Identifier
Identifier
Values
[(1,2)] generating graphics... => 1
[(1,2),(3,4)] generating graphics... => 1
[(1,3),(2,4)] generating graphics... => 1
[(1,4),(2,3)] generating graphics... => 2
[(1,2),(3,4),(5,6)] generating graphics... => 2
[(1,2),(3,5),(4,6)] generating graphics... => 1
[(1,2),(3,6),(4,5)] generating graphics... => 1
[(1,3),(2,4),(5,6)] generating graphics... => 2
[(1,3),(2,5),(4,6)] generating graphics... => 1
[(1,3),(2,6),(4,5)] generating graphics... => 1
[(1,4),(2,3),(5,6)] generating graphics... => 2
[(1,4),(2,5),(3,6)] generating graphics... => 1
[(1,4),(2,6),(3,5)] generating graphics... => 1
[(1,5),(2,3),(4,6)] generating graphics... => 1
[(1,5),(2,4),(3,6)] generating graphics... => 1
[(1,5),(2,6),(3,4)] generating graphics... => 1
[(1,6),(2,3),(4,5)] generating graphics... => 3
[(1,6),(2,4),(3,5)] generating graphics... => 3
[(1,6),(2,5),(3,4)] generating graphics... => 3
[(1,2),(3,4),(5,8),(6,7)] generating graphics... => 1
[(1,2),(3,4),(5,7),(6,8)] generating graphics... => 3
[(1,2),(3,4),(5,6),(7,8)] generating graphics... => 2
[(1,2),(3,5),(4,8),(6,7)] generating graphics... => 1
[(1,2),(3,5),(4,7),(6,8)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,8)] generating graphics... => 2
[(1,2),(3,6),(4,8),(5,7)] generating graphics... => 1
[(1,2),(3,6),(4,7),(5,8)] generating graphics... => 1
[(1,2),(3,6),(4,5),(7,8)] generating graphics... => 2
[(1,2),(3,7),(4,8),(5,6)] generating graphics... => 1
[(1,2),(3,7),(4,6),(5,8)] generating graphics... => 1
[(1,2),(3,7),(4,5),(6,8)] generating graphics... => 3
[(1,2),(3,8),(4,5),(6,7)] generating graphics... => 1
[(1,2),(3,8),(4,6),(5,7)] generating graphics... => 1
[(1,2),(3,8),(4,7),(5,6)] generating graphics... => 1
[(1,3),(2,4),(5,8),(6,7)] generating graphics... => 1
[(1,3),(2,4),(5,7),(6,8)] generating graphics... => 3
[(1,3),(2,4),(5,6),(7,8)] generating graphics... => 2
[(1,3),(2,5),(4,8),(6,7)] generating graphics... => 1
[(1,3),(2,5),(4,7),(6,8)] generating graphics... => 3
[(1,3),(2,5),(4,6),(7,8)] generating graphics... => 2
[(1,3),(2,6),(4,8),(5,7)] generating graphics... => 1
[(1,3),(2,6),(4,7),(5,8)] generating graphics... => 1
[(1,3),(2,6),(4,5),(7,8)] generating graphics... => 2
[(1,3),(2,7),(4,8),(5,6)] generating graphics... => 1
[(1,3),(2,7),(4,6),(5,8)] generating graphics... => 1
[(1,3),(2,7),(4,5),(6,8)] generating graphics... => 3
[(1,3),(2,8),(4,5),(6,7)] generating graphics... => 1
[(1,3),(2,8),(4,6),(5,7)] generating graphics... => 1
[(1,3),(2,8),(4,7),(5,6)] generating graphics... => 1
[(1,4),(2,3),(5,8),(6,7)] generating graphics... => 1
[(1,4),(2,3),(5,7),(6,8)] generating graphics... => 3
[(1,4),(2,3),(5,6),(7,8)] generating graphics... => 2
[(1,4),(2,5),(3,8),(6,7)] generating graphics... => 1
[(1,4),(2,5),(3,7),(6,8)] generating graphics... => 3
[(1,4),(2,5),(3,6),(7,8)] generating graphics... => 2
[(1,4),(2,6),(3,8),(5,7)] generating graphics... => 1
[(1,4),(2,6),(3,7),(5,8)] generating graphics... => 1
[(1,4),(2,6),(3,5),(7,8)] generating graphics... => 2
[(1,4),(2,7),(3,8),(5,6)] generating graphics... => 1
[(1,4),(2,7),(3,6),(5,8)] generating graphics... => 1
[(1,4),(2,7),(3,5),(6,8)] generating graphics... => 3
[(1,4),(2,8),(3,5),(6,7)] generating graphics... => 1
[(1,4),(2,8),(3,6),(5,7)] generating graphics... => 1
[(1,4),(2,8),(3,7),(5,6)] generating graphics... => 1
[(1,5),(2,3),(4,8),(6,7)] generating graphics... => 1
[(1,5),(2,3),(4,7),(6,8)] generating graphics... => 3
[(1,5),(2,3),(4,6),(7,8)] generating graphics... => 2
[(1,5),(2,4),(3,8),(6,7)] generating graphics... => 1
[(1,5),(2,4),(3,7),(6,8)] generating graphics... => 3
[(1,5),(2,4),(3,6),(7,8)] generating graphics... => 2
[(1,5),(2,6),(3,8),(4,7)] generating graphics... => 1
[(1,5),(2,6),(3,7),(4,8)] generating graphics... => 1
[(1,5),(2,6),(3,4),(7,8)] generating graphics... => 2
[(1,5),(2,7),(3,8),(4,6)] generating graphics... => 1
[(1,5),(2,7),(3,6),(4,8)] generating graphics... => 1
[(1,5),(2,7),(3,4),(6,8)] generating graphics... => 3
[(1,5),(2,8),(3,4),(6,7)] generating graphics... => 1
[(1,5),(2,8),(3,6),(4,7)] generating graphics... => 1
[(1,5),(2,8),(3,7),(4,6)] generating graphics... => 1
[(1,6),(2,3),(4,8),(5,7)] generating graphics... => 1
[(1,6),(2,3),(4,7),(5,8)] generating graphics... => 1
[(1,6),(2,3),(4,5),(7,8)] generating graphics... => 2
[(1,6),(2,4),(3,8),(5,7)] generating graphics... => 1
[(1,6),(2,4),(3,7),(5,8)] generating graphics... => 1
[(1,6),(2,4),(3,5),(7,8)] generating graphics... => 2
[(1,6),(2,5),(3,8),(4,7)] generating graphics... => 1
[(1,6),(2,5),(3,7),(4,8)] generating graphics... => 1
[(1,6),(2,5),(3,4),(7,8)] generating graphics... => 2
[(1,6),(2,7),(3,8),(4,5)] generating graphics... => 1
[(1,6),(2,7),(3,5),(4,8)] generating graphics... => 1
[(1,6),(2,7),(3,4),(5,8)] generating graphics... => 1
[(1,6),(2,8),(3,4),(5,7)] generating graphics... => 1
[(1,6),(2,8),(3,5),(4,7)] generating graphics... => 1
[(1,6),(2,8),(3,7),(4,5)] generating graphics... => 1
[(1,7),(2,3),(4,8),(5,6)] generating graphics... => 1
[(1,7),(2,3),(4,6),(5,8)] generating graphics... => 1
[(1,7),(2,3),(4,5),(6,8)] generating graphics... => 2
[(1,7),(2,4),(3,8),(5,6)] generating graphics... => 1
[(1,7),(2,4),(3,6),(5,8)] generating graphics... => 1
[(1,7),(2,4),(3,5),(6,8)] generating graphics... => 2
[(1,7),(2,5),(3,8),(4,6)] generating graphics... => 1
[(1,7),(2,5),(3,6),(4,8)] generating graphics... => 1
[(1,7),(2,5),(3,4),(6,8)] generating graphics... => 2
[(1,7),(2,6),(3,8),(4,5)] generating graphics... => 1
[(1,7),(2,6),(3,5),(4,8)] generating graphics... => 1
[(1,7),(2,6),(3,4),(5,8)] generating graphics... => 1
[(1,7),(2,8),(3,4),(5,6)] generating graphics... => 1
[(1,7),(2,8),(3,5),(4,6)] generating graphics... => 1
[(1,7),(2,8),(3,6),(4,5)] generating graphics... => 1
[(1,8),(2,3),(4,5),(6,7)] generating graphics... => 4
[(1,8),(2,3),(4,6),(5,7)] generating graphics... => 4
[(1,8),(2,3),(4,7),(5,6)] generating graphics... => 4
[(1,8),(2,4),(3,5),(6,7)] generating graphics... => 4
[(1,8),(2,4),(3,6),(5,7)] generating graphics... => 4
[(1,8),(2,4),(3,7),(5,6)] generating graphics... => 4
[(1,8),(2,5),(3,4),(6,7)] generating graphics... => 4
[(1,8),(2,5),(3,6),(4,7)] generating graphics... => 4
[(1,8),(2,5),(3,7),(4,6)] generating graphics... => 4
[(1,8),(2,6),(3,4),(5,7)] generating graphics... => 4
[(1,8),(2,6),(3,5),(4,7)] generating graphics... => 4
[(1,8),(2,6),(3,7),(4,5)] generating graphics... => 4
[(1,8),(2,7),(3,4),(5,6)] generating graphics... => 4
[(1,8),(2,7),(3,5),(4,6)] generating graphics... => 4
[(1,8),(2,7),(3,6),(4,5)] generating graphics... => 4
[(1,2),(3,4),(5,6),(7,10),(8,9)] generating graphics... => 4
[(1,2),(3,4),(5,6),(7,9),(8,10)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,8),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,10),(8,9)] generating graphics... => 1
[(1,2),(3,4),(5,7),(6,9),(8,10)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,8),(9,10)] generating graphics... => 3
[(1,2),(3,4),(5,8),(6,7),(9,10)] generating graphics... => 3
[(1,2),(3,4),(5,8),(6,9),(7,10)] generating graphics... => 4
[(1,2),(3,4),(5,8),(6,10),(7,9)] generating graphics... => 1
[(1,2),(3,4),(5,9),(6,7),(8,10)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,8),(7,10)] generating graphics... => 4
[(1,2),(3,4),(5,9),(6,10),(7,8)] generating graphics... => 1
[(1,2),(3,4),(5,10),(6,7),(8,9)] generating graphics... => 1
[(1,2),(3,4),(5,10),(6,8),(7,9)] generating graphics... => 1
[(1,2),(3,4),(5,10),(6,9),(7,8)] generating graphics... => 1
[(1,2),(3,5),(4,6),(7,10),(8,9)] generating graphics... => 4
[(1,2),(3,5),(4,6),(7,9),(8,10)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,8),(9,10)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,10),(8,9)] generating graphics... => 1
[(1,2),(3,5),(4,7),(6,9),(8,10)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,8),(9,10)] generating graphics... => 3
[(1,2),(3,5),(4,8),(6,7),(9,10)] generating graphics... => 3
[(1,2),(3,5),(4,8),(6,9),(7,10)] generating graphics... => 4
[(1,2),(3,5),(4,8),(6,10),(7,9)] generating graphics... => 1
[(1,2),(3,5),(4,9),(6,7),(8,10)] generating graphics... => 2
[(1,2),(3,5),(4,9),(6,8),(7,10)] generating graphics... => 4
[(1,2),(3,5),(4,9),(6,10),(7,8)] generating graphics... => 1
[(1,2),(3,5),(4,10),(6,7),(8,9)] generating graphics... => 1
[(1,2),(3,5),(4,10),(6,8),(7,9)] generating graphics... => 1
[(1,2),(3,5),(4,10),(6,9),(7,8)] generating graphics... => 1
[(1,2),(3,6),(4,5),(7,10),(8,9)] generating graphics... => 4
[(1,2),(3,6),(4,5),(7,9),(8,10)] generating graphics... => 2
[(1,2),(3,6),(4,5),(7,8),(9,10)] generating graphics... => 2
[(1,2),(3,6),(4,7),(5,10),(8,9)] generating graphics... => 1
[(1,2),(3,6),(4,7),(5,9),(8,10)] generating graphics... => 2
[(1,2),(3,6),(4,7),(5,8),(9,10)] generating graphics... => 3
[(1,2),(3,6),(4,8),(5,7),(9,10)] generating graphics... => 3
[(1,2),(3,6),(4,8),(5,9),(7,10)] generating graphics... => 4
[(1,2),(3,6),(4,8),(5,10),(7,9)] generating graphics... => 1
[(1,2),(3,6),(4,9),(5,7),(8,10)] generating graphics... => 2
[(1,2),(3,6),(4,9),(5,8),(7,10)] generating graphics... => 4
[(1,2),(3,6),(4,9),(5,10),(7,8)] generating graphics... => 1
[(1,2),(3,6),(4,10),(5,7),(8,9)] generating graphics... => 1
[(1,2),(3,6),(4,10),(5,8),(7,9)] generating graphics... => 1
[(1,2),(3,6),(4,10),(5,9),(7,8)] generating graphics... => 1
[(1,2),(3,7),(4,5),(6,10),(8,9)] generating graphics... => 1
[(1,2),(3,7),(4,5),(6,9),(8,10)] generating graphics... => 3
[(1,2),(3,7),(4,5),(6,8),(9,10)] generating graphics... => 2
[(1,2),(3,7),(4,6),(5,10),(8,9)] generating graphics... => 1
[(1,2),(3,7),(4,6),(5,9),(8,10)] generating graphics... => 3
[(1,2),(3,7),(4,6),(5,8),(9,10)] generating graphics... => 2
[(1,2),(3,7),(4,8),(5,6),(9,10)] generating graphics... => 2
[(1,2),(3,7),(4,8),(5,9),(6,10)] generating graphics... => 1
[(1,2),(3,7),(4,8),(5,10),(6,9)] generating graphics... => 1
[(1,2),(3,7),(4,9),(5,6),(8,10)] generating graphics... => 3
[(1,2),(3,7),(4,9),(5,8),(6,10)] generating graphics... => 1
[(1,2),(3,7),(4,9),(5,10),(6,8)] generating graphics... => 1
[(1,2),(3,7),(4,10),(5,6),(8,9)] generating graphics... => 1
[(1,2),(3,7),(4,10),(5,8),(6,9)] generating graphics... => 1
[(1,2),(3,7),(4,10),(5,9),(6,8)] generating graphics... => 1
[(1,2),(3,8),(4,5),(6,7),(9,10)] generating graphics... => 3
[(1,2),(3,8),(4,5),(6,9),(7,10)] generating graphics... => 4
[(1,2),(3,8),(4,5),(6,10),(7,9)] generating graphics... => 1
[(1,2),(3,8),(4,6),(5,7),(9,10)] generating graphics... => 3
[(1,2),(3,8),(4,6),(5,9),(7,10)] generating graphics... => 4
[(1,2),(3,8),(4,6),(5,10),(7,9)] generating graphics... => 1
[(1,2),(3,8),(4,7),(5,6),(9,10)] generating graphics... => 2
[(1,2),(3,8),(4,7),(5,9),(6,10)] generating graphics... => 1
[(1,2),(3,8),(4,7),(5,10),(6,9)] generating graphics... => 1
[(1,2),(3,8),(4,9),(5,10),(6,7)] generating graphics... => 1
[(1,2),(3,8),(4,9),(5,7),(6,10)] generating graphics... => 1
[(1,2),(3,8),(4,9),(5,6),(7,10)] generating graphics... => 4
[(1,2),(3,8),(4,10),(5,9),(6,7)] generating graphics... => 1
[(1,2),(3,8),(4,10),(5,7),(6,9)] generating graphics... => 1
[(1,2),(3,8),(4,10),(5,6),(7,9)] generating graphics... => 1
[(1,2),(3,9),(4,5),(6,7),(8,10)] generating graphics... => 2
[(1,2),(3,9),(4,5),(6,8),(7,10)] generating graphics... => 4
[(1,2),(3,9),(4,5),(6,10),(7,8)] generating graphics... => 1
[(1,2),(3,9),(4,6),(5,7),(8,10)] generating graphics... => 2
[(1,2),(3,9),(4,6),(5,8),(7,10)] generating graphics... => 4
[(1,2),(3,9),(4,6),(5,10),(7,8)] generating graphics... => 1
[(1,2),(3,9),(4,7),(5,6),(8,10)] generating graphics... => 3
[(1,2),(3,9),(4,7),(5,8),(6,10)] generating graphics... => 1
[(1,2),(3,9),(4,7),(5,10),(6,8)] generating graphics... => 1
[(1,2),(3,9),(4,8),(5,10),(6,7)] generating graphics... => 1
[(1,2),(3,9),(4,8),(5,7),(6,10)] generating graphics... => 1
[(1,2),(3,9),(4,8),(5,6),(7,10)] generating graphics... => 4
[(1,2),(3,9),(4,10),(5,8),(6,7)] generating graphics... => 1
[(1,2),(3,9),(4,10),(5,7),(6,8)] generating graphics... => 1
[(1,2),(3,9),(4,10),(5,6),(7,8)] generating graphics... => 1
[(1,2),(3,10),(4,5),(6,7),(8,9)] generating graphics... => 1
[(1,2),(3,10),(4,5),(6,8),(7,9)] generating graphics... => 1
[(1,2),(3,10),(4,5),(6,9),(7,8)] generating graphics... => 1
[(1,2),(3,10),(4,6),(5,7),(8,9)] generating graphics... => 1
[(1,2),(3,10),(4,6),(5,8),(7,9)] generating graphics... => 1
[(1,2),(3,10),(4,6),(5,9),(7,8)] generating graphics... => 1
[(1,2),(3,10),(4,7),(5,6),(8,9)] generating graphics... => 1
[(1,2),(3,10),(4,7),(5,8),(6,9)] generating graphics... => 1
[(1,2),(3,10),(4,7),(5,9),(6,8)] generating graphics... => 1
[(1,2),(3,10),(4,8),(5,9),(6,7)] generating graphics... => 1
[(1,2),(3,10),(4,8),(5,7),(6,9)] generating graphics... => 1
[(1,2),(3,10),(4,8),(5,6),(7,9)] generating graphics... => 1
[(1,2),(3,10),(4,9),(5,8),(6,7)] generating graphics... => 1
[(1,2),(3,10),(4,9),(5,7),(6,8)] generating graphics... => 1
[(1,2),(3,10),(4,9),(5,6),(7,8)] generating graphics... => 1
[(1,3),(2,4),(5,6),(7,10),(8,9)] generating graphics... => 4
[(1,3),(2,4),(5,6),(7,9),(8,10)] generating graphics... => 2
[(1,3),(2,4),(5,6),(7,8),(9,10)] generating graphics... => 2
[(1,3),(2,4),(5,7),(6,10),(8,9)] generating graphics... => 1
[(1,3),(2,4),(5,7),(6,9),(8,10)] generating graphics... => 2
[(1,3),(2,4),(5,7),(6,8),(9,10)] generating graphics... => 3
[(1,3),(2,4),(5,8),(6,7),(9,10)] generating graphics... => 3
[(1,3),(2,4),(5,8),(6,9),(7,10)] generating graphics... => 4
[(1,3),(2,4),(5,8),(6,10),(7,9)] generating graphics... => 1
[(1,3),(2,4),(5,9),(6,7),(8,10)] generating graphics... => 2
[(1,3),(2,4),(5,9),(6,8),(7,10)] generating graphics... => 4
[(1,3),(2,4),(5,9),(6,10),(7,8)] generating graphics... => 1
[(1,3),(2,4),(5,10),(6,7),(8,9)] generating graphics... => 1
[(1,3),(2,4),(5,10),(6,8),(7,9)] generating graphics... => 1
[(1,3),(2,4),(5,10),(6,9),(7,8)] generating graphics... => 1
[(1,3),(2,5),(4,6),(7,10),(8,9)] generating graphics... => 4
[(1,3),(2,5),(4,6),(7,9),(8,10)] generating graphics... => 2
[(1,3),(2,5),(4,6),(7,8),(9,10)] generating graphics... => 2
[(1,3),(2,5),(4,7),(6,10),(8,9)] generating graphics... => 1
[(1,3),(2,5),(4,7),(6,9),(8,10)] generating graphics... => 2
[(1,3),(2,5),(4,7),(6,8),(9,10)] generating graphics... => 3
[(1,3),(2,5),(4,8),(6,7),(9,10)] generating graphics... => 3
[(1,3),(2,5),(4,8),(6,9),(7,10)] generating graphics... => 4
[(1,3),(2,5),(4,8),(6,10),(7,9)] generating graphics... => 1
[(1,3),(2,5),(4,9),(6,7),(8,10)] generating graphics... => 2
[(1,3),(2,5),(4,9),(6,8),(7,10)] generating graphics... => 4
[(1,3),(2,5),(4,9),(6,10),(7,8)] generating graphics... => 1
[(1,3),(2,5),(4,10),(6,7),(8,9)] generating graphics... => 1
[(1,3),(2,5),(4,10),(6,8),(7,9)] generating graphics... => 1
[(1,3),(2,5),(4,10),(6,9),(7,8)] generating graphics... => 1
[(1,3),(2,6),(4,5),(7,10),(8,9)] generating graphics... => 4
[(1,3),(2,6),(4,5),(7,9),(8,10)] generating graphics... => 2
[(1,3),(2,6),(4,5),(7,8),(9,10)] generating graphics... => 2
[(1,3),(2,6),(4,7),(5,10),(8,9)] generating graphics... => 1
[(1,3),(2,6),(4,7),(5,9),(8,10)] generating graphics... => 2
[(1,3),(2,6),(4,7),(5,8),(9,10)] generating graphics... => 3
[(1,3),(2,6),(4,8),(5,7),(9,10)] generating graphics... => 3
[(1,3),(2,6),(4,8),(5,9),(7,10)] generating graphics... => 4
[(1,3),(2,6),(4,8),(5,10),(7,9)] generating graphics... => 1
[(1,3),(2,6),(4,9),(5,7),(8,10)] generating graphics... => 2
[(1,3),(2,6),(4,9),(5,8),(7,10)] generating graphics... => 4
[(1,3),(2,6),(4,9),(5,10),(7,8)] generating graphics... => 1
[(1,3),(2,6),(4,10),(5,7),(8,9)] generating graphics... => 1
[(1,3),(2,6),(4,10),(5,8),(7,9)] generating graphics... => 1
[(1,3),(2,6),(4,10),(5,9),(7,8)] generating graphics... => 1
[(1,3),(2,7),(4,5),(6,10),(8,9)] generating graphics... => 1
[(1,3),(2,7),(4,5),(6,9),(8,10)] generating graphics... => 3
[(1,3),(2,7),(4,5),(6,8),(9,10)] generating graphics... => 2
[(1,3),(2,7),(4,6),(5,10),(8,9)] generating graphics... => 1
[(1,3),(2,7),(4,6),(5,9),(8,10)] generating graphics... => 3
[(1,3),(2,7),(4,6),(5,8),(9,10)] generating graphics... => 2
[(1,3),(2,7),(4,8),(5,6),(9,10)] generating graphics... => 2
[(1,3),(2,7),(4,8),(5,9),(6,10)] generating graphics... => 1
[(1,3),(2,7),(4,8),(5,10),(6,9)] generating graphics... => 1
[(1,3),(2,7),(4,9),(5,6),(8,10)] generating graphics... => 3
[(1,3),(2,7),(4,9),(5,8),(6,10)] generating graphics... => 1
[(1,3),(2,7),(4,9),(5,10),(6,8)] generating graphics... => 1
[(1,3),(2,7),(4,10),(5,6),(8,9)] generating graphics... => 1
[(1,3),(2,7),(4,10),(5,8),(6,9)] generating graphics... => 1
[(1,3),(2,7),(4,10),(5,9),(6,8)] generating graphics... => 1
[(1,3),(2,8),(4,5),(6,7),(9,10)] generating graphics... => 3
[(1,3),(2,8),(4,5),(6,9),(7,10)] generating graphics... => 4
[(1,3),(2,8),(4,5),(6,10),(7,9)] generating graphics... => 1
[(1,3),(2,8),(4,6),(5,7),(9,10)] generating graphics... => 3
[(1,3),(2,8),(4,6),(5,9),(7,10)] generating graphics... => 4
[(1,3),(2,8),(4,6),(5,10),(7,9)] generating graphics... => 1
[(1,3),(2,8),(4,7),(5,6),(9,10)] generating graphics... => 2
[(1,3),(2,8),(4,7),(5,9),(6,10)] generating graphics... => 1
[(1,3),(2,8),(4,7),(5,10),(6,9)] generating graphics... => 1
[(1,3),(2,8),(4,9),(5,10),(6,7)] generating graphics... => 1
[(1,3),(2,8),(4,9),(5,7),(6,10)] generating graphics... => 1
[(1,3),(2,8),(4,9),(5,6),(7,10)] generating graphics... => 4
[(1,3),(2,8),(4,10),(5,9),(6,7)] generating graphics... => 1
[(1,3),(2,8),(4,10),(5,7),(6,9)] generating graphics... => 1
[(1,3),(2,8),(4,10),(5,6),(7,9)] generating graphics... => 1
[(1,3),(2,9),(4,5),(6,7),(8,10)] generating graphics... => 2
[(1,3),(2,9),(4,5),(6,8),(7,10)] generating graphics... => 4
[(1,3),(2,9),(4,5),(6,10),(7,8)] generating graphics... => 1
[(1,3),(2,9),(4,6),(5,7),(8,10)] generating graphics... => 2
[(1,3),(2,9),(4,6),(5,8),(7,10)] generating graphics... => 4
[(1,3),(2,9),(4,6),(5,10),(7,8)] generating graphics... => 1
[(1,3),(2,9),(4,7),(5,6),(8,10)] generating graphics... => 3
[(1,3),(2,9),(4,7),(5,8),(6,10)] generating graphics... => 1
[(1,3),(2,9),(4,7),(5,10),(6,8)] generating graphics... => 1
[(1,3),(2,9),(4,8),(5,10),(6,7)] generating graphics... => 1
[(1,3),(2,9),(4,8),(5,7),(6,10)] generating graphics... => 1
[(1,3),(2,9),(4,8),(5,6),(7,10)] generating graphics... => 4
[(1,3),(2,9),(4,10),(5,8),(6,7)] generating graphics... => 1
[(1,3),(2,9),(4,10),(5,7),(6,8)] generating graphics... => 1
[(1,3),(2,9),(4,10),(5,6),(7,8)] generating graphics... => 1
[(1,3),(2,10),(4,5),(6,7),(8,9)] generating graphics... => 1
[(1,3),(2,10),(4,5),(6,8),(7,9)] generating graphics... => 1
[(1,3),(2,10),(4,5),(6,9),(7,8)] generating graphics... => 1
[(1,3),(2,10),(4,6),(5,7),(8,9)] generating graphics... => 1
[(1,3),(2,10),(4,6),(5,8),(7,9)] generating graphics... => 1
[(1,3),(2,10),(4,6),(5,9),(7,8)] generating graphics... => 1
[(1,3),(2,10),(4,7),(5,6),(8,9)] generating graphics... => 1
[(1,3),(2,10),(4,7),(5,8),(6,9)] generating graphics... => 1
[(1,3),(2,10),(4,7),(5,9),(6,8)] generating graphics... => 1
[(1,3),(2,10),(4,8),(5,9),(6,7)] generating graphics... => 1
[(1,3),(2,10),(4,8),(5,7),(6,9)] generating graphics... => 1
[(1,3),(2,10),(4,8),(5,6),(7,9)] generating graphics... => 1
[(1,3),(2,10),(4,9),(5,8),(6,7)] generating graphics... => 1
[(1,3),(2,10),(4,9),(5,7),(6,8)] generating graphics... => 1
[(1,3),(2,10),(4,9),(5,6),(7,8)] generating graphics... => 1
[(1,4),(2,3),(5,6),(7,10),(8,9)] generating graphics... => 4
[(1,4),(2,3),(5,6),(7,9),(8,10)] generating graphics... => 2
[(1,4),(2,3),(5,6),(7,8),(9,10)] generating graphics... => 2
[(1,4),(2,3),(5,7),(6,10),(8,9)] generating graphics... => 1
[(1,4),(2,3),(5,7),(6,9),(8,10)] generating graphics... => 2
[(1,4),(2,3),(5,7),(6,8),(9,10)] generating graphics... => 3
[(1,4),(2,3),(5,8),(6,7),(9,10)] generating graphics... => 3
[(1,4),(2,3),(5,8),(6,9),(7,10)] generating graphics... => 4
[(1,4),(2,3),(5,8),(6,10),(7,9)] generating graphics... => 1
[(1,4),(2,3),(5,9),(6,7),(8,10)] generating graphics... => 2
[(1,4),(2,3),(5,9),(6,8),(7,10)] generating graphics... => 4
[(1,4),(2,3),(5,9),(6,10),(7,8)] generating graphics... => 1
[(1,4),(2,3),(5,10),(6,7),(8,9)] generating graphics... => 1
[(1,4),(2,3),(5,10),(6,8),(7,9)] generating graphics... => 1
[(1,4),(2,3),(5,10),(6,9),(7,8)] generating graphics... => 1
[(1,4),(2,5),(3,6),(7,10),(8,9)] generating graphics... => 4
[(1,4),(2,5),(3,6),(7,9),(8,10)] generating graphics... => 2
[(1,4),(2,5),(3,6),(7,8),(9,10)] generating graphics... => 2
[(1,4),(2,5),(3,7),(6,10),(8,9)] generating graphics... => 1
[(1,4),(2,5),(3,7),(6,9),(8,10)] generating graphics... => 2
[(1,4),(2,5),(3,7),(6,8),(9,10)] generating graphics... => 3
[(1,4),(2,5),(3,8),(6,7),(9,10)] generating graphics... => 3
[(1,4),(2,5),(3,8),(6,9),(7,10)] generating graphics... => 4
[(1,4),(2,5),(3,8),(6,10),(7,9)] generating graphics... => 1
[(1,4),(2,5),(3,9),(6,7),(8,10)] generating graphics... => 2
[(1,4),(2,5),(3,9),(6,8),(7,10)] generating graphics... => 4
[(1,4),(2,5),(3,9),(6,10),(7,8)] generating graphics... => 1
[(1,4),(2,5),(3,10),(6,7),(8,9)] generating graphics... => 1
[(1,4),(2,5),(3,10),(6,8),(7,9)] generating graphics... => 1
[(1,4),(2,5),(3,10),(6,9),(7,8)] generating graphics... => 1
[(1,4),(2,6),(3,5),(7,10),(8,9)] generating graphics... => 4
[(1,4),(2,6),(3,5),(7,9),(8,10)] generating graphics... => 2
[(1,4),(2,6),(3,5),(7,8),(9,10)] generating graphics... => 2
[(1,4),(2,6),(3,7),(5,10),(8,9)] generating graphics... => 1
[(1,4),(2,6),(3,7),(5,9),(8,10)] generating graphics... => 2
[(1,4),(2,6),(3,7),(5,8),(9,10)] generating graphics... => 3
[(1,4),(2,6),(3,8),(5,7),(9,10)] generating graphics... => 3
[(1,4),(2,6),(3,8),(5,9),(7,10)] generating graphics... => 4
[(1,4),(2,6),(3,8),(5,10),(7,9)] generating graphics... => 1
[(1,4),(2,6),(3,9),(5,7),(8,10)] generating graphics... => 2
[(1,4),(2,6),(3,9),(5,8),(7,10)] generating graphics... => 4
[(1,4),(2,6),(3,9),(5,10),(7,8)] generating graphics... => 1
[(1,4),(2,6),(3,10),(5,7),(8,9)] generating graphics... => 1
[(1,4),(2,6),(3,10),(5,8),(7,9)] generating graphics... => 1
[(1,4),(2,6),(3,10),(5,9),(7,8)] generating graphics... => 1
[(1,4),(2,7),(3,5),(6,10),(8,9)] generating graphics... => 1
[(1,4),(2,7),(3,5),(6,9),(8,10)] generating graphics... => 3
[(1,4),(2,7),(3,5),(6,8),(9,10)] generating graphics... => 2
[(1,4),(2,7),(3,6),(5,10),(8,9)] generating graphics... => 1
[(1,4),(2,7),(3,6),(5,9),(8,10)] generating graphics... => 3
[(1,4),(2,7),(3,6),(5,8),(9,10)] generating graphics... => 2
[(1,4),(2,7),(3,8),(5,6),(9,10)] generating graphics... => 2
[(1,4),(2,7),(3,8),(5,9),(6,10)] generating graphics... => 1
[(1,4),(2,7),(3,8),(5,10),(6,9)] generating graphics... => 1
[(1,4),(2,7),(3,9),(5,6),(8,10)] generating graphics... => 3
[(1,4),(2,7),(3,9),(5,8),(6,10)] generating graphics... => 1
[(1,4),(2,7),(3,9),(5,10),(6,8)] generating graphics... => 1
[(1,4),(2,7),(3,10),(5,6),(8,9)] generating graphics... => 1
[(1,4),(2,7),(3,10),(5,8),(6,9)] generating graphics... => 1
[(1,4),(2,7),(3,10),(5,9),(6,8)] generating graphics... => 1
[(1,4),(2,8),(3,5),(6,7),(9,10)] generating graphics... => 3
[(1,4),(2,8),(3,5),(6,9),(7,10)] generating graphics... => 4
[(1,4),(2,8),(3,5),(6,10),(7,9)] generating graphics... => 1
[(1,4),(2,8),(3,6),(5,7),(9,10)] generating graphics... => 3
[(1,4),(2,8),(3,6),(5,9),(7,10)] generating graphics... => 4
[(1,4),(2,8),(3,6),(5,10),(7,9)] generating graphics... => 1
[(1,4),(2,8),(3,7),(5,6),(9,10)] generating graphics... => 2
[(1,4),(2,8),(3,7),(5,9),(6,10)] generating graphics... => 1
[(1,4),(2,8),(3,7),(5,10),(6,9)] generating graphics... => 1
[(1,4),(2,8),(3,9),(5,10),(6,7)] generating graphics... => 1
[(1,4),(2,8),(3,9),(5,7),(6,10)] generating graphics... => 1
[(1,4),(2,8),(3,9),(5,6),(7,10)] generating graphics... => 4
[(1,4),(2,8),(3,10),(5,9),(6,7)] generating graphics... => 1
[(1,4),(2,8),(3,10),(5,7),(6,9)] generating graphics... => 1
[(1,4),(2,8),(3,10),(5,6),(7,9)] generating graphics... => 1
[(1,4),(2,9),(3,5),(6,7),(8,10)] generating graphics... => 2
[(1,4),(2,9),(3,5),(6,8),(7,10)] generating graphics... => 4
[(1,4),(2,9),(3,5),(6,10),(7,8)] generating graphics... => 1
[(1,4),(2,9),(3,6),(5,7),(8,10)] generating graphics... => 2
[(1,4),(2,9),(3,6),(5,8),(7,10)] generating graphics... => 4
[(1,4),(2,9),(3,6),(5,10),(7,8)] generating graphics... => 1
[(1,4),(2,9),(3,7),(5,6),(8,10)] generating graphics... => 3
[(1,4),(2,9),(3,7),(5,8),(6,10)] generating graphics... => 1
[(1,4),(2,9),(3,7),(5,10),(6,8)] generating graphics... => 1
[(1,4),(2,9),(3,8),(5,10),(6,7)] generating graphics... => 1
[(1,4),(2,9),(3,8),(5,7),(6,10)] generating graphics... => 1
[(1,4),(2,9),(3,8),(5,6),(7,10)] generating graphics... => 4
[(1,4),(2,9),(3,10),(5,8),(6,7)] generating graphics... => 1
[(1,4),(2,9),(3,10),(5,7),(6,8)] generating graphics... => 1
[(1,4),(2,9),(3,10),(5,6),(7,8)] generating graphics... => 1
[(1,4),(2,10),(3,5),(6,7),(8,9)] generating graphics... => 1
[(1,4),(2,10),(3,5),(6,8),(7,9)] generating graphics... => 1
[(1,4),(2,10),(3,5),(6,9),(7,8)] generating graphics... => 1
[(1,4),(2,10),(3,6),(5,7),(8,9)] generating graphics... => 1
[(1,4),(2,10),(3,6),(5,8),(7,9)] generating graphics... => 1
[(1,4),(2,10),(3,6),(5,9),(7,8)] generating graphics... => 1
[(1,4),(2,10),(3,7),(5,6),(8,9)] generating graphics... => 1
[(1,4),(2,10),(3,7),(5,8),(6,9)] generating graphics... => 1
[(1,4),(2,10),(3,7),(5,9),(6,8)] generating graphics... => 1
[(1,4),(2,10),(3,8),(5,9),(6,7)] generating graphics... => 1
[(1,4),(2,10),(3,8),(5,7),(6,9)] generating graphics... => 1
[(1,4),(2,10),(3,8),(5,6),(7,9)] generating graphics... => 1
[(1,4),(2,10),(3,9),(5,8),(6,7)] generating graphics... => 1
[(1,4),(2,10),(3,9),(5,7),(6,8)] generating graphics... => 1
[(1,4),(2,10),(3,9),(5,6),(7,8)] generating graphics... => 1
[(1,5),(2,3),(4,6),(7,10),(8,9)] generating graphics... => 4
[(1,5),(2,3),(4,6),(7,9),(8,10)] generating graphics... => 2
[(1,5),(2,3),(4,6),(7,8),(9,10)] generating graphics... => 2
[(1,5),(2,3),(4,7),(6,10),(8,9)] generating graphics... => 1
[(1,5),(2,3),(4,7),(6,9),(8,10)] generating graphics... => 2
[(1,5),(2,3),(4,7),(6,8),(9,10)] generating graphics... => 3
[(1,5),(2,3),(4,8),(6,7),(9,10)] generating graphics... => 3
[(1,5),(2,3),(4,8),(6,9),(7,10)] generating graphics... => 4
[(1,5),(2,3),(4,8),(6,10),(7,9)] generating graphics... => 1
[(1,5),(2,3),(4,9),(6,7),(8,10)] generating graphics... => 2
[(1,5),(2,3),(4,9),(6,8),(7,10)] generating graphics... => 4
[(1,5),(2,3),(4,9),(6,10),(7,8)] generating graphics... => 1
[(1,5),(2,3),(4,10),(6,7),(8,9)] generating graphics... => 1
[(1,5),(2,3),(4,10),(6,8),(7,9)] generating graphics... => 1
[(1,5),(2,3),(4,10),(6,9),(7,8)] generating graphics... => 1
[(1,5),(2,4),(3,6),(7,10),(8,9)] generating graphics... => 4
[(1,5),(2,4),(3,6),(7,9),(8,10)] generating graphics... => 2
[(1,5),(2,4),(3,6),(7,8),(9,10)] generating graphics... => 2
[(1,5),(2,4),(3,7),(6,10),(8,9)] generating graphics... => 1
[(1,5),(2,4),(3,7),(6,9),(8,10)] generating graphics... => 2
[(1,5),(2,4),(3,7),(6,8),(9,10)] generating graphics... => 3
[(1,5),(2,4),(3,8),(6,7),(9,10)] generating graphics... => 3
[(1,5),(2,4),(3,8),(6,9),(7,10)] generating graphics... => 4
[(1,5),(2,4),(3,8),(6,10),(7,9)] generating graphics... => 1
[(1,5),(2,4),(3,9),(6,7),(8,10)] generating graphics... => 2
[(1,5),(2,4),(3,9),(6,8),(7,10)] generating graphics... => 4
[(1,5),(2,4),(3,9),(6,10),(7,8)] generating graphics... => 1
[(1,5),(2,4),(3,10),(6,7),(8,9)] generating graphics... => 1
[(1,5),(2,4),(3,10),(6,8),(7,9)] generating graphics... => 1
[(1,5),(2,4),(3,10),(6,9),(7,8)] generating graphics... => 1
[(1,5),(2,6),(3,4),(7,10),(8,9)] generating graphics... => 4
[(1,5),(2,6),(3,4),(7,9),(8,10)] generating graphics... => 2
[(1,5),(2,6),(3,4),(7,8),(9,10)] generating graphics... => 2
[(1,5),(2,6),(3,7),(4,10),(8,9)] generating graphics... => 1
[(1,5),(2,6),(3,7),(4,9),(8,10)] generating graphics... => 2
[(1,5),(2,6),(3,7),(4,8),(9,10)] generating graphics... => 3
[(1,5),(2,6),(3,8),(4,7),(9,10)] generating graphics... => 3
[(1,5),(2,6),(3,8),(4,9),(7,10)] generating graphics... => 4
[(1,5),(2,6),(3,8),(4,10),(7,9)] generating graphics... => 1
[(1,5),(2,6),(3,9),(4,7),(8,10)] generating graphics... => 2
[(1,5),(2,6),(3,9),(4,8),(7,10)] generating graphics... => 4
[(1,5),(2,6),(3,9),(4,10),(7,8)] generating graphics... => 1
[(1,5),(2,6),(3,10),(4,7),(8,9)] generating graphics... => 1
[(1,5),(2,6),(3,10),(4,8),(7,9)] generating graphics... => 1
[(1,5),(2,6),(3,10),(4,9),(7,8)] generating graphics... => 1
[(1,5),(2,7),(3,4),(6,10),(8,9)] generating graphics... => 1
[(1,5),(2,7),(3,4),(6,9),(8,10)] generating graphics... => 3
[(1,5),(2,7),(3,4),(6,8),(9,10)] generating graphics... => 2
[(1,5),(2,7),(3,6),(4,10),(8,9)] generating graphics... => 1
[(1,5),(2,7),(3,6),(4,9),(8,10)] generating graphics... => 3
[(1,5),(2,7),(3,6),(4,8),(9,10)] generating graphics... => 2
[(1,5),(2,7),(3,8),(4,6),(9,10)] generating graphics... => 2
[(1,5),(2,7),(3,8),(4,9),(6,10)] generating graphics... => 1
[(1,5),(2,7),(3,8),(4,10),(6,9)] generating graphics... => 1
[(1,5),(2,7),(3,9),(4,6),(8,10)] generating graphics... => 3
[(1,5),(2,7),(3,9),(4,8),(6,10)] generating graphics... => 1
[(1,5),(2,7),(3,9),(4,10),(6,8)] generating graphics... => 1
[(1,5),(2,7),(3,10),(4,6),(8,9)] generating graphics... => 1
[(1,5),(2,7),(3,10),(4,8),(6,9)] generating graphics... => 1
[(1,5),(2,7),(3,10),(4,9),(6,8)] generating graphics... => 1
[(1,5),(2,8),(3,4),(6,7),(9,10)] generating graphics... => 3
[(1,5),(2,8),(3,4),(6,9),(7,10)] generating graphics... => 4
[(1,5),(2,8),(3,4),(6,10),(7,9)] generating graphics... => 1
[(1,5),(2,8),(3,6),(4,7),(9,10)] generating graphics... => 3
[(1,5),(2,8),(3,6),(4,9),(7,10)] generating graphics... => 4
[(1,5),(2,8),(3,6),(4,10),(7,9)] generating graphics... => 1
[(1,5),(2,8),(3,7),(4,6),(9,10)] generating graphics... => 2
[(1,5),(2,8),(3,7),(4,9),(6,10)] generating graphics... => 1
[(1,5),(2,8),(3,7),(4,10),(6,9)] generating graphics... => 1
[(1,5),(2,8),(3,9),(4,10),(6,7)] generating graphics... => 1
[(1,5),(2,8),(3,9),(4,7),(6,10)] generating graphics... => 1
[(1,5),(2,8),(3,9),(4,6),(7,10)] generating graphics... => 4
[(1,5),(2,8),(3,10),(4,9),(6,7)] generating graphics... => 1
[(1,5),(2,8),(3,10),(4,7),(6,9)] generating graphics... => 1
[(1,5),(2,8),(3,10),(4,6),(7,9)] generating graphics... => 1
[(1,5),(2,9),(3,4),(6,7),(8,10)] generating graphics... => 2
[(1,5),(2,9),(3,4),(6,8),(7,10)] generating graphics... => 4
[(1,5),(2,9),(3,4),(6,10),(7,8)] generating graphics... => 1
[(1,5),(2,9),(3,6),(4,7),(8,10)] generating graphics... => 2
[(1,5),(2,9),(3,6),(4,8),(7,10)] generating graphics... => 4
[(1,5),(2,9),(3,6),(4,10),(7,8)] generating graphics... => 1
[(1,5),(2,9),(3,7),(4,6),(8,10)] generating graphics... => 3
[(1,5),(2,9),(3,7),(4,8),(6,10)] generating graphics... => 1
[(1,5),(2,9),(3,7),(4,10),(6,8)] generating graphics... => 1
[(1,5),(2,9),(3,8),(4,10),(6,7)] generating graphics... => 1
[(1,5),(2,9),(3,8),(4,7),(6,10)] generating graphics... => 1
[(1,5),(2,9),(3,8),(4,6),(7,10)] generating graphics... => 4
[(1,5),(2,9),(3,10),(4,8),(6,7)] generating graphics... => 1
[(1,5),(2,9),(3,10),(4,7),(6,8)] generating graphics... => 1
[(1,5),(2,9),(3,10),(4,6),(7,8)] generating graphics... => 1
[(1,5),(2,10),(3,4),(6,7),(8,9)] generating graphics... => 1
[(1,5),(2,10),(3,4),(6,8),(7,9)] generating graphics... => 1
[(1,5),(2,10),(3,4),(6,9),(7,8)] generating graphics... => 1
[(1,5),(2,10),(3,6),(4,7),(8,9)] generating graphics... => 1
[(1,5),(2,10),(3,6),(4,8),(7,9)] generating graphics... => 1
[(1,5),(2,10),(3,6),(4,9),(7,8)] generating graphics... => 1
[(1,5),(2,10),(3,7),(4,6),(8,9)] generating graphics... => 1
[(1,5),(2,10),(3,7),(4,8),(6,9)] generating graphics... => 1
[(1,5),(2,10),(3,7),(4,9),(6,8)] generating graphics... => 1
[(1,5),(2,10),(3,8),(4,9),(6,7)] generating graphics... => 1
[(1,5),(2,10),(3,8),(4,7),(6,9)] generating graphics... => 1
[(1,5),(2,10),(3,8),(4,6),(7,9)] generating graphics... => 1
[(1,5),(2,10),(3,9),(4,8),(6,7)] generating graphics... => 1
[(1,5),(2,10),(3,9),(4,7),(6,8)] generating graphics... => 1
[(1,5),(2,10),(3,9),(4,6),(7,8)] generating graphics... => 1
[(1,6),(2,3),(4,5),(7,10),(8,9)] generating graphics... => 4
[(1,6),(2,3),(4,5),(7,9),(8,10)] generating graphics... => 2
[(1,6),(2,3),(4,5),(7,8),(9,10)] generating graphics... => 2
[(1,6),(2,3),(4,7),(5,10),(8,9)] generating graphics... => 1
[(1,6),(2,3),(4,7),(5,9),(8,10)] generating graphics... => 2
[(1,6),(2,3),(4,7),(5,8),(9,10)] generating graphics... => 3
[(1,6),(2,3),(4,8),(5,7),(9,10)] generating graphics... => 3
[(1,6),(2,3),(4,8),(5,9),(7,10)] generating graphics... => 4
[(1,6),(2,3),(4,8),(5,10),(7,9)] generating graphics... => 1
[(1,6),(2,3),(4,9),(5,7),(8,10)] generating graphics... => 2
[(1,6),(2,3),(4,9),(5,8),(7,10)] generating graphics... => 4
[(1,6),(2,3),(4,9),(5,10),(7,8)] generating graphics... => 1
[(1,6),(2,3),(4,10),(5,7),(8,9)] generating graphics... => 1
[(1,6),(2,3),(4,10),(5,8),(7,9)] generating graphics... => 1
[(1,6),(2,3),(4,10),(5,9),(7,8)] generating graphics... => 1
[(1,6),(2,4),(3,5),(7,10),(8,9)] generating graphics... => 4
[(1,6),(2,4),(3,5),(7,9),(8,10)] generating graphics... => 2
[(1,6),(2,4),(3,5),(7,8),(9,10)] generating graphics... => 2
[(1,6),(2,4),(3,7),(5,10),(8,9)] generating graphics... => 1
[(1,6),(2,4),(3,7),(5,9),(8,10)] generating graphics... => 2
[(1,6),(2,4),(3,7),(5,8),(9,10)] generating graphics... => 3
[(1,6),(2,4),(3,8),(5,7),(9,10)] generating graphics... => 3
[(1,6),(2,4),(3,8),(5,9),(7,10)] generating graphics... => 4
[(1,6),(2,4),(3,8),(5,10),(7,9)] generating graphics... => 1
[(1,6),(2,4),(3,9),(5,7),(8,10)] generating graphics... => 2
[(1,6),(2,4),(3,9),(5,8),(7,10)] generating graphics... => 4
[(1,6),(2,4),(3,9),(5,10),(7,8)] generating graphics... => 1
[(1,6),(2,4),(3,10),(5,7),(8,9)] generating graphics... => 1
[(1,6),(2,4),(3,10),(5,8),(7,9)] generating graphics... => 1
[(1,6),(2,4),(3,10),(5,9),(7,8)] generating graphics... => 1
[(1,6),(2,5),(3,4),(7,10),(8,9)] generating graphics... => 4
[(1,6),(2,5),(3,4),(7,9),(8,10)] generating graphics... => 2
[(1,6),(2,5),(3,4),(7,8),(9,10)] generating graphics... => 2
[(1,6),(2,5),(3,7),(4,10),(8,9)] generating graphics... => 1
[(1,6),(2,5),(3,7),(4,9),(8,10)] generating graphics... => 2
[(1,6),(2,5),(3,7),(4,8),(9,10)] generating graphics... => 3
[(1,6),(2,5),(3,8),(4,7),(9,10)] generating graphics... => 3
[(1,6),(2,5),(3,8),(4,9),(7,10)] generating graphics... => 4
[(1,6),(2,5),(3,8),(4,10),(7,9)] generating graphics... => 1
[(1,6),(2,5),(3,9),(4,7),(8,10)] generating graphics... => 2
[(1,6),(2,5),(3,9),(4,8),(7,10)] generating graphics... => 4
[(1,6),(2,5),(3,9),(4,10),(7,8)] generating graphics... => 1
[(1,6),(2,5),(3,10),(4,7),(8,9)] generating graphics... => 1
[(1,6),(2,5),(3,10),(4,8),(7,9)] generating graphics... => 1
[(1,6),(2,5),(3,10),(4,9),(7,8)] generating graphics... => 1
[(1,6),(2,7),(3,4),(5,10),(8,9)] generating graphics... => 1
[(1,6),(2,7),(3,4),(5,9),(8,10)] generating graphics... => 3
[(1,6),(2,7),(3,4),(5,8),(9,10)] generating graphics... => 2
[(1,6),(2,7),(3,5),(4,10),(8,9)] generating graphics... => 1
[(1,6),(2,7),(3,5),(4,9),(8,10)] generating graphics... => 3
[(1,6),(2,7),(3,5),(4,8),(9,10)] generating graphics... => 2
[(1,6),(2,7),(3,8),(4,5),(9,10)] generating graphics... => 2
[(1,6),(2,7),(3,8),(4,9),(5,10)] generating graphics... => 1
[(1,6),(2,7),(3,8),(4,10),(5,9)] generating graphics... => 1
[(1,6),(2,7),(3,9),(4,5),(8,10)] generating graphics... => 3
[(1,6),(2,7),(3,9),(4,8),(5,10)] generating graphics... => 1
[(1,6),(2,7),(3,9),(4,10),(5,8)] generating graphics... => 1
[(1,6),(2,7),(3,10),(4,5),(8,9)] generating graphics... => 1
[(1,6),(2,7),(3,10),(4,8),(5,9)] generating graphics... => 1
[(1,6),(2,7),(3,10),(4,9),(5,8)] generating graphics... => 1
[(1,6),(2,8),(3,4),(5,7),(9,10)] generating graphics... => 3
[(1,6),(2,8),(3,4),(5,9),(7,10)] generating graphics... => 4
[(1,6),(2,8),(3,4),(5,10),(7,9)] generating graphics... => 1
[(1,6),(2,8),(3,5),(4,7),(9,10)] generating graphics... => 3
[(1,6),(2,8),(3,5),(4,9),(7,10)] generating graphics... => 4
[(1,6),(2,8),(3,5),(4,10),(7,9)] generating graphics... => 1
[(1,6),(2,8),(3,7),(4,5),(9,10)] generating graphics... => 2
[(1,6),(2,8),(3,7),(4,9),(5,10)] generating graphics... => 1
[(1,6),(2,8),(3,7),(4,10),(5,9)] generating graphics... => 1
[(1,6),(2,8),(3,9),(4,10),(5,7)] generating graphics... => 1
[(1,6),(2,8),(3,9),(4,7),(5,10)] generating graphics... => 1
[(1,6),(2,8),(3,9),(4,5),(7,10)] generating graphics... => 4
[(1,6),(2,8),(3,10),(4,9),(5,7)] generating graphics... => 1
[(1,6),(2,8),(3,10),(4,7),(5,9)] generating graphics... => 1
[(1,6),(2,8),(3,10),(4,5),(7,9)] generating graphics... => 1
[(1,6),(2,9),(3,4),(5,7),(8,10)] generating graphics... => 2
[(1,6),(2,9),(3,4),(5,8),(7,10)] generating graphics... => 4
[(1,6),(2,9),(3,4),(5,10),(7,8)] generating graphics... => 1
[(1,6),(2,9),(3,5),(4,7),(8,10)] generating graphics... => 2
[(1,6),(2,9),(3,5),(4,8),(7,10)] generating graphics... => 4
[(1,6),(2,9),(3,5),(4,10),(7,8)] generating graphics... => 1
[(1,6),(2,9),(3,7),(4,5),(8,10)] generating graphics... => 3
[(1,6),(2,9),(3,7),(4,8),(5,10)] generating graphics... => 1
[(1,6),(2,9),(3,7),(4,10),(5,8)] generating graphics... => 1
[(1,6),(2,9),(3,8),(4,10),(5,7)] generating graphics... => 1
[(1,6),(2,9),(3,8),(4,7),(5,10)] generating graphics... => 1
[(1,6),(2,9),(3,8),(4,5),(7,10)] generating graphics... => 4
[(1,6),(2,9),(3,10),(4,8),(5,7)] generating graphics... => 1
[(1,6),(2,9),(3,10),(4,7),(5,8)] generating graphics... => 1
[(1,6),(2,9),(3,10),(4,5),(7,8)] generating graphics... => 1
[(1,6),(2,10),(3,4),(5,7),(8,9)] generating graphics... => 1
[(1,6),(2,10),(3,4),(5,8),(7,9)] generating graphics... => 1
[(1,6),(2,10),(3,4),(5,9),(7,8)] generating graphics... => 1
[(1,6),(2,10),(3,5),(4,7),(8,9)] generating graphics... => 1
[(1,6),(2,10),(3,5),(4,8),(7,9)] generating graphics... => 1
[(1,6),(2,10),(3,5),(4,9),(7,8)] generating graphics... => 1
[(1,6),(2,10),(3,7),(4,5),(8,9)] generating graphics... => 1
[(1,6),(2,10),(3,7),(4,8),(5,9)] generating graphics... => 1
[(1,6),(2,10),(3,7),(4,9),(5,8)] generating graphics... => 1
[(1,6),(2,10),(3,8),(4,9),(5,7)] generating graphics... => 1
[(1,6),(2,10),(3,8),(4,7),(5,9)] generating graphics... => 1
[(1,6),(2,10),(3,8),(4,5),(7,9)] generating graphics... => 1
[(1,6),(2,10),(3,9),(4,8),(5,7)] generating graphics... => 1
[(1,6),(2,10),(3,9),(4,7),(5,8)] generating graphics... => 1
[(1,6),(2,10),(3,9),(4,5),(7,8)] generating graphics... => 1
[(1,7),(2,3),(4,5),(6,10),(8,9)] generating graphics... => 1
[(1,7),(2,3),(4,5),(6,9),(8,10)] generating graphics... => 3
[(1,7),(2,3),(4,5),(6,8),(9,10)] generating graphics... => 2
[(1,7),(2,3),(4,6),(5,10),(8,9)] generating graphics... => 1
[(1,7),(2,3),(4,6),(5,9),(8,10)] generating graphics... => 3
[(1,7),(2,3),(4,6),(5,8),(9,10)] generating graphics... => 2
[(1,7),(2,3),(4,8),(5,6),(9,10)] generating graphics... => 2
[(1,7),(2,3),(4,8),(5,9),(6,10)] generating graphics... => 1
[(1,7),(2,3),(4,8),(5,10),(6,9)] generating graphics... => 1
[(1,7),(2,3),(4,9),(5,6),(8,10)] generating graphics... => 3
[(1,7),(2,3),(4,9),(5,8),(6,10)] generating graphics... => 1
[(1,7),(2,3),(4,9),(5,10),(6,8)] generating graphics... => 1
[(1,7),(2,3),(4,10),(5,6),(8,9)] generating graphics... => 1
[(1,7),(2,3),(4,10),(5,8),(6,9)] generating graphics... => 1
[(1,7),(2,3),(4,10),(5,9),(6,8)] generating graphics... => 1
[(1,7),(2,4),(3,5),(6,10),(8,9)] generating graphics... => 1
[(1,7),(2,4),(3,5),(6,9),(8,10)] generating graphics... => 3
[(1,7),(2,4),(3,5),(6,8),(9,10)] generating graphics... => 2
[(1,7),(2,4),(3,6),(5,10),(8,9)] generating graphics... => 1
[(1,7),(2,4),(3,6),(5,9),(8,10)] generating graphics... => 3
[(1,7),(2,4),(3,6),(5,8),(9,10)] generating graphics... => 2
[(1,7),(2,4),(3,8),(5,6),(9,10)] generating graphics... => 2
[(1,7),(2,4),(3,8),(5,9),(6,10)] generating graphics... => 1
[(1,7),(2,4),(3,8),(5,10),(6,9)] generating graphics... => 1
[(1,7),(2,4),(3,9),(5,6),(8,10)] generating graphics... => 3
[(1,7),(2,4),(3,9),(5,8),(6,10)] generating graphics... => 1
[(1,7),(2,4),(3,9),(5,10),(6,8)] generating graphics... => 1
[(1,7),(2,4),(3,10),(5,6),(8,9)] generating graphics... => 1
[(1,7),(2,4),(3,10),(5,8),(6,9)] generating graphics... => 1
[(1,7),(2,4),(3,10),(5,9),(6,8)] generating graphics... => 1
[(1,7),(2,5),(3,4),(6,10),(8,9)] generating graphics... => 1
[(1,7),(2,5),(3,4),(6,9),(8,10)] generating graphics... => 3
[(1,7),(2,5),(3,4),(6,8),(9,10)] generating graphics... => 2
[(1,7),(2,5),(3,6),(4,10),(8,9)] generating graphics... => 1
[(1,7),(2,5),(3,6),(4,9),(8,10)] generating graphics... => 3
[(1,7),(2,5),(3,6),(4,8),(9,10)] generating graphics... => 2
[(1,7),(2,5),(3,8),(4,6),(9,10)] generating graphics... => 2
[(1,7),(2,5),(3,8),(4,9),(6,10)] generating graphics... => 1
[(1,7),(2,5),(3,8),(4,10),(6,9)] generating graphics... => 1
[(1,7),(2,5),(3,9),(4,6),(8,10)] generating graphics... => 3
[(1,7),(2,5),(3,9),(4,8),(6,10)] generating graphics... => 1
[(1,7),(2,5),(3,9),(4,10),(6,8)] generating graphics... => 1
[(1,7),(2,5),(3,10),(4,6),(8,9)] generating graphics... => 1
[(1,7),(2,5),(3,10),(4,8),(6,9)] generating graphics... => 1
[(1,7),(2,5),(3,10),(4,9),(6,8)] generating graphics... => 1
[(1,7),(2,6),(3,4),(5,10),(8,9)] generating graphics... => 1
[(1,7),(2,6),(3,4),(5,9),(8,10)] generating graphics... => 3
[(1,7),(2,6),(3,4),(5,8),(9,10)] generating graphics... => 2
[(1,7),(2,6),(3,5),(4,10),(8,9)] generating graphics... => 1
[(1,7),(2,6),(3,5),(4,9),(8,10)] generating graphics... => 3
[(1,7),(2,6),(3,5),(4,8),(9,10)] generating graphics... => 2
[(1,7),(2,6),(3,8),(4,5),(9,10)] generating graphics... => 2
[(1,7),(2,6),(3,8),(4,9),(5,10)] generating graphics... => 1
[(1,7),(2,6),(3,8),(4,10),(5,9)] generating graphics... => 1
[(1,7),(2,6),(3,9),(4,5),(8,10)] generating graphics... => 3
[(1,7),(2,6),(3,9),(4,8),(5,10)] generating graphics... => 1
[(1,7),(2,6),(3,9),(4,10),(5,8)] generating graphics... => 1
[(1,7),(2,6),(3,10),(4,5),(8,9)] generating graphics... => 1
[(1,7),(2,6),(3,10),(4,8),(5,9)] generating graphics... => 1
[(1,7),(2,6),(3,10),(4,9),(5,8)] generating graphics... => 1
[(1,7),(2,8),(3,4),(5,6),(9,10)] generating graphics... => 2
[(1,7),(2,8),(3,4),(5,9),(6,10)] generating graphics... => 1
[(1,7),(2,8),(3,4),(5,10),(6,9)] generating graphics... => 1
[(1,7),(2,8),(3,5),(4,6),(9,10)] generating graphics... => 2
[(1,7),(2,8),(3,5),(4,9),(6,10)] generating graphics... => 1
[(1,7),(2,8),(3,5),(4,10),(6,9)] generating graphics... => 1
[(1,7),(2,8),(3,6),(4,5),(9,10)] generating graphics... => 2
[(1,7),(2,8),(3,6),(4,9),(5,10)] generating graphics... => 1
[(1,7),(2,8),(3,6),(4,10),(5,9)] generating graphics... => 1
[(1,7),(2,8),(3,9),(4,10),(5,6)] generating graphics... => 1
[(1,7),(2,8),(3,9),(4,6),(5,10)] generating graphics... => 1
[(1,7),(2,8),(3,9),(4,5),(6,10)] generating graphics... => 1
[(1,7),(2,8),(3,10),(4,9),(5,6)] generating graphics... => 1
[(1,7),(2,8),(3,10),(4,6),(5,9)] generating graphics... => 1
[(1,7),(2,8),(3,10),(4,5),(6,9)] generating graphics... => 1
[(1,7),(2,9),(3,4),(5,6),(8,10)] generating graphics... => 3
[(1,7),(2,9),(3,4),(5,8),(6,10)] generating graphics... => 1
[(1,7),(2,9),(3,4),(5,10),(6,8)] generating graphics... => 1
[(1,7),(2,9),(3,5),(4,6),(8,10)] generating graphics... => 3
[(1,7),(2,9),(3,5),(4,8),(6,10)] generating graphics... => 1
[(1,7),(2,9),(3,5),(4,10),(6,8)] generating graphics... => 1
[(1,7),(2,9),(3,6),(4,5),(8,10)] generating graphics... => 3
[(1,7),(2,9),(3,6),(4,8),(5,10)] generating graphics... => 1
[(1,7),(2,9),(3,6),(4,10),(5,8)] generating graphics... => 1
[(1,7),(2,9),(3,8),(4,10),(5,6)] generating graphics... => 1
[(1,7),(2,9),(3,8),(4,6),(5,10)] generating graphics... => 1
[(1,7),(2,9),(3,8),(4,5),(6,10)] generating graphics... => 1
[(1,7),(2,9),(3,10),(4,8),(5,6)] generating graphics... => 1
[(1,7),(2,9),(3,10),(4,6),(5,8)] generating graphics... => 1
[(1,7),(2,9),(3,10),(4,5),(6,8)] generating graphics... => 1
[(1,7),(2,10),(3,4),(5,6),(8,9)] generating graphics... => 1
[(1,7),(2,10),(3,4),(5,8),(6,9)] generating graphics... => 1
[(1,7),(2,10),(3,4),(5,9),(6,8)] generating graphics... => 1
[(1,7),(2,10),(3,5),(4,6),(8,9)] generating graphics... => 1
[(1,7),(2,10),(3,5),(4,8),(6,9)] generating graphics... => 1
[(1,7),(2,10),(3,5),(4,9),(6,8)] generating graphics... => 1
[(1,7),(2,10),(3,6),(4,5),(8,9)] generating graphics... => 1
[(1,7),(2,10),(3,6),(4,8),(5,9)] generating graphics... => 1
[(1,7),(2,10),(3,6),(4,9),(5,8)] generating graphics... => 1
[(1,7),(2,10),(3,8),(4,9),(5,6)] generating graphics... => 1
[(1,7),(2,10),(3,8),(4,6),(5,9)] generating graphics... => 1
[(1,7),(2,10),(3,8),(4,5),(6,9)] generating graphics... => 1
[(1,7),(2,10),(3,9),(4,8),(5,6)] generating graphics... => 1
[(1,7),(2,10),(3,9),(4,6),(5,8)] generating graphics... => 1
[(1,7),(2,10),(3,9),(4,5),(6,8)] generating graphics... => 1
[(1,8),(2,3),(4,5),(6,7),(9,10)] generating graphics... => 3
[(1,8),(2,3),(4,5),(6,9),(7,10)] generating graphics... => 2
[(1,8),(2,3),(4,5),(6,10),(7,9)] generating graphics... => 1
[(1,8),(2,3),(4,6),(5,7),(9,10)] generating graphics... => 3
[(1,8),(2,3),(4,6),(5,9),(7,10)] generating graphics... => 2
[(1,8),(2,3),(4,6),(5,10),(7,9)] generating graphics... => 1
[(1,8),(2,3),(4,7),(5,6),(9,10)] generating graphics... => 2
[(1,8),(2,3),(4,7),(5,9),(6,10)] generating graphics... => 1
[(1,8),(2,3),(4,7),(5,10),(6,9)] generating graphics... => 1
[(1,8),(2,3),(4,9),(5,10),(6,7)] generating graphics... => 1
[(1,8),(2,3),(4,9),(5,7),(6,10)] generating graphics... => 1
[(1,8),(2,3),(4,9),(5,6),(7,10)] generating graphics... => 2
[(1,8),(2,3),(4,10),(5,9),(6,7)] generating graphics... => 1
[(1,8),(2,3),(4,10),(5,7),(6,9)] generating graphics... => 1
[(1,8),(2,3),(4,10),(5,6),(7,9)] generating graphics... => 1
[(1,8),(2,4),(3,5),(6,7),(9,10)] generating graphics... => 3
[(1,8),(2,4),(3,5),(6,9),(7,10)] generating graphics... => 2
[(1,8),(2,4),(3,5),(6,10),(7,9)] generating graphics... => 1
[(1,8),(2,4),(3,6),(5,7),(9,10)] generating graphics... => 3
[(1,8),(2,4),(3,6),(5,9),(7,10)] generating graphics... => 2
[(1,8),(2,4),(3,6),(5,10),(7,9)] generating graphics... => 1
[(1,8),(2,4),(3,7),(5,6),(9,10)] generating graphics... => 2
[(1,8),(2,4),(3,7),(5,9),(6,10)] generating graphics... => 1
[(1,8),(2,4),(3,7),(5,10),(6,9)] generating graphics... => 1
[(1,8),(2,4),(3,9),(5,10),(6,7)] generating graphics... => 1
[(1,8),(2,4),(3,9),(5,7),(6,10)] generating graphics... => 1
[(1,8),(2,4),(3,9),(5,6),(7,10)] generating graphics... => 2
[(1,8),(2,4),(3,10),(5,9),(6,7)] generating graphics... => 1
[(1,8),(2,4),(3,10),(5,7),(6,9)] generating graphics... => 1
[(1,8),(2,4),(3,10),(5,6),(7,9)] generating graphics... => 1
[(1,8),(2,5),(3,4),(6,7),(9,10)] generating graphics... => 3
[(1,8),(2,5),(3,4),(6,9),(7,10)] generating graphics... => 2
[(1,8),(2,5),(3,4),(6,10),(7,9)] generating graphics... => 1
[(1,8),(2,5),(3,6),(4,7),(9,10)] generating graphics... => 3
[(1,8),(2,5),(3,6),(4,9),(7,10)] generating graphics... => 2
[(1,8),(2,5),(3,6),(4,10),(7,9)] generating graphics... => 1
[(1,8),(2,5),(3,7),(4,6),(9,10)] generating graphics... => 2
[(1,8),(2,5),(3,7),(4,9),(6,10)] generating graphics... => 1
[(1,8),(2,5),(3,7),(4,10),(6,9)] generating graphics... => 1
[(1,8),(2,5),(3,9),(4,10),(6,7)] generating graphics... => 1
[(1,8),(2,5),(3,9),(4,7),(6,10)] generating graphics... => 1
[(1,8),(2,5),(3,9),(4,6),(7,10)] generating graphics... => 2
[(1,8),(2,5),(3,10),(4,9),(6,7)] generating graphics... => 1
[(1,8),(2,5),(3,10),(4,7),(6,9)] generating graphics... => 1
[(1,8),(2,5),(3,10),(4,6),(7,9)] generating graphics... => 1
[(1,8),(2,6),(3,4),(5,7),(9,10)] generating graphics... => 3
[(1,8),(2,6),(3,4),(5,9),(7,10)] generating graphics... => 2
[(1,8),(2,6),(3,4),(5,10),(7,9)] generating graphics... => 1
[(1,8),(2,6),(3,5),(4,7),(9,10)] generating graphics... => 3
[(1,8),(2,6),(3,5),(4,9),(7,10)] generating graphics... => 2
[(1,8),(2,6),(3,5),(4,10),(7,9)] generating graphics... => 1
[(1,8),(2,6),(3,7),(4,5),(9,10)] generating graphics... => 2
[(1,8),(2,6),(3,7),(4,9),(5,10)] generating graphics... => 1
[(1,8),(2,6),(3,7),(4,10),(5,9)] generating graphics... => 1
[(1,8),(2,6),(3,9),(4,10),(5,7)] generating graphics... => 1
[(1,8),(2,6),(3,9),(4,7),(5,10)] generating graphics... => 1
[(1,8),(2,6),(3,9),(4,5),(7,10)] generating graphics... => 2
[(1,8),(2,6),(3,10),(4,9),(5,7)] generating graphics... => 1
[(1,8),(2,6),(3,10),(4,7),(5,9)] generating graphics... => 1
[(1,8),(2,6),(3,10),(4,5),(7,9)] generating graphics... => 1
[(1,8),(2,7),(3,4),(5,6),(9,10)] generating graphics... => 2
[(1,8),(2,7),(3,4),(5,9),(6,10)] generating graphics... => 1
[(1,8),(2,7),(3,4),(5,10),(6,9)] generating graphics... => 1
[(1,8),(2,7),(3,5),(4,6),(9,10)] generating graphics... => 2
[(1,8),(2,7),(3,5),(4,9),(6,10)] generating graphics... => 1
[(1,8),(2,7),(3,5),(4,10),(6,9)] generating graphics... => 1
[(1,8),(2,7),(3,6),(4,5),(9,10)] generating graphics... => 2
[(1,8),(2,7),(3,6),(4,9),(5,10)] generating graphics... => 1
[(1,8),(2,7),(3,6),(4,10),(5,9)] generating graphics... => 1
[(1,8),(2,7),(3,9),(4,10),(5,6)] generating graphics... => 1
[(1,8),(2,7),(3,9),(4,6),(5,10)] generating graphics... => 1
[(1,8),(2,7),(3,9),(4,5),(6,10)] generating graphics... => 1
[(1,8),(2,7),(3,10),(4,9),(5,6)] generating graphics... => 1
[(1,8),(2,7),(3,10),(4,6),(5,9)] generating graphics... => 1
[(1,8),(2,7),(3,10),(4,5),(6,9)] generating graphics... => 1
[(1,8),(2,9),(3,4),(5,10),(6,7)] generating graphics... => 1
[(1,8),(2,9),(3,4),(5,7),(6,10)] generating graphics... => 1
[(1,8),(2,9),(3,4),(5,6),(7,10)] generating graphics... => 2
[(1,8),(2,9),(3,5),(4,10),(6,7)] generating graphics... => 1
[(1,8),(2,9),(3,5),(4,7),(6,10)] generating graphics... => 1
[(1,8),(2,9),(3,5),(4,6),(7,10)] generating graphics... => 2
[(1,8),(2,9),(3,6),(4,10),(5,7)] generating graphics... => 1
[(1,8),(2,9),(3,6),(4,7),(5,10)] generating graphics... => 1
[(1,8),(2,9),(3,6),(4,5),(7,10)] generating graphics... => 2
[(1,8),(2,9),(3,7),(4,10),(5,6)] generating graphics... => 1
[(1,8),(2,9),(3,7),(4,6),(5,10)] generating graphics... => 1
[(1,8),(2,9),(3,7),(4,5),(6,10)] generating graphics... => 1
[(1,8),(2,9),(3,10),(4,5),(6,7)] generating graphics... => 1
[(1,8),(2,9),(3,10),(4,6),(5,7)] generating graphics... => 1
[(1,8),(2,9),(3,10),(4,7),(5,6)] generating graphics... => 1
[(1,8),(2,10),(3,4),(5,9),(6,7)] generating graphics... => 1
[(1,8),(2,10),(3,4),(5,7),(6,9)] generating graphics... => 1
[(1,8),(2,10),(3,4),(5,6),(7,9)] generating graphics... => 1
[(1,8),(2,10),(3,5),(4,9),(6,7)] generating graphics... => 1
[(1,8),(2,10),(3,5),(4,7),(6,9)] generating graphics... => 1
[(1,8),(2,10),(3,5),(4,6),(7,9)] generating graphics... => 1
[(1,8),(2,10),(3,6),(4,9),(5,7)] generating graphics... => 1
[(1,8),(2,10),(3,6),(4,7),(5,9)] generating graphics... => 1
[(1,8),(2,10),(3,6),(4,5),(7,9)] generating graphics... => 1
[(1,8),(2,10),(3,7),(4,9),(5,6)] generating graphics... => 1
[(1,8),(2,10),(3,7),(4,6),(5,9)] generating graphics... => 1
[(1,8),(2,10),(3,7),(4,5),(6,9)] generating graphics... => 1
[(1,8),(2,10),(3,9),(4,5),(6,7)] generating graphics... => 1
[(1,8),(2,10),(3,9),(4,6),(5,7)] generating graphics... => 1
[(1,8),(2,10),(3,9),(4,7),(5,6)] generating graphics... => 1
[(1,9),(2,3),(4,5),(6,7),(8,10)] generating graphics... => 2
[(1,9),(2,3),(4,5),(6,8),(7,10)] generating graphics... => 2
[(1,9),(2,3),(4,5),(6,10),(7,8)] generating graphics... => 1
[(1,9),(2,3),(4,6),(5,7),(8,10)] generating graphics... => 2
[(1,9),(2,3),(4,6),(5,8),(7,10)] generating graphics... => 2
[(1,9),(2,3),(4,6),(5,10),(7,8)] generating graphics... => 1
[(1,9),(2,3),(4,7),(5,6),(8,10)] generating graphics... => 3
[(1,9),(2,3),(4,7),(5,8),(6,10)] generating graphics... => 1
[(1,9),(2,3),(4,7),(5,10),(6,8)] generating graphics... => 1
[(1,9),(2,3),(4,8),(5,10),(6,7)] generating graphics... => 1
[(1,9),(2,3),(4,8),(5,7),(6,10)] generating graphics... => 1
[(1,9),(2,3),(4,8),(5,6),(7,10)] generating graphics... => 2
[(1,9),(2,3),(4,10),(5,8),(6,7)] generating graphics... => 1
[(1,9),(2,3),(4,10),(5,7),(6,8)] generating graphics... => 1
[(1,9),(2,3),(4,10),(5,6),(7,8)] generating graphics... => 1
[(1,9),(2,4),(3,5),(6,7),(8,10)] generating graphics... => 2
[(1,9),(2,4),(3,5),(6,8),(7,10)] generating graphics... => 2
[(1,9),(2,4),(3,5),(6,10),(7,8)] generating graphics... => 1
[(1,9),(2,4),(3,6),(5,7),(8,10)] generating graphics... => 2
[(1,9),(2,4),(3,6),(5,8),(7,10)] generating graphics... => 2
[(1,9),(2,4),(3,6),(5,10),(7,8)] generating graphics... => 1
[(1,9),(2,4),(3,7),(5,6),(8,10)] generating graphics... => 3
[(1,9),(2,4),(3,7),(5,8),(6,10)] generating graphics... => 1
[(1,9),(2,4),(3,7),(5,10),(6,8)] generating graphics... => 1
[(1,9),(2,4),(3,8),(5,10),(6,7)] generating graphics... => 1
[(1,9),(2,4),(3,8),(5,7),(6,10)] generating graphics... => 1
[(1,9),(2,4),(3,8),(5,6),(7,10)] generating graphics... => 2
[(1,9),(2,4),(3,10),(5,8),(6,7)] generating graphics... => 1
[(1,9),(2,4),(3,10),(5,7),(6,8)] generating graphics... => 1
[(1,9),(2,4),(3,10),(5,6),(7,8)] generating graphics... => 1
[(1,9),(2,5),(3,4),(6,7),(8,10)] generating graphics... => 2
[(1,9),(2,5),(3,4),(6,8),(7,10)] generating graphics... => 2
[(1,9),(2,5),(3,4),(6,10),(7,8)] generating graphics... => 1
[(1,9),(2,5),(3,6),(4,7),(8,10)] generating graphics... => 2
[(1,9),(2,5),(3,6),(4,8),(7,10)] generating graphics... => 2
[(1,9),(2,5),(3,6),(4,10),(7,8)] generating graphics... => 1
[(1,9),(2,5),(3,7),(4,6),(8,10)] generating graphics... => 3
[(1,9),(2,5),(3,7),(4,8),(6,10)] generating graphics... => 1
[(1,9),(2,5),(3,7),(4,10),(6,8)] generating graphics... => 1
[(1,9),(2,5),(3,8),(4,10),(6,7)] generating graphics... => 1
[(1,9),(2,5),(3,8),(4,7),(6,10)] generating graphics... => 1
[(1,9),(2,5),(3,8),(4,6),(7,10)] generating graphics... => 2
[(1,9),(2,5),(3,10),(4,8),(6,7)] generating graphics... => 1
[(1,9),(2,5),(3,10),(4,7),(6,8)] generating graphics... => 1
[(1,9),(2,5),(3,10),(4,6),(7,8)] generating graphics... => 1
[(1,9),(2,6),(3,4),(5,7),(8,10)] generating graphics... => 2
[(1,9),(2,6),(3,4),(5,8),(7,10)] generating graphics... => 2
[(1,9),(2,6),(3,4),(5,10),(7,8)] generating graphics... => 1
[(1,9),(2,6),(3,5),(4,7),(8,10)] generating graphics... => 2
[(1,9),(2,6),(3,5),(4,8),(7,10)] generating graphics... => 2
[(1,9),(2,6),(3,5),(4,10),(7,8)] generating graphics... => 1
[(1,9),(2,6),(3,7),(4,5),(8,10)] generating graphics... => 3
[(1,9),(2,6),(3,7),(4,8),(5,10)] generating graphics... => 1
[(1,9),(2,6),(3,7),(4,10),(5,8)] generating graphics... => 1
[(1,9),(2,6),(3,8),(4,10),(5,7)] generating graphics... => 1
[(1,9),(2,6),(3,8),(4,7),(5,10)] generating graphics... => 1
[(1,9),(2,6),(3,8),(4,5),(7,10)] generating graphics... => 2
[(1,9),(2,6),(3,10),(4,8),(5,7)] generating graphics... => 1
[(1,9),(2,6),(3,10),(4,7),(5,8)] generating graphics... => 1
[(1,9),(2,6),(3,10),(4,5),(7,8)] generating graphics... => 1
[(1,9),(2,7),(3,4),(5,6),(8,10)] generating graphics... => 3
[(1,9),(2,7),(3,4),(5,8),(6,10)] generating graphics... => 1
[(1,9),(2,7),(3,4),(5,10),(6,8)] generating graphics... => 1
[(1,9),(2,7),(3,5),(4,6),(8,10)] generating graphics... => 3
[(1,9),(2,7),(3,5),(4,8),(6,10)] generating graphics... => 1
[(1,9),(2,7),(3,5),(4,10),(6,8)] generating graphics... => 1
[(1,9),(2,7),(3,6),(4,5),(8,10)] generating graphics... => 3
[(1,9),(2,7),(3,6),(4,8),(5,10)] generating graphics... => 1
[(1,9),(2,7),(3,6),(4,10),(5,8)] generating graphics... => 1
[(1,9),(2,7),(3,8),(4,10),(5,6)] generating graphics... => 1
[(1,9),(2,7),(3,8),(4,6),(5,10)] generating graphics... => 1
[(1,9),(2,7),(3,8),(4,5),(6,10)] generating graphics... => 1
[(1,9),(2,7),(3,10),(4,8),(5,6)] generating graphics... => 1
[(1,9),(2,7),(3,10),(4,6),(5,8)] generating graphics... => 1
[(1,9),(2,7),(3,10),(4,5),(6,8)] generating graphics... => 1
[(1,9),(2,8),(3,4),(5,10),(6,7)] generating graphics... => 1
[(1,9),(2,8),(3,4),(5,7),(6,10)] generating graphics... => 1
[(1,9),(2,8),(3,4),(5,6),(7,10)] generating graphics... => 2
[(1,9),(2,8),(3,5),(4,10),(6,7)] generating graphics... => 1
[(1,9),(2,8),(3,5),(4,7),(6,10)] generating graphics... => 1
[(1,9),(2,8),(3,5),(4,6),(7,10)] generating graphics... => 2
[(1,9),(2,8),(3,6),(4,10),(5,7)] generating graphics... => 1
[(1,9),(2,8),(3,6),(4,7),(5,10)] generating graphics... => 1
[(1,9),(2,8),(3,6),(4,5),(7,10)] generating graphics... => 2
[(1,9),(2,8),(3,7),(4,10),(5,6)] generating graphics... => 1
[(1,9),(2,8),(3,7),(4,6),(5,10)] generating graphics... => 1
[(1,9),(2,8),(3,7),(4,5),(6,10)] generating graphics... => 1
[(1,9),(2,8),(3,10),(4,5),(6,7)] generating graphics... => 1
[(1,9),(2,8),(3,10),(4,6),(5,7)] generating graphics... => 1
[(1,9),(2,8),(3,10),(4,7),(5,6)] generating graphics... => 1
[(1,9),(2,10),(3,4),(5,8),(6,7)] generating graphics... => 1
[(1,9),(2,10),(3,4),(5,7),(6,8)] generating graphics... => 1
[(1,9),(2,10),(3,4),(5,6),(7,8)] generating graphics... => 1
[(1,9),(2,10),(3,5),(4,8),(6,7)] generating graphics... => 1
[(1,9),(2,10),(3,5),(4,7),(6,8)] generating graphics... => 1
[(1,9),(2,10),(3,5),(4,6),(7,8)] generating graphics... => 1
[(1,9),(2,10),(3,6),(4,8),(5,7)] generating graphics... => 1
[(1,9),(2,10),(3,6),(4,7),(5,8)] generating graphics... => 1
[(1,9),(2,10),(3,6),(4,5),(7,8)] generating graphics... => 1
[(1,9),(2,10),(3,7),(4,8),(5,6)] generating graphics... => 1
[(1,9),(2,10),(3,7),(4,6),(5,8)] generating graphics... => 1
[(1,9),(2,10),(3,7),(4,5),(6,8)] generating graphics... => 1
[(1,9),(2,10),(3,8),(4,5),(6,7)] generating graphics... => 1
[(1,9),(2,10),(3,8),(4,6),(5,7)] generating graphics... => 1
[(1,9),(2,10),(3,8),(4,7),(5,6)] generating graphics... => 1
[(1,10),(2,3),(4,5),(6,7),(8,9)] generating graphics... => 5
[(1,10),(2,3),(4,5),(6,8),(7,9)] generating graphics... => 5
[(1,10),(2,3),(4,5),(6,9),(7,8)] generating graphics... => 5
[(1,10),(2,3),(4,6),(5,7),(8,9)] generating graphics... => 5
[(1,10),(2,3),(4,6),(5,8),(7,9)] generating graphics... => 5
[(1,10),(2,3),(4,6),(5,9),(7,8)] generating graphics... => 5
[(1,10),(2,3),(4,7),(5,6),(8,9)] generating graphics... => 5
[(1,10),(2,3),(4,7),(5,8),(6,9)] generating graphics... => 5
[(1,10),(2,3),(4,7),(5,9),(6,8)] generating graphics... => 5
[(1,10),(2,3),(4,8),(5,9),(6,7)] generating graphics... => 5
[(1,10),(2,3),(4,8),(5,7),(6,9)] generating graphics... => 5
[(1,10),(2,3),(4,8),(5,6),(7,9)] generating graphics... => 5
[(1,10),(2,3),(4,9),(5,8),(6,7)] generating graphics... => 5
[(1,10),(2,3),(4,9),(5,7),(6,8)] generating graphics... => 5
[(1,10),(2,3),(4,9),(5,6),(7,8)] generating graphics... => 5
[(1,10),(2,4),(3,5),(6,7),(8,9)] generating graphics... => 5
[(1,10),(2,4),(3,5),(6,8),(7,9)] generating graphics... => 5
[(1,10),(2,4),(3,5),(6,9),(7,8)] generating graphics... => 5
[(1,10),(2,4),(3,6),(5,7),(8,9)] generating graphics... => 5
[(1,10),(2,4),(3,6),(5,8),(7,9)] generating graphics... => 5
[(1,10),(2,4),(3,6),(5,9),(7,8)] generating graphics... => 5
[(1,10),(2,4),(3,7),(5,6),(8,9)] generating graphics... => 5
[(1,10),(2,4),(3,7),(5,8),(6,9)] generating graphics... => 5
[(1,10),(2,4),(3,7),(5,9),(6,8)] generating graphics... => 5
[(1,10),(2,4),(3,8),(5,9),(6,7)] generating graphics... => 5
[(1,10),(2,4),(3,8),(5,7),(6,9)] generating graphics... => 5
[(1,10),(2,4),(3,8),(5,6),(7,9)] generating graphics... => 5
[(1,10),(2,4),(3,9),(5,8),(6,7)] generating graphics... => 5
[(1,10),(2,4),(3,9),(5,7),(6,8)] generating graphics... => 5
[(1,10),(2,4),(3,9),(5,6),(7,8)] generating graphics... => 5
[(1,10),(2,5),(3,4),(6,7),(8,9)] generating graphics... => 5
[(1,10),(2,5),(3,4),(6,8),(7,9)] generating graphics... => 5
[(1,10),(2,5),(3,4),(6,9),(7,8)] generating graphics... => 5
[(1,10),(2,5),(3,6),(4,7),(8,9)] generating graphics... => 5
[(1,10),(2,5),(3,6),(4,8),(7,9)] generating graphics... => 5
[(1,10),(2,5),(3,6),(4,9),(7,8)] generating graphics... => 5
[(1,10),(2,5),(3,7),(4,6),(8,9)] generating graphics... => 5
[(1,10),(2,5),(3,7),(4,8),(6,9)] generating graphics... => 5
[(1,10),(2,5),(3,7),(4,9),(6,8)] generating graphics... => 5
[(1,10),(2,5),(3,8),(4,9),(6,7)] generating graphics... => 5
[(1,10),(2,5),(3,8),(4,7),(6,9)] generating graphics... => 5
[(1,10),(2,5),(3,8),(4,6),(7,9)] generating graphics... => 5
[(1,10),(2,5),(3,9),(4,8),(6,7)] generating graphics... => 5
[(1,10),(2,5),(3,9),(4,7),(6,8)] generating graphics... => 5
[(1,10),(2,5),(3,9),(4,6),(7,8)] generating graphics... => 5
[(1,10),(2,6),(3,4),(5,7),(8,9)] generating graphics... => 5
[(1,10),(2,6),(3,4),(5,8),(7,9)] generating graphics... => 5
[(1,10),(2,6),(3,4),(5,9),(7,8)] generating graphics... => 5
[(1,10),(2,6),(3,5),(4,7),(8,9)] generating graphics... => 5
[(1,10),(2,6),(3,5),(4,8),(7,9)] generating graphics... => 5
[(1,10),(2,6),(3,5),(4,9),(7,8)] generating graphics... => 5
[(1,10),(2,6),(3,7),(4,5),(8,9)] generating graphics... => 5
[(1,10),(2,6),(3,7),(4,8),(5,9)] generating graphics... => 5
[(1,10),(2,6),(3,7),(4,9),(5,8)] generating graphics... => 5
[(1,10),(2,6),(3,8),(4,9),(5,7)] generating graphics... => 5
[(1,10),(2,6),(3,8),(4,7),(5,9)] generating graphics... => 5
[(1,10),(2,6),(3,8),(4,5),(7,9)] generating graphics... => 5
[(1,10),(2,6),(3,9),(4,8),(5,7)] generating graphics... => 5
[(1,10),(2,6),(3,9),(4,7),(5,8)] generating graphics... => 5
[(1,10),(2,6),(3,9),(4,5),(7,8)] generating graphics... => 5
[(1,10),(2,7),(3,4),(5,6),(8,9)] generating graphics... => 5
[(1,10),(2,7),(3,4),(5,8),(6,9)] generating graphics... => 5
[(1,10),(2,7),(3,4),(5,9),(6,8)] generating graphics... => 5
[(1,10),(2,7),(3,5),(4,6),(8,9)] generating graphics... => 5
[(1,10),(2,7),(3,5),(4,8),(6,9)] generating graphics... => 5
[(1,10),(2,7),(3,5),(4,9),(6,8)] generating graphics... => 5
[(1,10),(2,7),(3,6),(4,5),(8,9)] generating graphics... => 5
[(1,10),(2,7),(3,6),(4,8),(5,9)] generating graphics... => 5
[(1,10),(2,7),(3,6),(4,9),(5,8)] generating graphics... => 5
[(1,10),(2,7),(3,8),(4,9),(5,6)] generating graphics... => 5
[(1,10),(2,7),(3,8),(4,6),(5,9)] generating graphics... => 5
[(1,10),(2,7),(3,8),(4,5),(6,9)] generating graphics... => 5
[(1,10),(2,7),(3,9),(4,8),(5,6)] generating graphics... => 5
[(1,10),(2,7),(3,9),(4,6),(5,8)] generating graphics... => 5
[(1,10),(2,7),(3,9),(4,5),(6,8)] generating graphics... => 5
[(1,10),(2,8),(3,4),(5,9),(6,7)] generating graphics... => 5
[(1,10),(2,8),(3,4),(5,7),(6,9)] generating graphics... => 5
[(1,10),(2,8),(3,4),(5,6),(7,9)] generating graphics... => 5
[(1,10),(2,8),(3,5),(4,9),(6,7)] generating graphics... => 5
[(1,10),(2,8),(3,5),(4,7),(6,9)] generating graphics... => 5
[(1,10),(2,8),(3,5),(4,6),(7,9)] generating graphics... => 5
[(1,10),(2,8),(3,6),(4,9),(5,7)] generating graphics... => 5
[(1,10),(2,8),(3,6),(4,7),(5,9)] generating graphics... => 5
[(1,10),(2,8),(3,6),(4,5),(7,9)] generating graphics... => 5
[(1,10),(2,8),(3,7),(4,9),(5,6)] generating graphics... => 5
[(1,10),(2,8),(3,7),(4,6),(5,9)] generating graphics... => 5
[(1,10),(2,8),(3,7),(4,5),(6,9)] generating graphics... => 5
[(1,10),(2,8),(3,9),(4,5),(6,7)] generating graphics... => 5
[(1,10),(2,8),(3,9),(4,6),(5,7)] generating graphics... => 5
[(1,10),(2,8),(3,9),(4,7),(5,6)] generating graphics... => 5
[(1,10),(2,9),(3,4),(5,8),(6,7)] generating graphics... => 5
[(1,10),(2,9),(3,4),(5,7),(6,8)] generating graphics... => 5
[(1,10),(2,9),(3,4),(5,6),(7,8)] generating graphics... => 5
[(1,10),(2,9),(3,5),(4,8),(6,7)] generating graphics... => 5
[(1,10),(2,9),(3,5),(4,7),(6,8)] generating graphics... => 5
[(1,10),(2,9),(3,5),(4,6),(7,8)] generating graphics... => 5
[(1,10),(2,9),(3,6),(4,8),(5,7)] generating graphics... => 5
[(1,10),(2,9),(3,6),(4,7),(5,8)] generating graphics... => 5
[(1,10),(2,9),(3,6),(4,5),(7,8)] generating graphics... => 5
[(1,10),(2,9),(3,7),(4,8),(5,6)] generating graphics... => 5
[(1,10),(2,9),(3,7),(4,6),(5,8)] generating graphics... => 5
[(1,10),(2,9),(3,7),(4,5),(6,8)] generating graphics... => 5
[(1,10),(2,9),(3,8),(4,5),(6,7)] generating graphics... => 5
[(1,10),(2,9),(3,8),(4,6),(5,7)] generating graphics... => 5
[(1,10),(2,9),(3,8),(4,7),(5,6)] generating graphics... => 5
[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] generating graphics... => 4
[(1,2),(3,4),(5,6),(7,8),(9,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,9),(8,10),(11,12)] generating graphics... => 3
[(1,2),(3,4),(5,6),(7,9),(8,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,9),(8,12),(10,11)] generating graphics... => 5
[(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)] generating graphics... => 3
[(1,2),(3,4),(5,6),(7,10),(8,11),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,10),(8,12),(9,11)] generating graphics... => 5
[(1,2),(3,4),(5,6),(7,11),(8,9),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,11),(8,10),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,11),(8,12),(9,10)] generating graphics... => 5
[(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)] generating graphics... => 1
[(1,2),(3,4),(5,6),(7,12),(8,10),(9,11)] generating graphics... => 1
[(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)] generating graphics... => 1
[(1,2),(3,4),(5,7),(6,8),(9,10),(11,12)] generating graphics... => 4
[(1,2),(3,4),(5,7),(6,8),(9,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,8),(9,12),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,9),(8,10),(11,12)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,9),(8,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,9),(8,12),(10,11)] generating graphics... => 5
[(1,2),(3,4),(5,7),(6,10),(8,9),(11,12)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,10),(8,11),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,10),(8,12),(9,11)] generating graphics... => 5
[(1,2),(3,4),(5,7),(6,11),(8,9),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,11),(8,10),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,11),(8,12),(9,10)] generating graphics... => 5
[(1,2),(3,4),(5,7),(6,12),(8,9),(10,11)] generating graphics... => 1
[(1,2),(3,4),(5,7),(6,12),(8,10),(9,11)] generating graphics... => 1
[(1,2),(3,4),(5,7),(6,12),(8,11),(9,10)] generating graphics... => 1
[(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,7),(9,11),(10,12)] generating graphics... => 4
[(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,9),(7,12),(10,11)] generating graphics... => 1
[(1,2),(3,4),(5,8),(6,9),(7,11),(10,12)] generating graphics... => 4
[(1,2),(3,4),(5,8),(6,9),(7,10),(11,12)] generating graphics... => 3
[(1,2),(3,4),(5,8),(6,10),(7,12),(9,11)] generating graphics... => 1
[(1,2),(3,4),(5,8),(6,10),(7,11),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,10),(7,9),(11,12)] generating graphics... => 3
[(1,2),(3,4),(5,8),(6,11),(7,12),(9,10)] generating graphics... => 1
[(1,2),(3,4),(5,8),(6,11),(7,10),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,11),(7,9),(10,12)] generating graphics... => 4
[(1,2),(3,4),(5,8),(6,12),(7,11),(9,10)] generating graphics... => 1
[(1,2),(3,4),(5,8),(6,12),(7,10),(9,11)] generating graphics... => 1
[(1,2),(3,4),(5,8),(6,12),(7,9),(10,11)] generating graphics... => 1
[(1,2),(3,4),(5,9),(6,7),(8,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,7),(8,11),(10,12)] generating graphics... => 3
[(1,2),(3,4),(5,9),(6,7),(8,12),(10,11)] generating graphics... => 5
[(1,2),(3,4),(5,9),(6,8),(7,12),(10,11)] generating graphics... => 1
[(1,2),(3,4),(5,9),(6,8),(7,11),(10,12)] generating graphics... => 3
[(1,2),(3,4),(5,9),(6,8),(7,10),(11,12)] generating graphics... => 4
[(1,2),(3,4),(5,9),(6,10),(7,12),(8,11)] generating graphics... => 1
[(1,2),(3,4),(5,9),(6,10),(7,11),(8,12)] generating graphics... => 5
[(1,2),(3,4),(5,9),(6,10),(7,8),(11,12)] generating graphics... => 4
[(1,2),(3,4),(5,9),(6,11),(7,12),(8,10)] generating graphics... => 1
[(1,2),(3,4),(5,9),(6,11),(7,10),(8,12)] generating graphics... => 5
[(1,2),(3,4),(5,9),(6,11),(7,8),(10,12)] generating graphics... => 3
[(1,2),(3,4),(5,9),(6,12),(7,11),(8,10)] generating graphics... => 1
[(1,2),(3,4),(5,9),(6,12),(7,10),(8,11)] generating graphics... => 1
[(1,2),(3,4),(5,9),(6,12),(7,8),(10,11)] generating graphics... => 1
[(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)] generating graphics... => 3
[(1,2),(3,4),(5,10),(6,7),(8,11),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,7),(8,12),(9,11)] generating graphics... => 5
[(1,2),(3,4),(5,10),(6,8),(7,12),(9,11)] generating graphics... => 1
[(1,2),(3,4),(5,10),(6,8),(7,11),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,8),(7,9),(11,12)] generating graphics... => 3
[(1,2),(3,4),(5,10),(6,9),(7,12),(8,11)] generating graphics... => 1
[(1,2),(3,4),(5,10),(6,9),(7,11),(8,12)] generating graphics... => 5
[(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)] generating graphics... => 4
[(1,2),(3,4),(5,10),(6,11),(7,12),(8,9)] generating graphics... => 1
[(1,2),(3,4),(5,10),(6,11),(7,9),(8,12)] generating graphics... => 5
[(1,2),(3,4),(5,10),(6,11),(7,8),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,12),(7,11),(8,9)] generating graphics... => 1
[(1,2),(3,4),(5,10),(6,12),(7,9),(8,11)] generating graphics... => 1
[(1,2),(3,4),(5,10),(6,12),(7,8),(9,11)] generating graphics... => 1
[(1,2),(3,4),(5,11),(6,7),(8,9),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,7),(8,10),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,7),(8,12),(9,10)] generating graphics... => 5
[(1,2),(3,4),(5,11),(6,8),(7,12),(9,10)] generating graphics... => 1
[(1,2),(3,4),(5,11),(6,8),(7,10),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,8),(7,9),(10,12)] generating graphics... => 4
[(1,2),(3,4),(5,11),(6,9),(7,12),(8,10)] generating graphics... => 1
[(1,2),(3,4),(5,11),(6,9),(7,10),(8,12)] generating graphics... => 5
[(1,2),(3,4),(5,11),(6,9),(7,8),(10,12)] generating graphics... => 3
[(1,2),(3,4),(5,11),(6,10),(7,12),(8,9)] generating graphics... => 1
[(1,2),(3,4),(5,11),(6,10),(7,9),(8,12)] generating graphics... => 5
[(1,2),(3,4),(5,11),(6,10),(7,8),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,12),(7,10),(8,9)] generating graphics... => 1
[(1,2),(3,4),(5,11),(6,12),(7,9),(8,10)] generating graphics... => 1
[(1,2),(3,4),(5,11),(6,12),(7,8),(9,10)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,7),(8,10),(9,11)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,8),(7,11),(9,10)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,8),(7,10),(9,11)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,8),(7,9),(10,11)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,9),(7,11),(8,10)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,9),(7,10),(8,11)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,10),(7,11),(8,9)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,10),(7,9),(8,11)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,10),(7,8),(9,11)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,11),(7,9),(8,10)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)] generating graphics... => 1
[(1,2),(3,5),(4,6),(7,8),(9,10),(11,12)] generating graphics... => 4
[(1,2),(3,5),(4,6),(7,8),(9,11),(10,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,8),(9,12),(10,11)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,9),(8,10),(11,12)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,9),(8,11),(10,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,9),(8,12),(10,11)] generating graphics... => 5
[(1,2),(3,5),(4,6),(7,10),(8,9),(11,12)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,10),(8,11),(9,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,10),(8,12),(9,11)] generating graphics... => 5
[(1,2),(3,5),(4,6),(7,11),(8,9),(10,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,11),(8,10),(9,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,11),(8,12),(9,10)] generating graphics... => 5
[(1,2),(3,5),(4,6),(7,12),(8,9),(10,11)] generating graphics... => 1
[(1,2),(3,5),(4,6),(7,12),(8,10),(9,11)] generating graphics... => 1
[(1,2),(3,5),(4,6),(7,12),(8,11),(9,10)] generating graphics... => 1
[(1,2),(3,5),(4,7),(6,8),(9,10),(11,12)] generating graphics... => 4
[(1,2),(3,5),(4,7),(6,8),(9,11),(10,12)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,8),(9,12),(10,11)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,9),(8,10),(11,12)] generating graphics... => 3
[(1,2),(3,5),(4,7),(6,9),(8,11),(10,12)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,9),(8,12),(10,11)] generating graphics... => 5
[(1,2),(3,5),(4,7),(6,10),(8,9),(11,12)] generating graphics... => 3
[(1,2),(3,5),(4,7),(6,10),(8,11),(9,12)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,10),(8,12),(9,11)] generating graphics... => 5
[(1,2),(3,5),(4,7),(6,11),(8,9),(10,12)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,11),(8,10),(9,12)] generating graphics... => 2
click to show generating function       
Description
The number of leaves in the subtree not containing one in the decreasing labelled binary unordered tree associated with the perfect matching.
The bijection between perfect matchings of $\{1,\dots,2n\}$ and trees with $n+1$ leaves is described in Example 5.2.6 of [1].
The number of trees having precisely $j$ leaves in the subtree not containing $1$, computed in [2], is
$$ \binom{n}{j}(2j-3)!!(2n-2j-1)!! $$
References
[1] Stanley, R. P. Enumerative combinatorics. Vol. 2 MathSciNet:1676282
[2] Dale, M. R. T., Moon, J. W. The permuted analogues of three Catalan sets MathSciNet:1209991
Code
def statistic(m):
    T = matching_to_tree(m)
    if 1 in T[0].leaf_labels():
        return len(T[1].leaf_labels())
    return len(T[0].leaf_labels())

def matching_to_tree(m):
    """
    INPUT:

    - m, a PerfectMatching on {1,...,2n}.

    OUTPUT:

    a decreasingly labelled, unordered full binary tree with n+1 leaves.

    EXAMPLES::

        sage: m = PerfectMatching([(1,4),(2,9),(3,10),(5,7),(6,8),(11,12)])
        sage: ascii_art(matching_to_tree(m))
    """
    # the children of the smallest label are the largest remaining
    # element and its partner
    trees = [LabelledRootedTree([LabelledRootedTree([], label=i),
                                 LabelledRootedTree([], label=j)]) for i, j in m]
    max_label = m.size()//2+1 # last labelled node

    while len(trees) > 1:
        max_label += 1
        # find tree with smallest child and both children smaller than max_label
        A = sorted([T for T in trees if max(T[0].label(), T[1].label()) < max_label],
                   key = lambda T: min(T[0].label(), T[1].label()))[0]
        trees.remove(A)
        # give it's root node the new label
        A = LabelledRootedTree(A, label=max_label)
        # find tree with child having label max_label
        B = (T for T in trees
             if T[0].label() == max_label or T[1].label() == max_label).next()
        trees.remove(B)
        # replace B with [B[0], A] or [B[1], A]
        if B[0].label() == max_label:
            C = LabelledRootedTree([A, B[1]])
        else:
            C = LabelledRootedTree([A, B[0]])

        trees.append(C)

    return trees[0]

Created
Nov 09, 2017 at 21:36 by Martin Rubey
Updated
Nov 09, 2017 at 21:36 by Martin Rubey