),(4,10),(5,6),(7,9)] generating graphics... => 2
[(1,3),(2,9),(4,5),(6,7),(8,10)] generating graphics... => 3
[(1,3),(2,9),(4,5),(6,8),(7,10)] generating graphics... => 1
[(1,3),(2,9),(4,5),(6,10),(7,8)] generating graphics... => 3
[(1,3),(2,9),(4,6),(5,7),(8,10)] generating graphics... => 3
[(1,3),(2,9),(4,6),(5,8),(7,10)] generating graphics... => 1
[(1,3),(2,9),(4,6),(5,10),(7,8)] generating graphics... => 3
[(1,3),(2,9),(4,7),(5,6),(8,10)] generating graphics... => 2
[(1,3),(2,9),(4,7),(5,8),(6,10)] generating graphics... => 5
[(1,3),(2,9),(4,7),(5,10),(6,8)] generating graphics... => 5
[(1,3),(2,9),(4,8),(5,10),(6,7)] generating graphics... => 5
[(1,3),(2,9),(4,8),(5,7),(6,10)] generating graphics... => 5
[(1,3),(2,9),(4,8),(5,6),(7,10)] generating graphics... => 1
[(1,3),(2,9),(4,10),(5,8),(6,7)] generating graphics... => 5
[(1,3),(2,9),(4,10),(5,7),(6,8)] generating graphics... => 5
[(1,3),(2,9),(4,10),(5,6),(7,8)] generating graphics... => 3
[(1,3),(2,10),(4,5),(6,7),(8,9)] generating graphics... => 3
[(1,3),(2,10),(4,5),(6,8),(7,9)] generating graphics... => 2
[(1,3),(2,10),(4,5),(6,9),(7,8)] generating graphics... => 3
[(1,3),(2,10),(4,6),(5,7),(8,9)] generating graphics... => 3
[(1,3),(2,10),(4,6),(5,8),(7,9)] generating graphics... => 2
[(1,3),(2,10),(4,6),(5,9),(7,8)] generating graphics... => 3
[(1,3),(2,10),(4,7),(5,6),(8,9)] generating graphics... => 3
[(1,3),(2,10),(4,7),(5,8),(6,9)] generating graphics... => 5
[(1,3),(2,10),(4,7),(5,9),(6,8)] generating graphics... => 5
[(1,3),(2,10),(4,8),(5,9),(6,7)] generating graphics... => 5
[(1,3),(2,10),(4,8),(5,7),(6,9)] generating graphics... => 5
[(1,3),(2,10),(4,8),(5,6),(7,9)] generating graphics... => 2
[(1,3),(2,10),(4,9),(5,8),(6,7)] generating graphics... => 5
[(1,3),(2,10),(4,9),(5,7),(6,8)] generating graphics... => 5
[(1,3),(2,10),(4,9),(5,6),(7,8)] generating graphics... => 3
[(1,4),(2,3),(5,6),(7,10),(8,9)] generating graphics... => 1
[(1,4),(2,3),(5,6),(7,9),(8,10)] generating graphics... => 1
[(1,4),(2,3),(5,6),(7,8),(9,10)] generating graphics... => 1
[(1,4),(2,3),(5,7),(6,10),(8,9)] generating graphics... => 3
[(1,4),(2,3),(5,7),(6,9),(8,10)] generating graphics... => 3
[(1,4),(2,3),(5,7),(6,8),(9,10)] generating graphics... => 2
[(1,4),(2,3),(5,8),(6,7),(9,10)] generating graphics... => 2
[(1,4),(2,3),(5,8),(6,9),(7,10)] generating graphics... => 1
[(1,4),(2,3),(5,8),(6,10),(7,9)] generating graphics... => 2
[(1,4),(2,3),(5,9),(6,7),(8,10)] generating graphics... => 3
[(1,4),(2,3),(5,9),(6,8),(7,10)] generating graphics... => 1
[(1,4),(2,3),(5,9),(6,10),(7,8)] generating graphics... => 3
[(1,4),(2,3),(5,10),(6,7),(8,9)] generating graphics... => 3
[(1,4),(2,3),(5,10),(6,8),(7,9)] generating graphics... => 2
[(1,4),(2,3),(5,10),(6,9),(7,8)] generating graphics... => 3
[(1,4),(2,5),(3,6),(7,10),(8,9)] generating graphics... => 1
[(1,4),(2,5),(3,6),(7,9),(8,10)] generating graphics... => 1
[(1,4),(2,5),(3,6),(7,8),(9,10)] generating graphics... => 1
[(1,4),(2,5),(3,7),(6,10),(8,9)] generating graphics... => 3
[(1,4),(2,5),(3,7),(6,9),(8,10)] generating graphics... => 3
[(1,4),(2,5),(3,7),(6,8),(9,10)] generating graphics... => 2
[(1,4),(2,5),(3,8),(6,7),(9,10)] generating graphics... => 2
[(1,4),(2,5),(3,8),(6,9),(7,10)] generating graphics... => 1
[(1,4),(2,5),(3,8),(6,10),(7,9)] generating graphics... => 2
[(1,4),(2,5),(3,9),(6,7),(8,10)] generating graphics... => 3
[(1,4),(2,5),(3,9),(6,8),(7,10)] generating graphics... => 1
[(1,4),(2,5),(3,9),(6,10),(7,8)] generating graphics... => 3
[(1,4),(2,5),(3,10),(6,7),(8,9)] generating graphics... => 3
[(1,4),(2,5),(3,10),(6,8),(7,9)] generating graphics... => 2
[(1,4),(2,5),(3,10),(6,9),(7,8)] generating graphics... => 3
[(1,4),(2,6),(3,5),(7,10),(8,9)] generating graphics... => 1
[(1,4),(2,6),(3,5),(7,9),(8,10)] generating graphics... => 1
[(1,4),(2,6),(3,5),(7,8),(9,10)] generating graphics... => 1
[(1,4),(2,6),(3,7),(5,10),(8,9)] generating graphics... => 3
[(1,4),(2,6),(3,7),(5,9),(8,10)] generating graphics... => 3
[(1,4),(2,6),(3,7),(5,8),(9,10)] generating graphics... => 2
[(1,4),(2,6),(3,8),(5,7),(9,10)] generating graphics... => 2
[(1,4),(2,6),(3,8),(5,9),(7,10)] generating graphics... => 1
[(1,4),(2,6),(3,8),(5,10),(7,9)] generating graphics... => 2
[(1,4),(2,6),(3,9),(5,7),(8,10)] generating graphics... => 3
[(1,4),(2,6),(3,9),(5,8),(7,10)] generating graphics... => 1
[(1,4),(2,6),(3,9),(5,10),(7,8)] generating graphics... => 3
[(1,4),(2,6),(3,10),(5,7),(8,9)] generating graphics... => 3
[(1,4),(2,6),(3,10),(5,8),(7,9)] generating graphics... => 2
[(1,4),(2,6),(3,10),(5,9),(7,8)] generating graphics... => 3
[(1,4),(2,7),(3,5),(6,10),(8,9)] generating graphics... => 3
[(1,4),(2,7),(3,5),(6,9),(8,10)] generating graphics... => 2
[(1,4),(2,7),(3,5),(6,8),(9,10)] generating graphics... => 3
[(1,4),(2,7),(3,6),(5,10),(8,9)] generating graphics... => 3
[(1,4),(2,7),(3,6),(5,9),(8,10)] generating graphics... => 2
[(1,4),(2,7),(3,6),(5,8),(9,10)] generating graphics... => 3
[(1,4),(2,7),(3,8),(5,6),(9,10)] generating graphics... => 3
[(1,4),(2,7),(3,8),(5,9),(6,10)] generating graphics... => 5
[(1,4),(2,7),(3,8),(5,10),(6,9)] generating graphics... => 5
[(1,4),(2,7),(3,9),(5,6),(8,10)] generating graphics... => 2
[(1,4),(2,7),(3,9),(5,8),(6,10)] generating graphics... => 5
[(1,4),(2,7),(3,9),(5,10),(6,8)] generating graphics... => 5
[(1,4),(2,7),(3,10),(5,6),(8,9)] generating graphics... => 3
[(1,4),(2,7),(3,10),(5,8),(6,9)] generating graphics... => 5
[(1,4),(2,7),(3,10),(5,9),(6,8)] generating graphics... => 5
[(1,4),(2,8),(3,5),(6,7),(9,10)] generating graphics... => 2
[(1,4),(2,8),(3,5),(6,9),(7,10)] generating graphics... => 1
[(1,4),(2,8),(3,5),(6,10),(7,9)] generating graphics... => 2
[(1,4),(2,8),(3,6),(5,7),(9,10)] generating graphics... => 2
[(1,4),(2,8),(3,6),(5,9),(7,10)] generating graphics... => 1
[(1,4),(2,8),(3,6),(5,10),(7,9)] generating graphics... => 2
[(1,4),(2,8),(3,7),(5,6),(9,10)] generating graphics... => 3
[(1,4),(2,8),(3,7),(5,9),(6,10)] generating graphics... => 5
[(1,4),(2,8),(3,7),(5,10),(6,9)] generating graphics... => 5
[(1,4),(2,8),(3,9),(5,10),(6,7)] generating graphics... => 5
[(1,4),(2,8),(3,9),(5,7),(6,10)] generating graphics... => 5
[(1,4),(2,8),(3,9),(5,6),(7,10)] generating graphics... => 1
[(1,4),(2,8),(3,10),(5,9),(6,7)] generating graphics... => 5
[(1,4),(2,8),(3,10),(5,7),(6,9)] generating graphics... => 5
[(1,4),(2,8),(3,10),(5,6),(7,9)] generating graphics... => 2
[(1,4),(2,9),(3,5),(6,7),(8,10)] generating graphics... => 3
[(1,4),(2,9),(3,5),(6,8),(7,10)] generating graphics... => 1
[(1,4),(2,9),(3,5),(6,10),(7,8)] generating graphics... => 3
[(1,4),(2,9),(3,6),(5,7),(8,10)] generating graphics... => 3
[(1,4),(2,9),(3,6),(5,8),(7,10)] generating graphics... => 1
[(1,4),(2,9),(3,6),(5,10),(7,8)] generating graphics... => 3
[(1,4),(2,9),(3,7),(5,6),(8,10)] generating graphics... => 2
[(1,4),(2,9),(3,7),(5,8),(6,10)] generating graphics... => 5
[(1,4),(2,9),(3,7),(5,10),(6,8)] generating graphics... => 5
[(1,4),(2,9),(3,8),(5,10),(6,7)] generating graphics... => 5
[(1,4),(2,9),(3,8),(5,7),(6,10)] generating graphics... => 5
[(1,4),(2,9),(3,8),(5,6),(7,10)] generating graphics... => 1
[(1,4),(2,9),(3,10),(5,8),(6,7)] generating graphics... => 5
[(1,4),(2,9),(3,10),(5,7),(6,8)] generating graphics... => 5
[(1,4),(2,9),(3,10),(5,6),(7,8)] generating graphics... => 3
[(1,4),(2,10),(3,5),(6,7),(8,9)] generating graphics... => 3
[(1,4),(2,10),(3,5),(6,8),(7,9)] generating graphics... => 2
[(1,4),(2,10),(3,5),(6,9),(7,8)] generating graphics... => 3
[(1,4),(2,10),(3,6),(5,7),(8,9)] generating graphics... => 3
[(1,4),(2,10),(3,6),(5,8),(7,9)] generating graphics... => 2
[(1,4),(2,10),(3,6),(5,9),(7,8)] generating graphics... => 3
[(1,4),(2,10),(3,7),(5,6),(8,9)] generating graphics... => 3
[(1,4),(2,10),(3,7),(5,8),(6,9)] generating graphics... => 5
[(1,4),(2,10),(3,7),(5,9),(6,8)] generating graphics... => 5
[(1,4),(2,10),(3,8),(5,9),(6,7)] generating graphics... => 5
[(1,4),(2,10),(3,8),(5,7),(6,9)] generating graphics... => 5
[(1,4),(2,10),(3,8),(5,6),(7,9)] generating graphics... => 2
[(1,4),(2,10),(3,9),(5,8),(6,7)] generating graphics... => 5
[(1,4),(2,10),(3,9),(5,7),(6,8)] generating graphics... => 5
[(1,4),(2,10),(3,9),(5,6),(7,8)] generating graphics... => 3
[(1,5),(2,3),(4,6),(7,10),(8,9)] generating graphics... => 1
[(1,5),(2,3),(4,6),(7,9),(8,10)] generating graphics... => 1
[(1,5),(2,3),(4,6),(7,8),(9,10)] generating graphics... => 1
[(1,5),(2,3),(4,7),(6,10),(8,9)] generating graphics... => 3
[(1,5),(2,3),(4,7),(6,9),(8,10)] generating graphics... => 3
[(1,5),(2,3),(4,7),(6,8),(9,10)] generating graphics... => 2
[(1,5),(2,3),(4,8),(6,7),(9,10)] generating graphics... => 2
[(1,5),(2,3),(4,8),(6,9),(7,10)] generating graphics... => 1
[(1,5),(2,3),(4,8),(6,10),(7,9)] generating graphics... => 2
[(1,5),(2,3),(4,9),(6,7),(8,10)] generating graphics... => 3
[(1,5),(2,3),(4,9),(6,8),(7,10)] generating graphics... => 1
[(1,5),(2,3),(4,9),(6,10),(7,8)] generating graphics... => 3
[(1,5),(2,3),(4,10),(6,7),(8,9)] generating graphics... => 3
[(1,5),(2,3),(4,10),(6,8),(7,9)] generating graphics... => 2
[(1,5),(2,3),(4,10),(6,9),(7,8)] generating graphics... => 3
[(1,5),(2,4),(3,6),(7,10),(8,9)] generating graphics... => 1
[(1,5),(2,4),(3,6),(7,9),(8,10)] generating graphics... => 1
[(1,5),(2,4),(3,6),(7,8),(9,10)] generating graphics... => 1
[(1,5),(2,4),(3,7),(6,10),(8,9)] generating graphics... => 3
[(1,5),(2,4),(3,7),(6,9),(8,10)] generating graphics... => 3
[(1,5),(2,4),(3,7),(6,8),(9,10)] generating graphics... => 2
[(1,5),(2,4),(3,8),(6,7),(9,10)] generating graphics... => 2
[(1,5),(2,4),(3,8),(6,9),(7,10)] generating graphics... => 1
[(1,5),(2,4),(3,8),(6,10),(7,9)] generating graphics... => 2
[(1,5),(2,4),(3,9),(6,7),(8,10)] generating graphics... => 3
[(1,5),(2,4),(3,9),(6,8),(7,10)] generating graphics... => 1
[(1,5),(2,4),(3,9),(6,10),(7,8)] generating graphics... => 3
[(1,5),(2,4),(3,10),(6,7),(8,9)] generating graphics... => 3
[(1,5),(2,4),(3,10),(6,8),(7,9)] generating graphics... => 2
[(1,5),(2,4),(3,10),(6,9),(7,8)] generating graphics... => 3
[(1,5),(2,6),(3,4),(7,10),(8,9)] generating graphics... => 1
[(1,5),(2,6),(3,4),(7,9),(8,10)] generating graphics... => 1
[(1,5),(2,6),(3,4),(7,8),(9,10)] generating graphics... => 1
[(1,5),(2,6),(3,7),(4,10),(8,9)] generating graphics... => 3
[(1,5),(2,6),(3,7),(4,9),(8,10)] generating graphics... => 3
[(1,5),(2,6),(3,7),(4,8),(9,10)] generating graphics... => 2
[(1,5),(2,6),(3,8),(4,7),(9,10)] generating graphics... => 2
[(1,5),(2,6),(3,8),(4,9),(7,10)] generating graphics... => 1
[(1,5),(2,6),(3,8),(4,10),(7,9)] generating graphics... => 2
[(1,5),(2,6),(3,9),(4,7),(8,10)] generating graphics... => 3
[(1,5),(2,6),(3,9),(4,8),(7,10)] generating graphics... => 1
[(1,5),(2,6),(3,9),(4,10),(7,8)] generating graphics... => 3
[(1,5),(2,6),(3,10),(4,7),(8,9)] generating graphics... => 3
[(1,5),(2,6),(3,10),(4,8),(7,9)] generating graphics... => 2
[(1,5),(2,6),(3,10),(4,9),(7,8)] generating graphics... => 3
[(1,5),(2,7),(3,4),(6,10),(8,9)] generating graphics... => 3
[(1,5),(2,7),(3,4),(6,9),(8,10)] generating graphics... => 2
[(1,5),(2,7),(3,4),(6,8),(9,10)] generating graphics... => 3
[(1,5),(2,7),(3,6),(4,10),(8,9)] generating graphics... => 3
[(1,5),(2,7),(3,6),(4,9),(8,10)] generating graphics... => 2
[(1,5),(2,7),(3,6),(4,8),(9,10)] generating graphics... => 3
[(1,5),(2,7),(3,8),(4,6),(9,10)] generating graphics... => 3
[(1,5),(2,7),(3,8),(4,9),(6,10)] generating graphics... => 5
[(1,5),(2,7),(3,8),(4,10),(6,9)] generating graphics... => 5
[(1,5),(2,7),(3,9),(4,6),(8,10)] generating graphics... => 2
[(1,5),(2,7),(3,9),(4,8),(6,10)] generating graphics... => 5
[(1,5),(2,7),(3,9),(4,10),(6,8)] generating graphics... => 5
[(1,5),(2,7),(3,10),(4,6),(8,9)] generating graphics... => 3
[(1,5),(2,7),(3,10),(4,8),(6,9)] generating graphics... => 5
[(1,5),(2,7),(3,10),(4,9),(6,8)] generating graphics... => 5
[(1,5),(2,8),(3,4),(6,7),(9,10)] generating graphics... => 2
[(1,5),(2,8),(3,4),(6,9),(7,10)] generating graphics... => 1
[(1,5),(2,8),(3,4),(6,10),(7,9)] generating graphics... => 2
[(1,5),(2,8),(3,6),(4,7),(9,10)] generating graphics... => 2
[(1,5),(2,8),(3,6),(4,9),(7,10)] generating graphics... => 1
[(1,5),(2,8),(3,6),(4,10),(7,9)] generating graphics... => 2
[(1,5),(2,8),(3,7),(4,6),(9,10)] generating graphics... => 3
[(1,5),(2,8),(3,7),(4,9),(6,10)] generating graphics... => 5
[(1,5),(2,8),(3,7),(4,10),(6,9)] generating graphics... => 5
[(1,5),(2,8),(3,9),(4,10),(6,7)] generating graphics... => 5
[(1,5),(2,8),(3,9),(4,7),(6,10)] generating graphics... => 5
[(1,5),(2,8),(3,9),(4,6),(7,10)] generating graphics... => 1
[(1,5),(2,8),(3,10),(4,9),(6,7)] generating graphics... => 5
[(1,5),(2,8),(3,10),(4,7),(6,9)] generating graphics... => 5
[(1,5),(2,8),(3,10),(4,6),(7,9)] generating graphics... => 2
[(1,5),(2,9),(3,4),(6,7),(8,10)] generating graphics... => 3
[(1,5),(2,9),(3,4),(6,8),(7,10)] generating graphics... => 1
[(1,5),(2,9),(3,4),(6,10),(7,8)] generating graphics... => 3
[(1,5),(2,9),(3,6),(4,7),(8,10)] generating graphics... => 3
[(1,5),(2,9),(3,6),(4,8),(7,10)] generating graphics... => 1
[(1,5),(2,9),(3,6),(4,10),(7,8)] generating graphics... => 3
[(1,5),(2,9),(3,7),(4,6),(8,10)] generating graphics... => 2
[(1,5),(2,9),(3,7),(4,8),(6,10)] generating graphics... => 5
[(1,5),(2,9),(3,7),(4,10),(6,8)] generating graphics... => 5
[(1,5),(2,9),(3,8),(4,10),(6,7)] generating graphics... => 5
[(1,5),(2,9),(3,8),(4,7),(6,10)] generating graphics... => 5
[(1,5),(2,9),(3,8),(4,6),(7,10)] generating graphics... => 1
[(1,5),(2,9),(3,10),(4,8),(6,7)] generating graphics... => 5
[(1,5),(2,9),(3,10),(4,7),(6,8)] generating graphics... => 5
[(1,5),(2,9),(3,10),(4,6),(7,8)] generating graphics... => 3
[(1,5),(2,10),(3,4),(6,7),(8,9)] generating graphics... => 3
[(1,5),(2,10),(3,4),(6,8),(7,9)] generating graphics... => 2
[(1,5),(2,10),(3,4),(6,9),(7,8)] generating graphics... => 3
[(1,5),(2,10),(3,6),(4,7),(8,9)] generating graphics... => 3
[(1,5),(2,10),(3,6),(4,8),(7,9)] generating graphics... => 2
[(1,5),(2,10),(3,6),(4,9),(7,8)] generating graphics... => 3
[(1,5),(2,10),(3,7),(4,6),(8,9)] generating graphics... => 3
[(1,5),(2,10),(3,7),(4,8),(6,9)] generating graphics... => 5
[(1,5),(2,10),(3,7),(4,9),(6,8)] generating graphics... => 5
[(1,5),(2,10),(3,8),(4,9),(6,7)] generating graphics... => 5
[(1,5),(2,10),(3,8),(4,7),(6,9)] generating graphics... => 5
[(1,5),(2,10),(3,8),(4,6),(7,9)] generating graphics... => 2
[(1,5),(2,10),(3,9),(4,8),(6,7)] generating graphics... => 5
[(1,5),(2,10),(3,9),(4,7),(6,8)] generating graphics... => 5
[(1,5),(2,10),(3,9),(4,6),(7,8)] generating graphics... => 3
[(1,6),(2,3),(4,5),(7,10),(8,9)] generating graphics... => 1
[(1,6),(2,3),(4,5),(7,9),(8,10)] generating graphics... => 1
[(1,6),(2,3),(4,5),(7,8),(9,10)] generating graphics... => 1
[(1,6),(2,3),(4,7),(5,10),(8,9)] generating graphics... => 3
[(1,6),(2,3),(4,7),(5,9),(8,10)] generating graphics... => 3
[(1,6),(2,3),(4,7),(5,8),(9,10)] generating graphics... => 2
[(1,6),(2,3),(4,8),(5,7),(9,10)] generating graphics... => 2
[(1,6),(2,3),(4,8),(5,9),(7,10)] generating graphics... => 1
[(1,6),(2,3),(4,8),(5,10),(7,9)] generating graphics... => 2
[(1,6),(2,3),(4,9),(5,7),(8,10)] generating graphics... => 3
[(1,6),(2,3),(4,9),(5,8),(7,10)] generating graphics... => 1
[(1,6),(2,3),(4,9),(5,10),(7,8)] generating graphics... => 3
[(1,6),(2,3),(4,10),(5,7),(8,9)] generating graphics... => 3
[(1,6),(2,3),(4,10),(5,8),(7,9)] generating graphics... => 2
[(1,6),(2,3),(4,10),(5,9),(7,8)] generating graphics... => 3
[(1,6),(2,4),(3,5),(7,10),(8,9)] generating graphics... => 1
[(1,6),(2,4),(3,5),(7,9),(8,10)] generating graphics... => 1
[(1,6),(2,4),(3,5),(7,8),(9,10)] generating graphics... => 1
[(1,6),(2,4),(3,7),(5,10),(8,9)] generating graphics... => 3
[(1,6),(2,4),(3,7),(5,9),(8,10)] generating graphics... => 3
[(1,6),(2,4),(3,7),(5,8),(9,10)] generating graphics... => 2
[(1,6),(2,4),(3,8),(5,7),(9,10)] generating graphics... => 2
[(1,6),(2,4),(3,8),(5,9),(7,10)] generating graphics... => 1
[(1,6),(2,4),(3,8),(5,10),(7,9)] generating graphics... => 2
[(1,6),(2,4),(3,9),(5,7),(8,10)] generating graphics... => 3
[(1,6),(2,4),(3,9),(5,8),(7,10)] generating graphics... => 1
[(1,6),(2,4),(3,9),(5,10),(7,8)] generating graphics... => 3
[(1,6),(2,4),(3,10),(5,7),(8,9)] generating graphics... => 3
[(1,6),(2,4),(3,10),(5,8),(7,9)] generating graphics... => 2
[(1,6),(2,4),(3,10),(5,9),(7,8)] generating graphics... => 3
[(1,6),(2,5),(3,4),(7,10),(8,9)] generating graphics... => 1
[(1,6),(2,5),(3,4),(7,9),(8,10)] generating graphics... => 1
[(1,6),(2,5),(3,4),(7,8),(9,10)] generating graphics... => 1
[(1,6),(2,5),(3,7),(4,10),(8,9)] generating graphics... => 3
[(1,6),(2,5),(3,7),(4,9),(8,10)] generating graphics... => 3
[(1,6),(2,5),(3,7),(4,8),(9,10)] generating graphics... => 2
[(1,6),(2,5),(3,8),(4,7),(9,10)] generating graphics... => 2
[(1,6),(2,5),(3,8),(4,9),(7,10)] generating graphics... => 1
[(1,6),(2,5),(3,8),(4,10),(7,9)] generating graphics... => 2
[(1,6),(2,5),(3,9),(4,7),(8,10)] generating graphics... => 3
[(1,6),(2,5),(3,9),(4,8),(7,10)] generating graphics... => 1
[(1,6),(2,5),(3,9),(4,10),(7,8)] generating graphics... => 3
[(1,6),(2,5),(3,10),(4,7),(8,9)] generating graphics... => 3
[(1,6),(2,5),(3,10),(4,8),(7,9)] generating graphics... => 2
[(1,6),(2,5),(3,10),(4,9),(7,8)] generating graphics... => 3
[(1,6),(2,7),(3,4),(5,10),(8,9)] generating graphics... => 3
[(1,6),(2,7),(3,4),(5,9),(8,10)] generating graphics... => 2
[(1,6),(2,7),(3,4),(5,8),(9,10)] generating graphics... => 3
[(1,6),(2,7),(3,5),(4,10),(8,9)] generating graphics... => 3
[(1,6),(2,7),(3,5),(4,9),(8,10)] generating graphics... => 2
[(1,6),(2,7),(3,5),(4,8),(9,10)] generating graphics... => 3
[(1,6),(2,7),(3,8),(4,5),(9,10)] generating graphics... => 3
[(1,6),(2,7),(3,8),(4,9),(5,10)] generating graphics... => 5
[(1,6),(2,7),(3,8),(4,10),(5,9)] generating graphics... => 5
[(1,6),(2,7),(3,9),(4,5),(8,10)] generating graphics... => 2
[(1,6),(2,7),(3,9),(4,8),(5,10)] generating graphics... => 5
[(1,6),(2,7),(3,9),(4,10),(5,8)] generating graphics... => 5
[(1,6),(2,7),(3,10),(4,5),(8,9)] generating graphics... => 3
[(1,6),(2,7),(3,10),(4,8),(5,9)] generating graphics... => 5
[(1,6),(2,7),(3,10),(4,9),(5,8)] generating graphics... => 5
[(1,6),(2,8),(3,4),(5,7),(9,10)] generating graphics... => 2
[(1,6),(2,8),(3,4),(5,9),(7,10)] generating graphics... => 1
[(1,6),(2,8),(3,4),(5,10),(7,9)] generating graphics... => 2
[(1,6),(2,8),(3,5),(4,7),(9,10)] generating graphics... => 2
[(1,6),(2,8),(3,5),(4,9),(7,10)] generating graphics... => 1
[(1,6),(2,8),(3,5),(4,10),(7,9)] generating graphics... => 2
[(1,6),(2,8),(3,7),(4,5),(9,10)] generating graphics... => 3
[(1,6),(2,8),(3,7),(4,9),(5,10)] generating graphics... => 5
[(1,6),(2,8),(3,7),(4,10),(5,9)] generating graphics... => 5
[(1,6),(2,8),(3,9),(4,10),(5,7)] generating graphics... => 5
[(1,6),(2,8),(3,9),(4,7),(5,10)] generating graphics... => 5
[(1,6),(2,8),(3,9),(4,5),(7,10)] generating graphics... => 1
[(1,6),(2,8),(3,10),(4,9),(5,7)] generating graphics... => 5
[(1,6),(2,8),(3,10),(4,7),(5,9)] generating graphics... => 5
[(1,6),(2,8),(3,10),(4,5),(7,9)] generating graphics... => 2
[(1,6),(2,9),(3,4),(5,7),(8,10)] generating graphics... => 3
[(1,6),(2,9),(3,4),(5,8),(7,10)] generating graphics... => 1
[(1,6),(2,9),(3,4),(5,10),(7,8)] generating graphics... => 3
[(1,6),(2,9),(3,5),(4,7),(8,10)] generating graphics... => 3
[(1,6),(2,9),(3,5),(4,8),(7,10)] generating graphics... => 1
[(1,6),(2,9),(3,5),(4,10),(7,8)] generating graphics... => 3
[(1,6),(2,9),(3,7),(4,5),(8,10)] generating graphics... => 2
[(1,6),(2,9),(3,7),(4,8),(5,10)] generating graphics... => 5
[(1,6),(2,9),(3,7),(4,10),(5,8)] generating graphics... => 5
[(1,6),(2,9),(3,8),(4,10),(5,7)] generating graphics... => 5
[(1,6),(2,9),(3,8),(4,7),(5,10)] generating graphics... => 5
[(1,6),(2,9),(3,8),(4,5),(7,10)] generating graphics... => 1
[(1,6),(2,9),(3,10),(4,8),(5,7)] generating graphics... => 5
[(1,6),(2,9),(3,10),(4,7),(5,8)] generating graphics... => 5
[(1,6),(2,9),(3,10),(4,5),(7,8)] generating graphics... => 3
[(1,6),(2,10),(3,4),(5,7),(8,9)] generating graphics... => 3
[(1,6),(2,10),(3,4),(5,8),(7,9)] generating graphics... => 2
[(1,6),(2,10),(3,4),(5,9),(7,8)] generating graphics... => 3
[(1,6),(2,10),(3,5),(4,7),(8,9)] generating graphics... => 3
[(1,6),(2,10),(3,5),(4,8),(7,9)] generating graphics... => 2
[(1,6),(2,10),(3,5),(4,9),(7,8)] generating graphics... => 3
[(1,6),(2,10),(3,7),(4,5),(8,9)] generating graphics... => 3
[(1,6),(2,10),(3,7),(4,8),(5,9)] generating graphics... => 5
[(1,6),(2,10),(3,7),(4,9),(5,8)] generating graphics... => 5
[(1,6),(2,10),(3,8),(4,9),(5,7)] generating graphics... => 5
[(1,6),(2,10),(3,8),(4,7),(5,9)] generating graphics... => 5
[(1,6),(2,10),(3,8),(4,5),(7,9)] generating graphics... => 2
[(1,6),(2,10),(3,9),(4,8),(5,7)] generating graphics... => 5
[(1,6),(2,10),(3,9),(4,7),(5,8)] generating graphics... => 5
[(1,6),(2,10),(3,9),(4,5),(7,8)] generating graphics... => 3
[(1,7),(2,3),(4,5),(6,10),(8,9)] generating graphics... => 1
[(1,7),(2,3),(4,5),(6,9),(8,10)] generating graphics... => 0
[(1,7),(2,3),(4,5),(6,8),(9,10)] generating graphics... => 1
[(1,7),(2,3),(4,6),(5,10),(8,9)] generating graphics... => 1
[(1,7),(2,3),(4,6),(5,9),(8,10)] generating graphics... => 0
[(1,7),(2,3),(4,6),(5,8),(9,10)] generating graphics... => 1
[(1,7),(2,3),(4,8),(5,6),(9,10)] generating graphics... => 1
[(1,7),(2,3),(4,8),(5,9),(6,10)] generating graphics... => 3
[(1,7),(2,3),(4,8),(5,10),(6,9)] generating graphics... => 3
[(1,7),(2,3),(4,9),(5,6),(8,10)] generating graphics... => 0
[(1,7),(2,3),(4,9),(5,8),(6,10)] generating graphics... => 3
[(1,7),(2,3),(4,9),(5,10),(6,8)] generating graphics... => 3
[(1,7),(2,3),(4,10),(5,6),(8,9)] generating graphics... => 1
[(1,7),(2,3),(4,10),(5,8),(6,9)] generating graphics... => 3
[(1,7),(2,3),(4,10),(5,9),(6,8)] generating graphics... => 3
[(1,7),(2,4),(3,5),(6,10),(8,9)] generating graphics... => 1
[(1,7),(2,4),(3,5),(6,9),(8,10)] generating graphics... => 0
[(1,7),(2,4),(3,5),(6,8),(9,10)] generating graphics... => 1
[(1,7),(2,4),(3,6),(5,10),(8,9)] generating graphics... => 1
[(1,7),(2,4),(3,6),(5,9),(8,10)] generating graphics... => 0
[(1,7),(2,4),(3,6),(5,8),(9,10)] generating graphics... => 1
[(1,7),(2,4),(3,8),(5,6),(9,10)] generating graphics... => 1
[(1,7),(2,4),(3,8),(5,9),(6,10)] generating graphics... => 3
[(1,7),(2,4),(3,8),(5,10),(6,9)] generating graphics... => 3
[(1,7),(2,4),(3,9),(5,6),(8,10)] generating graphics... => 0
[(1,7),(2,4),(3,9),(5,8),(6,10)] generating graphics... => 3
[(1,7),(2,4),(3,9),(5,10),(6,8)] generating graphics... => 3
[(1,7),(2,4),(3,10),(5,6),(8,9)] generating graphics... => 1
[(1,7),(2,4),(3,10),(5,8),(6,9)] generating graphics... => 3
[(1,7),(2,4),(3,10),(5,9),(6,8)] generating graphics... => 3
[(1,7),(2,5),(3,4),(6,10),(8,9)] generating graphics... => 1
[(1,7),(2,5),(3,4),(6,9),(8,10)] generating graphics... => 0
[(1,7),(2,5),(3,4),(6,8),(9,10)] generating graphics... => 1
[(1,7),(2,5),(3,6),(4,10),(8,9)] generating graphics... => 1
[(1,7),(2,5),(3,6),(4,9),(8,10)] generating graphics... => 0
[(1,7),(2,5),(3,6),(4,8),(9,10)] generating graphics... => 1
[(1,7),(2,5),(3,8),(4,6),(9,10)] generating graphics... => 1
[(1,7),(2,5),(3,8),(4,9),(6,10)] generating graphics... => 3
[(1,7),(2,5),(3,8),(4,10),(6,9)] generating graphics... => 3
[(1,7),(2,5),(3,9),(4,6),(8,10)] generating graphics... => 0
[(1,7),(2,5),(3,9),(4,8),(6,10)] generating graphics... => 3
[(1,7),(2,5),(3,9),(4,10),(6,8)] generating graphics... => 3
[(1,7),(2,5),(3,10),(4,6),(8,9)] generating graphics... => 1
[(1,7),(2,5),(3,10),(4,8),(6,9)] generating graphics... => 3
[(1,7),(2,5),(3,10),(4,9),(6,8)] generating graphics... => 3
[(1,7),(2,6),(3,4),(5,10),(8,9)] generating graphics... => 1
[(1,7),(2,6),(3,4),(5,9),(8,10)] generating graphics... => 0
[(1,7),(2,6),(3,4),(5,8),(9,10)] generating graphics... => 1
[(1,7),(2,6),(3,5),(4,10),(8,9)] generating graphics... => 1
[(1,7),(2,6),(3,5),(4,9),(8,10)] generating graphics... => 0
[(1,7),(2,6),(3,5),(4,8),(9,10)] generating graphics... => 1
[(1,7),(2,6),(3,8),(4,5),(9,10)] generating graphics... => 1
[(1,7),(2,6),(3,8),(4,9),(5,10)] generating graphics... => 3
[(1,7),(2,6),(3,8),(4,10),(5,9)] generating graphics... => 3
[(1,7),(2,6),(3,9),(4,5),(8,10)] generating graphics... => 0
[(1,7),(2,6),(3,9),(4,8),(5,10)] generating graphics... => 3
[(1,7),(2,6),(3,9),(4,10),(5,8)] generating graphics... => 3
[(1,7),(2,6),(3,10),(4,5),(8,9)] generating graphics... => 1
[(1,7),(2,6),(3,10),(4,8),(5,9)] generating graphics... => 3
[(1,7),(2,6),(3,10),(4,9),(5,8)] generating graphics... => 3
[(1,7),(2,8),(3,4),(5,6),(9,10)] generating graphics... => 1
[(1,7),(2,8),(3,4),(5,9),(6,10)] generating graphics... => 3
[(1,7),(2,8),(3,4),(5,10),(6,9)] generating graphics... => 3
[(1,7),(2,8),(3,5),(4,6),(9,10)] generating graphics... => 1
[(1,7),(2,8),(3,5),(4,9),(6,10)] generating graphics... => 3
[(1,7),(2,8),(3,5),(4,10),(6,9)] generating graphics... => 3
[(1,7),(2,8),(3,6),(4,5),(9,10)] generating graphics... => 1
[(1,7),(2,8),(3,6),(4,9),(5,10)] generating graphics... => 3
[(1,7),(2,8),(3,6),(4,10),(5,9)] generating graphics... => 3
[(1,7),(2,8),(3,9),(4,10),(5,6)] generating graphics... => 3
[(1,7),(2,8),(3,9),(4,6),(5,10)] generating graphics... => 3
[(1,7),(2,8),(3,9),(4,5),(6,10)] generating graphics... => 3
[(1,7),(2,8),(3,10),(4,9),(5,6)] generating graphics... => 3
[(1,7),(2,8),(3,10),(4,6),(5,9)] generating graphics... => 3
[(1,7),(2,8),(3,10),(4,5),(6,9)] generating graphics... => 3
[(1,7),(2,9),(3,4),(5,6),(8,10)] generating graphics... => 0
[(1,7),(2,9),(3,4),(5,8),(6,10)] generating graphics... => 3
[(1,7),(2,9),(3,4),(5,10),(6,8)] generating graphics... => 3
[(1,7),(2,9),(3,5),(4,6),(8,10)] generating graphics... => 0
[(1,7),(2,9),(3,5),(4,8),(6,10)] generating graphics... => 3
[(1,7),(2,9),(3,5),(4,10),(6,8)] generating graphics... => 3
[(1,7),(2,9),(3,6),(4,5),(8,10)] generating graphics... => 0
[(1,7),(2,9),(3,6),(4,8),(5,10)] generating graphics... => 3
[(1,7),(2,9),(3,6),(4,10),(5,8)] generating graphics... => 3
[(1,7),(2,9),(3,8),(4,10),(5,6)] generating graphics... => 3
[(1,7),(2,9),(3,8),(4,6),(5,10)] generating graphics... => 3
[(1,7),(2,9),(3,8),(4,5),(6,10)] generating graphics... => 3
[(1,7),(2,9),(3,10),(4,8),(5,6)] generating graphics... => 3
[(1,7),(2,9),(3,10),(4,6),(5,8)] generating graphics... => 3
[(1,7),(2,9),(3,10),(4,5),(6,8)] generating graphics... => 3
[(1,7),(2,10),(3,4),(5,6),(8,9)] generating graphics... => 1
[(1,7),(2,10),(3,4),(5,8),(6,9)] generating graphics... => 3
[(1,7),(2,10),(3,4),(5,9),(6,8)] generating graphics... => 3
[(1,7),(2,10),(3,5),(4,6),(8,9)] generating graphics... => 1
[(1,7),(2,10),(3,5),(4,8),(6,9)] generating graphics... => 3
[(1,7),(2,10),(3,5),(4,9),(6,8)] generating graphics... => 3
[(1,7),(2,10),(3,6),(4,5),(8,9)] generating graphics... => 1
[(1,7),(2,10),(3,6),(4,8),(5,9)] generating graphics... => 3
[(1,7),(2,10),(3,6),(4,9),(5,8)] generating graphics... => 3
[(1,7),(2,10),(3,8),(4,9),(5,6)] generating graphics... => 3
[(1,7),(2,10),(3,8),(4,6),(5,9)] generating graphics... => 3
[(1,7),(2,10),(3,8),(4,5),(6,9)] generating graphics... => 3
[(1,7),(2,10),(3,9),(4,8),(5,6)] generating graphics... => 3
[(1,7),(2,10),(3,9),(4,6),(5,8)] generating graphics... => 3
[(1,7),(2,10),(3,9),(4,5),(6,8)] generating graphics... => 3
[(1,8),(2,3),(4,5),(6,7),(9,10)] generating graphics... => 0
[(1,8),(2,3),(4,5),(6,9),(7,10)] generating graphics... => 1
[(1,8),(2,3),(4,5),(6,10),(7,9)] generating graphics... => 1
[(1,8),(2,3),(4,6),(5,7),(9,10)] generating graphics... => 0
[(1,8),(2,3),(4,6),(5,9),(7,10)] generating graphics... => 1
[(1,8),(2,3),(4,6),(5,10),(7,9)] generating graphics... => 1
[(1,8),(2,3),(4,7),(5,6),(9,10)] generating graphics... => 0
[(1,8),(2,3),(4,7),(5,9),(6,10)] generating graphics... => 2
[(1,8),(2,3),(4,7),(5,10),(6,9)] generating graphics... => 2
[(1,8),(2,3),(4,9),(5,10),(6,7)] generating graphics... => 2
[(1,8),(2,3),(4,9),(5,7),(6,10)] generating graphics... => 2
[(1,8),(2,3),(4,9),(5,6),(7,10)] generating graphics... => 1
[(1,8),(2,3),(4,10),(5,9),(6,7)] generating graphics... => 2
[(1,8),(2,3),(4,10),(5,7),(6,9)] generating graphics... => 2
[(1,8),(2,3),(4,10),(5,6),(7,9)] generating graphics... => 1
[(1,8),(2,4),(3,5),(6,7),(9,10)] generating graphics... => 0
[(1,8),(2,4),(3,5),(6,9),(7,10)] generating graphics... => 1
[(1,8),(2,4),(3,5),(6,10),(7,9)] generating graphics... => 1
[(1,8),(2,4),(3,6),(5,7),(9,10)] generating graphics... => 0
[(1,8),(2,4),(3,6),(5,9),(7,10)] generating graphics... => 1
[(1,8),(2,4),(3,6),(5,10),(7,9)] generating graphics... => 1
[(1,8),(2,4),(3,7),(5,6),(9,10)] generating graphics... => 0
[(1,8),(2,4),(3,7),(5,9),(6,10)] generating graphics... => 2
[(1,8),(2,4),(3,7),(5,10),(6,9)] generating graphics... => 2
[(1,8),(2,4),(3,9),(5,10),(6,7)] generating graphics... => 2
[(1,8),(2,4),(3,9),(5,7),(6,10)] generating graphics... => 2
[(1,8),(2,4),(3,9),(5,6),(7,10)] generating graphics... => 1
[(1,8),(2,4),(3,10),(5,9),(6,7)] generating graphics... => 2
[(1,8),(2,4),(3,10),(5,7),(6,9)] generating graphics... => 2
[(1,8),(2,4),(3,10),(5,6),(7,9)] generating graphics... => 1
[(1,8),(2,5),(3,4),(6,7),(9,10)] generating graphics... => 0
[(1,8),(2,5),(3,4),(6,9),(7,10)] generating graphics... => 1
[(1,8),(2,5),(3,4),(6,10),(7,9)] generating graphics... => 1
[(1,8),(2,5),(3,6),(4,7),(9,10)] generating graphics... => 0
[(1,8),(2,5),(3,6),(4,9),(7,10)] generating graphics... => 1
[(1,8),(2,5),(3,6),(4,10),(7,9)] generating graphics... => 1
[(1,8),(2,5),(3,7),(4,6),(9,10)] generating graphics... => 0
[(1,8),(2,5),(3,7),(4,9),(6,10)] generating graphics... => 2
[(1,8),(2,5),(3,7),(4,10),(6,9)] generating graphics... => 2
[(1,8),(2,5),(3,9),(4,10),(6,7)] generating graphics... => 2
[(1,8),(2,5),(3,9),(4,7),(6,10)] generating graphics... => 2
[(1,8),(2,5),(3,9),(4,6),(7,10)] generating graphics... => 1
[(1,8),(2,5),(3,10),(4,9),(6,7)] generating graphics... => 2
[(1,8),(2,5),(3,10),(4,7),(6,9)] generating graphics... => 2
[(1,8),(2,5),(3,10),(4,6),(7,9)] generating graphics... => 1
[(1,8),(2,6),(3,4),(5,7),(9,10)] generating graphics... => 0
[(1,8),(2,6),(3,4),(5,9),(7,10)] generating graphics... => 1
[(1,8),(2,6),(3,4),(5,10),(7,9)] generating graphics... => 1
[(1,8),(2,6),(3,5),(4,7),(9,10)] generating graphics... => 0
[(1,8),(2,6),(3,5),(4,9),(7,10)] generating graphics... => 1
[(1,8),(2,6),(3,5),(4,10),(7,9)] generating graphics... => 1
[(1,8),(2,6),(3,7),(4,5),(9,10)] generating graphics... => 0
[(1,8),(2,6),(3,7),(4,9),(5,10)] generating graphics... => 2
[(1,8),(2,6),(3,7),(4,10),(5,9)] generating graphics... => 2
[(1,8),(2,6),(3,9),(4,10),(5,7)] generating graphics... => 2
[(1,8),(2,6),(3,9),(4,7),(5,10)] generating graphics... => 2
[(1,8),(2,6),(3,9),(4,5),(7,10)] generating graphics... => 1
[(1,8),(2,6),(3,10),(4,9),(5,7)] generating graphics... => 2
[(1,8),(2,6),(3,10),(4,7),(5,9)] generating graphics... => 2
[(1,8),(2,6),(3,10),(4,5),(7,9)] generating graphics... => 1
[(1,8),(2,7),(3,4),(5,6),(9,10)] generating graphics... => 0
[(1,8),(2,7),(3,4),(5,9),(6,10)] generating graphics... => 2
[(1,8),(2,7),(3,4),(5,10),(6,9)] generating graphics... => 2
[(1,8),(2,7),(3,5),(4,6),(9,10)] generating graphics... => 0
[(1,8),(2,7),(3,5),(4,9),(6,10)] generating graphics... => 2
[(1,8),(2,7),(3,5),(4,10),(6,9)] generating graphics... => 2
[(1,8),(2,7),(3,6),(4,5),(9,10)] generating graphics... => 0
[(1,8),(2,7),(3,6),(4,9),(5,10)] generating graphics... => 2
[(1,8),(2,7),(3,6),(4,10),(5,9)] generating graphics... => 2
[(1,8),(2,7),(3,9),(4,10),(5,6)] generating graphics... => 2
[(1,8),(2,7),(3,9),(4,6),(5,10)] generating graphics... => 2
[(1,8),(2,7),(3,9),(4,5),(6,10)] generating graphics... => 2
[(1,8),(2,7),(3,10),(4,9),(5,6)] generating graphics... => 2
[(1,8),(2,7),(3,10),(4,6),(5,9)] generating graphics... => 2
[(1,8),(2,7),(3,10),(4,5),(6,9)] generating graphics... => 2
[(1,8),(2,9),(3,4),(5,10),(6,7)] generating graphics... => 2
[(1,8),(2,9),(3,4),(5,7),(6,10)] generating graphics... => 2
[(1,8),(2,9),(3,4),(5,6),(7,10)] generating graphics... => 1
[(1,8),(2,9),(3,5),(4,10),(6,7)] generating graphics... => 2
[(1,8),(2,9),(3,5),(4,7),(6,10)] generating graphics... => 2
[(1,8),(2,9),(3,5),(4,6),(7,10)] generating graphics... => 1
[(1,8),(2,9),(3,6),(4,10),(5,7)] generating graphics... => 2
[(1,8),(2,9),(3,6),(4,7),(5,10)] generating graphics... => 2
[(1,8),(2,9),(3,6),(4,5),(7,10)] generating graphics... => 1
[(1,8),(2,9),(3,7),(4,10),(5,6)] generating graphics... => 2
[(1,8),(2,9),(3,7),(4,6),(5,10)] generating graphics... => 2
[(1,8),(2,9),(3,7),(4,5),(6,10)] generating graphics... => 2
[(1,8),(2,9),(3,10),(4,5),(6,7)] generating graphics... => 2
[(1,8),(2,9),(3,10),(4,6),(5,7)] generating graphics... => 2
[(1,8),(2,9),(3,10),(4,7),(5,6)] generating graphics... => 2
[(1,8),(2,10),(3,4),(5,9),(6,7)] generating graphics... => 2
[(1,8),(2,10),(3,4),(5,7),(6,9)] generating graphics... => 2
[(1,8),(2,10),(3,4),(5,6),(7,9)] generating graphics... => 1
[(1,8),(2,10),(3,5),(4,9),(6,7)] generating graphics... => 2
[(1,8),(2,10),(3,5),(4,7),(6,9)] generating graphics... => 2
[(1,8),(2,10),(3,5),(4,6),(7,9)] generating graphics... => 1
[(1,8),(2,10),(3,6),(4,9),(5,7)] generating graphics... => 2
[(1,8),(2,10),(3,6),(4,7),(5,9)] generating graphics... => 2
[(1,8),(2,10),(3,6),(4,5),(7,9)] generating graphics... => 1
[(1,8),(2,10),(3,7),(4,9),(5,6)] generating graphics... => 2
[(1,8),(2,10),(3,7),(4,6),(5,9)] generating graphics... => 2
[(1,8),(2,10),(3,7),(4,5),(6,9)] generating graphics... => 2
[(1,8),(2,10),(3,9),(4,5),(6,7)] generating graphics... => 2
[(1,8),(2,10),(3,9),(4,6),(5,7)] generating graphics... => 2
[(1,8),(2,10),(3,9),(4,7),(5,6)] generating graphics... => 2
[(1,9),(2,3),(4,5),(6,7),(8,10)] generating graphics... => 0
[(1,9),(2,3),(4,5),(6,8),(7,10)] generating graphics... => 0
[(1,9),(2,3),(4,5),(6,10),(7,8)] generating graphics... => 1
[(1,9),(2,3),(4,6),(5,7),(8,10)] generating graphics... => 0
[(1,9),(2,3),(4,6),(5,8),(7,10)] generating graphics... => 0
[(1,9),(2,3),(4,6),(5,10),(7,8)] generating graphics... => 1
[(1,9),(2,3),(4,7),(5,6),(8,10)] generating graphics... => 0
[(1,9),(2,3),(4,7),(5,8),(6,10)] generating graphics... => 1
[(1,9),(2,3),(4,7),(5,10),(6,8)] generating graphics... => 1
[(1,9),(2,3),(4,8),(5,10),(6,7)] generating graphics... => 1
[(1,9),(2,3),(4,8),(5,7),(6,10)] generating graphics... => 1
[(1,9),(2,3),(4,8),(5,6),(7,10)] generating graphics... => 0
[(1,9),(2,3),(4,10),(5,8),(6,7)] generating graphics... => 1
[(1,9),(2,3),(4,10),(5,7),(6,8)] generating graphics... => 1
[(1,9),(2,3),(4,10),(5,6),(7,8)] generating graphics... => 1
[(1,9),(2,4),(3,5),(6,7),(8,10)] generating graphics... => 0
[(1,9),(2,4),(3,5),(6,8),(7,10)] generating graphics... => 0
[(1,9),(2,4),(3,5),(6,10),(7,8)] generating graphics... => 1
[(1,9),(2,4),(3,6),(5,7),(8,10)] generating graphics... => 0
[(1,9),(2,4),(3,6),(5,8),(7,10)] generating graphics... => 0
[(1,9),(2,4),(3,6),(5,10),(7,8)] generating graphics... => 1
[(1,9),(2,4),(3,7),(5,6),(8,10)] generating graphics... => 0
[(1,9),(2,4),(3,7),(5,8),(6,10)] generating graphics... => 1
[(1,9),(2,4),(3,7),(5,10),(6,8)] generating graphics... => 1
[(1,9),(2,4),(3,8),(5,10),(6,7)] generating graphics... => 1
[(1,9),(2,4),(3,8),(5,7),(6,10)] generating graphics... => 1
[(1,9),(2,4),(3,8),(5,6),(7,10)] generating graphics... => 0
[(1,9),(2,4),(3,10),(5,8),(6,7)] generating graphics... => 1
[(1,9),(2,4),(3,10),(5,7),(6,8)] generating graphics... => 1
[(1,9),(2,4),(3,10),(5,6),(7,8)] generating graphics... => 1
[(1,9),(2,5),(3,4),(6,7),(8,10)] generating graphics... => 0
[(1,9),(2,5),(3,4),(6,8),(7,10)] generating graphics... => 0
[(1,9),(2,5),(3,4),(6,10),(7,8)] generating graphics... => 1
[(1,9),(2,5),(3,6),(4,7),(8,10)] generating graphics... => 0
[(1,9),(2,5),(3,6),(4,8),(7,10)] generating graphics... => 0
[(1,9),(2,5),(3,6),(4,10),(7,8)] generating graphics... => 1
[(1,9),(2,5),(3,7),(4,6),(8,10)] generating graphics... => 0
[(1,9),(2,5),(3,7),(4,8),(6,10)] generating graphics... => 1
[(1,9),(2,5),(3,7),(4,10),(6,8)] generating graphics... => 1
[(1,9),(2,5),(3,8),(4,10),(6,7)] generating graphics... => 1
[(1,9),(2,5),(3,8),(4,7),(6,10)] generating graphics... => 1
[(1,9),(2,5),(3,8),(4,6),(7,10)] generating graphics... => 0
[(1,9),(2,5),(3,10),(4,8),(6,7)] generating graphics... => 1
[(1,9),(2,5),(3,10),(4,7),(6,8)] generating graphics... => 1
[(1,9),(2,5),(3,10),(4,6),(7,8)] generating graphics... => 1
[(1,9),(2,6),(3,4),(5,7),(8,10)] generating graphics... => 0
[(1,9),(2,6),(3,4),(5,8),(7,10)] generating graphics... => 0
[(1,9),(2,6),(3,4),(5,10),(7,8)] generating graphics... => 1
[(1,9),(2,6),(3,5),(4,7),(8,10)] generating graphics... => 0
[(1,9),(2,6),(3,5),(4,8),(7,10)] generating graphics... => 0
[(1,9),(2,6),(3,5),(4,10),(7,8)] generating graphics... => 1
[(1,9),(2,6),(3,7),(4,5),(8,10)] generating graphics... => 0
[(1,9),(2,6),(3,7),(4,8),(5,10)] generating graphics... => 1
[(1,9),(2,6),(3,7),(4,10),(5,8)] generating graphics... => 1
[(1,9),(2,6),(3,8),(4,10),(5,7)] generating graphics... => 1
[(1,9),(2,6),(3,8),(4,7),(5,10)] generating graphics... => 1
[(1,9),(2,6),(3,8),(4,5),(7,10)] generating graphics... => 0
[(1,9),(2,6),(3,10),(4,8),(5,7)] generating graphics... => 1
[(1,9),(2,6),(3,10),(4,7),(5,8)] generating graphics... => 1
[(1,9),(2,6),(3,10),(4,5),(7,8)] generating graphics... => 1
[(1,9),(2,7),(3,4),(5,6),(8,10)] generating graphics... => 0
[(1,9),(2,7),(3,4),(5,8),(6,10)] generating graphics... => 1
[(1,9),(2,7),(3,4),(5,10),(6,8)] generating graphics... => 1
[(1,9),(2,7),(3,5),(4,6),(8,10)] generating graphics... => 0
[(1,9),(2,7),(3,5),(4,8),(6,10)] generating graphics... => 1
[(1,9),(2,7),(3,5),(4,10),(6,8)] generating graphics... => 1
[(1,9),(2,7),(3,6),(4,5),(8,10)] generating graphics... => 0
[(1,9),(2,7),(3,6),(4,8),(5,10)] generating graphics... => 1
[(1,9),(2,7),(3,6),(4,10),(5,8)] generating graphics... => 1
[(1,9),(2,7),(3,8),(4,10),(5,6)] generating graphics... => 1
[(1,9),(2,7),(3,8),(4,6),(5,10)] generating graphics... => 1
[(1,9),(2,7),(3,8),(4,5),(6,10)] generating graphics... => 1
[(1,9),(2,7),(3,10),(4,8),(5,6)] generating graphics... => 1
[(1,9),(2,7),(3,10),(4,6),(5,8)] generating graphics... => 1
[(1,9),(2,7),(3,10),(4,5),(6,8)] generating graphics... => 1
[(1,9),(2,8),(3,4),(5,10),(6,7)] generating graphics... => 1
[(1,9),(2,8),(3,4),(5,7),(6,10)] generating graphics... => 1
[(1,9),(2,8),(3,4),(5,6),(7,10)] generating graphics... => 0
[(1,9),(2,8),(3,5),(4,10),(6,7)] generating graphics... => 1
[(1,9),(2,8),(3,5),(4,7),(6,10)] generating graphics... => 1
[(1,9),(2,8),(3,5),(4,6),(7,10)] generating graphics... => 0
[(1,9),(2,8),(3,6),(4,10),(5,7)] generating graphics... => 1
[(1,9),(2,8),(3,6),(4,7),(5,10)] generating graphics... => 1
[(1,9),(2,8),(3,6),(4,5),(7,10)] generating graphics... => 0
[(1,9),(2,8),(3,7),(4,10),(5,6)] generating graphics... => 1
[(1,9),(2,8),(3,7),(4,6),(5,10)] generating graphics... => 1
[(1,9),(2,8),(3,7),(4,5),(6,10)] generating graphics... => 1
[(1,9),(2,8),(3,10),(4,5),(6,7)] generating graphics... => 1
[(1,9),(2,8),(3,10),(4,6),(5,7)] generating graphics... => 1
[(1,9),(2,8),(3,10),(4,7),(5,6)] generating graphics... => 1
[(1,9),(2,10),(3,4),(5,8),(6,7)] generating graphics... => 1
[(1,9),(2,10),(3,4),(5,7),(6,8)] generating graphics... => 1
[(1,9),(2,10),(3,4),(5,6),(7,8)] generating graphics... => 1
[(1,9),(2,10),(3,5),(4,8),(6,7)] generating graphics... => 1
[(1,9),(2,10),(3,5),(4,7),(6,8)] generating graphics... => 1
[(1,9),(2,10),(3,5),(4,6),(7,8)] generating graphics... => 1
[(1,9),(2,10),(3,6),(4,8),(5,7)] generating graphics... => 1
[(1,9),(2,10),(3,6),(4,7),(5,8)] generating graphics... => 1
[(1,9),(2,10),(3,6),(4,5),(7,8)] generating graphics... => 1
[(1,9),(2,10),(3,7),(4,8),(5,6)] generating graphics... => 1
[(1,9),(2,10),(3,7),(4,6),(5,8)] generating graphics... => 1
[(1,9),(2,10),(3,7),(4,5),(6,8)] generating graphics... => 1
[(1,9),(2,10),(3,8),(4,5),(6,7)] generating graphics... => 1
[(1,9),(2,10),(3,8),(4,6),(5,7)] generating graphics... => 1
[(1,9),(2,10),(3,8),(4,7),(5,6)] generating graphics... => 1
[(1,10),(2,3),(4,5),(6,7),(8,9)] generating graphics... => 0
[(1,10),(2,3),(4,5),(6,8),(7,9)] generating graphics... => 0
[(1,10),(2,3),(4,5),(6,9),(7,8)] generating graphics... => 0
[(1,10),(2,3),(4,6),(5,7),(8,9)] generating graphics... => 0
[(1,10),(2,3),(4,6),(5,8),(7,9)] generating graphics... => 0
[(1,10),(2,3),(4,6),(5,9),(7,8)] generating graphics... => 0
[(1,10),(2,3),(4,7),(5,6),(8,9)] generating graphics... => 0
[(1,10),(2,3),(4,7),(5,8),(6,9)] generating graphics... => 0
[(1,10),(2,3),(4,7),(5,9),(6,8)] generating graphics... => 0
[(1,10),(2,3),(4,8),(5,9),(6,7)] generating graphics... => 0
[(1,10),(2,3),(4,8),(5,7),(6,9)] generating graphics... => 0
[(1,10),(2,3),(4,8),(5,6),(7,9)] generating graphics... => 0
[(1,10),(2,3),(4,9),(5,8),(6,7)] generating graphics... => 0
[(1,10),(2,3),(4,9),(5,7),(6,8)] generating graphics... => 0
[(1,10),(2,3),(4,9),(5,6),(7,8)] generating graphics... => 0
[(1,10),(2,4),(3,5),(6,7),(8,9)] generating graphics... => 0
[(1,10),(2,4),(3,5),(6,8),(7,9)] generating graphics... => 0
[(1,10),(2,4),(3,5),(6,9),(7,8)] generating graphics... => 0
[(1,10),(2,4),(3,6),(5,7),(8,9)] generating graphics... => 0
[(1,10),(2,4),(3,6),(5,8),(7,9)] generating graphics... => 0
[(1,10),(2,4),(3,6),(5,9),(7,8)] generating graphics... => 0
[(1,10),(2,4),(3,7),(5,6),(8,9)] generating graphics... => 0
[(1,10),(2,4),(3,7),(5,8),(6,9)] generating graphics... => 0
[(1,10),(2,4),(3,7),(5,9),(6,8)] generating graphics... => 0
[(1,10),(2,4),(3,8),(5,9),(6,7)] generating graphics... => 0
[(1,10),(2,4),(3,8),(5,7),(6,9)] generating graphics... => 0
[(1,10),(2,4),(3,8),(5,6),(7,9)] generating graphics... => 0
[(1,10),(2,4),(3,9),(5,8),(6,7)] generating graphics... => 0
[(1,10),(2,4),(3,9),(5,7),(6,8)] generating graphics... => 0
[(1,10),(2,4),(3,9),(5,6),(7,8)] generating graphics... => 0
[(1,10),(2,5),(3,4),(6,7),(8,9)] generating graphics... => 0
[(1,10),(2,5),(3,4),(6,8),(7,9)] generating graphics... => 0
[(1,10),(2,5),(3,4),(6,9),(7,8)] generating graphics... => 0
[(1,10),(2,5),(3,6),(4,7),(8,9)] generating graphics... => 0
[(1,10),(2,5),(3,6),(4,8),(7,9)] generating graphics... => 0
[(1,10),(2,5),(3,6),(4,9),(7,8)] generating graphics... => 0
[(1,10),(2,5),(3,7),(4,6),(8,9)] generating graphics... => 0
[(1,10),(2,5),(3,7),(4,8),(6,9)] generating graphics... => 0
[(1,10),(2,5),(3,7),(4,9),(6,8)] generating graphics... => 0
[(1,10),(2,5),(3,8),(4,9),(6,7)] generating graphics... => 0
[(1,10),(2,5),(3,8),(4,7),(6,9)] generating graphics... => 0
[(1,10),(2,5),(3,8),(4,6),(7,9)] generating graphics... => 0
[(1,10),(2,5),(3,9),(4,8),(6,7)] generating graphics... => 0
[(1,10),(2,5),(3,9),(4,7),(6,8)] generating graphics... => 0
[(1,10),(2,5),(3,9),(4,6),(7,8)] generating graphics... => 0
[(1,10),(2,6),(3,4),(5,7),(8,9)] generating graphics... => 0
[(1,10),(2,6),(3,4),(5,8),(7,9)] generating graphics... => 0
[(1,10),(2,6),(3,4),(5,9),(7,8)] generating graphics... => 0
[(1,10),(2,6),(3,5),(4,7),(8,9)] generating graphics... => 0
[(1,10),(2,6),(3,5),(4,8),(7,9)] generating graphics... => 0
[(1,10),(2,6),(3,5),(4,9),(7,8)] generating graphics... => 0
[(1,10),(2,6),(3,7),(4,5),(8,9)] generating graphics... => 0
[(1,10),(2,6),(3,7),(4,8),(5,9)] generating graphics... => 0
[(1,10),(2,6),(3,7),(4,9),(5,8)] generating graphics... => 0
[(1,10),(2,6),(3,8),(4,9),(5,7)] generating graphics... => 0
[(1,10),(2,6),(3,8),(4,7),(5,9)] generating graphics... => 0
[(1,10),(2,6),(3,8),(4,5),(7,9)] generating graphics... => 0
[(1,10),(2,6),(3,9),(4,8),(5,7)] generating graphics... => 0
[(1,10),(2,6),(3,9),(4,7),(5,8)] generating graphics... => 0
[(1,10),(2,6),(3,9),(4,5),(7,8)] generating graphics... => 0
[(1,10),(2,7),(3,4),(5,6),(8,9)] generating graphics... => 0
[(1,10),(2,7),(3,4),(5,8),(6,9)] generating graphics... => 0
[(1,10),(2,7),(3,4),(5,9),(6,8)] generating graphics... => 0
[(1,10),(2,7),(3,5),(4,6),(8,9)] generating graphics... => 0
[(1,10),(2,7),(3,5),(4,8),(6,9)] generating graphics... => 0
[(1,10),(2,7),(3,5),(4,9),(6,8)] generating graphics... => 0
[(1,10),(2,7),(3,6),(4,5),(8,9)] generating graphics... => 0
[(1,10),(2,7),(3,6),(4,8),(5,9)] generating graphics... => 0
[(1,10),(2,7),(3,6),(4,9),(5,8)] generating graphics... => 0
[(1,10),(2,7),(3,8),(4,9),(5,6)] generating graphics... => 0
[(1,10),(2,7),(3,8),(4,6),(5,9)] generating graphics... => 0
[(1,10),(2,7),(3,8),(4,5),(6,9)] generating graphics... => 0
[(1,10),(2,7),(3,9),(4,8),(5,6)] generating graphics... => 0
[(1,10),(2,7),(3,9),(4,6),(5,8)] generating graphics... => 0
[(1,10),(2,7),(3,9),(4,5),(6,8)] generating graphics... => 0
[(1,10),(2,8),(3,4),(5,9),(6,7)] generating graphics... => 0
[(1,10),(2,8),(3,4),(5,7),(6,9)] generating graphics... => 0
[(1,10),(2,8),(3,4),(5,6),(7,9)] generating graphics... => 0
[(1,10),(2,8),(3,5),(4,9),(6,7)] generating graphics... => 0
[(1,10),(2,8),(3,5),(4,7),(6,9)] generating graphics... => 0
[(1,10),(2,8),(3,5),(4,6),(7,9)] generating graphics... => 0
[(1,10),(2,8),(3,6),(4,9),(5,7)] generating graphics... => 0
[(1,10),(2,8),(3,6),(4,7),(5,9)] generating graphics... => 0
[(1,10),(2,8),(3,6),(4,5),(7,9)] generating graphics... => 0
[(1,10),(2,8),(3,7),(4,9),(5,6)] generating graphics... => 0
[(1,10),(2,8),(3,7),(4,6),(5,9)] generating graphics... => 0
[(1,10),(2,8),(3,7),(4,5),(6,9)] generating graphics... => 0
[(1,10),(2,8),(3,9),(4,5),(6,7)] generating graphics... => 0
[(1,10),(2,8),(3,9),(4,6),(5,7)] generating graphics... => 0
[(1,10),(2,8),(3,9),(4,7),(5,6)] generating graphics... => 0
[(1,10),(2,9),(3,4),(5,8),(6,7)] generating graphics... => 0
[(1,10),(2,9),(3,4),(5,7),(6,8)] generating graphics... => 0
[(1,10),(2,9),(3,4),(5,6),(7,8)] generating graphics... => 0
[(1,10),(2,9),(3,5),(4,8),(6,7)] generating graphics... => 0
[(1,10),(2,9),(3,5),(4,7),(6,8)] generating graphics... => 0
[(1,10),(2,9),(3,5),(4,6),(7,8)] generating graphics... => 0
[(1,10),(2,9),(3,6),(4,8),(5,7)] generating graphics... => 0
[(1,10),(2,9),(3,6),(4,7),(5,8)] generating graphics... => 0
[(1,10),(2,9),(3,6),(4,5),(7,8)] generating graphics... => 0
[(1,10),(2,9),(3,7),(4,8),(5,6)] generating graphics... => 0
[(1,10),(2,9),(3,7),(4,6),(5,8)] generating graphics... => 0
[(1,10),(2,9),(3,7),(4,5),(6,8)] generating graphics... => 0
[(1,10),(2,9),(3,8),(4,5),(6,7)] generating graphics... => 0
[(1,10),(2,9),(3,8),(4,6),(5,7)] generating graphics... => 0
[(1,10),(2,9),(3,8),(4,7),(5,6)] generating graphics... => 0
[(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)] generating graphics... => 3
[(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)] generating graphics... => 4
[(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)] generating graphics... => 1
[(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)] generating graphics... => 4
[(1,2),(3,4),(5,9),(6,10),(7,11),(8,12)] generating graphics... => 1
[(1,2),(3,4),(5,8),(6,10),(7,11),(9,12)] generating graphics... => 4
[(1,2),(3,5),(4,7),(6,10),(8,11),(9,12)] generating graphics... => 1
[(1,2),(3,4),(5,6),(7,9),(8,11),(10,12)] generating graphics... => 1
[(1,2),(3,4),(5,6),(7,8),(9,11),(10,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,9),(8,11),(10,12)] generating graphics... => 1
[(1,2),(3,5),(4,6),(7,8),(9,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,9),(7,11),(10,12)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,9),(8,11),(10,12)] generating graphics... => 1
[(1,2),(3,5),(4,7),(6,8),(9,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,9),(8,11),(10,12)] generating graphics... => 1
[(1,2),(3,4),(5,7),(6,8),(9,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,10),(8,11),(9,12)] generating graphics... => 1
[(1,2),(3,4),(5,6),(7,10),(8,11),(9,12)] generating graphics... => 1
[(1,2),(3,4),(5,8),(6,9),(7,10),(11,12)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,10),(8,11),(9,12)] generating graphics... => 1
[(1,2),(3,5),(4,6),(7,9),(8,10),(11,12)] generating graphics... => 1
[(1,2),(3,5),(4,7),(6,8),(9,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,9),(8,10),(11,12)] generating graphics... => 1
[(1,2),(3,5),(4,6),(7,8),(9,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,8),(9,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,9),(8,10),(11,12)] generating graphics... => 1
[(1,2),(3,5),(4,7),(6,9),(8,10),(11,12)] generating graphics... => 1
click to show generating function       
Description
The number of trivial trees on the path to label one in the decreasing labelled binary unordered tree associated with the perfect matching.
The bijection between perfect matchings of $\{1,\dots,2n\}$ and trees with $n+1$ leaves is described in Example 5.2.6 of [1].
This statistic records the number of trees consisting of a leaf only on the path to the label one.
References
[1] Stanley, R. P. Enumerative combinatorics. Vol. 2 MathSciNet:1676282
Code
def statistic(m):
    return trivial_trees_on_path_to_1(matching_to_tree(m))

def trivial_trees_on_path_to_1(T):
    if T.node_number() == 1:
        return 0
    if 1 in T[0].leaf_labels():
        if T[1].node_number() == 1:
            return 1 + trivial_trees_on_path_to_1(T[0])
        else:
            return trivial_trees_on_path_to_1(T[0])
    else:
        if T[0].node_number() == 1:
            return 1 + trivial_trees_on_path_to_1(T[1])
        else:
            return trivial_trees_on_path_to_1(T[1])

def matching_to_tree(m):
    """
    INPUT:

    - m, a PerfectMatching on {1,...,2n}.

    OUTPUT:

    a decreasingly labelled, unordered full binary tree with n+1 leaves.

    EXAMPLES::

        sage: m = PerfectMatching([(1,4),(2,9),(3,10),(5,7),(6,8),(11,12)])
        sage: ascii_art(matching_to_tree(m))
             ____None___
            /          /
          _11__      _12_
         /    /     /   /
        3   _10_   6   8_
           /   /      / /
          2   9_     1 4
             / /
            5 7

    """
    # the children of the smallest label are the largest remaining
    # element and its partner
    trees = [LabelledRootedTree([LabelledRootedTree([], label=i),
                                 LabelledRootedTree([], label=j)]) for i, j in m]
    max_label = m.size()//2+1 # last labelled node

    while len(trees) > 1:
        max_label += 1
        # find tree with smallest child and both children smaller than max_label
        A = sorted([T for T in trees if max(T[0].label(), T[1].label()) < max_label],
                   key = lambda T: min(T[0].label(), T[1].label()))[0]
        trees.remove(A)
        # give it's root node the new label
        A = LabelledRootedTree(A, label=max_label)
        # find tree with child having label max_label
        B = (T for T in trees
             if T[0].label() == max_label or T[1].label() == max_label).next()
        trees.remove(B)
        # replace B with [B[0], A] or [B[1], A]
        if B[0].label() == max_label:
            C = LabelledRootedTree([A, B[1]])
        else:
            C = LabelledRootedTree([A, B[0]])

        trees.append(C)

    return trees[0]

Created
Apr 01, 2018 at 22:03 by Martin Rubey
Updated
Apr 01, 2018 at 22:03 by Martin Rubey