Identifier
Identifier
Values
[(1,2)] generating graphics... => 1
[(1,2),(3,4)] generating graphics... => 1
[(1,3),(2,4)] generating graphics... => 1
[(1,4),(2,3)] generating graphics... => 1
[(1,2),(3,4),(5,6)] generating graphics... => 2
[(1,2),(3,5),(4,6)] generating graphics... => 1
[(1,2),(3,6),(4,5)] generating graphics... => 1
[(1,3),(2,4),(5,6)] generating graphics... => 2
[(1,3),(2,5),(4,6)] generating graphics... => 1
[(1,3),(2,6),(4,5)] generating graphics... => 1
[(1,4),(2,3),(5,6)] generating graphics... => 2
[(1,4),(2,5),(3,6)] generating graphics... => 1
[(1,4),(2,6),(3,5)] generating graphics... => 1
[(1,5),(2,3),(4,6)] generating graphics... => 1
[(1,5),(2,4),(3,6)] generating graphics... => 1
[(1,5),(2,6),(3,4)] generating graphics... => 1
[(1,6),(2,3),(4,5)] generating graphics... => 1
[(1,6),(2,4),(3,5)] generating graphics... => 1
[(1,6),(2,5),(3,4)] generating graphics... => 1
[(1,2),(3,4),(5,8),(6,7)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,8)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,8)] generating graphics... => 2
[(1,2),(3,5),(4,8),(6,7)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,8)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,8)] generating graphics... => 2
[(1,2),(3,6),(4,8),(5,7)] generating graphics... => 1
[(1,2),(3,6),(4,7),(5,8)] generating graphics... => 1
[(1,2),(3,6),(4,5),(7,8)] generating graphics... => 2
[(1,2),(3,7),(4,8),(5,6)] generating graphics... => 1
[(1,2),(3,7),(4,6),(5,8)] generating graphics... => 1
[(1,2),(3,7),(4,5),(6,8)] generating graphics... => 2
[(1,2),(3,8),(4,5),(6,7)] generating graphics... => 2
[(1,2),(3,8),(4,6),(5,7)] generating graphics... => 1
[(1,2),(3,8),(4,7),(5,6)] generating graphics... => 1
[(1,3),(2,4),(5,8),(6,7)] generating graphics... => 2
[(1,3),(2,4),(5,7),(6,8)] generating graphics... => 2
[(1,3),(2,4),(5,6),(7,8)] generating graphics... => 2
[(1,3),(2,5),(4,8),(6,7)] generating graphics... => 2
[(1,3),(2,5),(4,7),(6,8)] generating graphics... => 2
[(1,3),(2,5),(4,6),(7,8)] generating graphics... => 2
[(1,3),(2,6),(4,8),(5,7)] generating graphics... => 1
[(1,3),(2,6),(4,7),(5,8)] generating graphics... => 1
[(1,3),(2,6),(4,5),(7,8)] generating graphics... => 2
[(1,3),(2,7),(4,8),(5,6)] generating graphics... => 1
[(1,3),(2,7),(4,6),(5,8)] generating graphics... => 1
[(1,3),(2,7),(4,5),(6,8)] generating graphics... => 2
[(1,3),(2,8),(4,5),(6,7)] generating graphics... => 2
[(1,3),(2,8),(4,6),(5,7)] generating graphics... => 1
[(1,3),(2,8),(4,7),(5,6)] generating graphics... => 1
[(1,4),(2,3),(5,8),(6,7)] generating graphics... => 2
[(1,4),(2,3),(5,7),(6,8)] generating graphics... => 2
[(1,4),(2,3),(5,6),(7,8)] generating graphics... => 2
[(1,4),(2,5),(3,8),(6,7)] generating graphics... => 2
[(1,4),(2,5),(3,7),(6,8)] generating graphics... => 2
[(1,4),(2,5),(3,6),(7,8)] generating graphics... => 2
[(1,4),(2,6),(3,8),(5,7)] generating graphics... => 1
[(1,4),(2,6),(3,7),(5,8)] generating graphics... => 1
[(1,4),(2,6),(3,5),(7,8)] generating graphics... => 2
[(1,4),(2,7),(3,8),(5,6)] generating graphics... => 1
[(1,4),(2,7),(3,6),(5,8)] generating graphics... => 1
[(1,4),(2,7),(3,5),(6,8)] generating graphics... => 2
[(1,4),(2,8),(3,5),(6,7)] generating graphics... => 2
[(1,4),(2,8),(3,6),(5,7)] generating graphics... => 1
[(1,4),(2,8),(3,7),(5,6)] generating graphics... => 1
[(1,5),(2,3),(4,8),(6,7)] generating graphics... => 2
[(1,5),(2,3),(4,7),(6,8)] generating graphics... => 2
[(1,5),(2,3),(4,6),(7,8)] generating graphics... => 2
[(1,5),(2,4),(3,8),(6,7)] generating graphics... => 2
[(1,5),(2,4),(3,7),(6,8)] generating graphics... => 2
[(1,5),(2,4),(3,6),(7,8)] generating graphics... => 2
[(1,5),(2,6),(3,8),(4,7)] generating graphics... => 1
[(1,5),(2,6),(3,7),(4,8)] generating graphics... => 1
[(1,5),(2,6),(3,4),(7,8)] generating graphics... => 2
[(1,5),(2,7),(3,8),(4,6)] generating graphics... => 1
[(1,5),(2,7),(3,6),(4,8)] generating graphics... => 1
[(1,5),(2,7),(3,4),(6,8)] generating graphics... => 2
[(1,5),(2,8),(3,4),(6,7)] generating graphics... => 2
[(1,5),(2,8),(3,6),(4,7)] generating graphics... => 1
[(1,5),(2,8),(3,7),(4,6)] generating graphics... => 1
[(1,6),(2,3),(4,8),(5,7)] generating graphics... => 1
[(1,6),(2,3),(4,7),(5,8)] generating graphics... => 1
[(1,6),(2,3),(4,5),(7,8)] generating graphics... => 2
[(1,6),(2,4),(3,8),(5,7)] generating graphics... => 1
[(1,6),(2,4),(3,7),(5,8)] generating graphics... => 1
[(1,6),(2,4),(3,5),(7,8)] generating graphics... => 2
[(1,6),(2,5),(3,8),(4,7)] generating graphics... => 1
[(1,6),(2,5),(3,7),(4,8)] generating graphics... => 1
[(1,6),(2,5),(3,4),(7,8)] generating graphics... => 2
[(1,6),(2,7),(3,8),(4,5)] generating graphics... => 1
[(1,6),(2,7),(3,5),(4,8)] generating graphics... => 1
[(1,6),(2,7),(3,4),(5,8)] generating graphics... => 1
[(1,6),(2,8),(3,4),(5,7)] generating graphics... => 1
[(1,6),(2,8),(3,5),(4,7)] generating graphics... => 1
[(1,6),(2,8),(3,7),(4,5)] generating graphics... => 1
[(1,7),(2,3),(4,8),(5,6)] generating graphics... => 1
[(1,7),(2,3),(4,6),(5,8)] generating graphics... => 1
[(1,7),(2,3),(4,5),(6,8)] generating graphics... => 2
[(1,7),(2,4),(3,8),(5,6)] generating graphics... => 1
[(1,7),(2,4),(3,6),(5,8)] generating graphics... => 1
[(1,7),(2,4),(3,5),(6,8)] generating graphics... => 2
[(1,7),(2,5),(3,8),(4,6)] generating graphics... => 1
[(1,7),(2,5),(3,6),(4,8)] generating graphics... => 1
[(1,7),(2,5),(3,4),(6,8)] generating graphics... => 2
[(1,7),(2,6),(3,8),(4,5)] generating graphics... => 1
[(1,7),(2,6),(3,5),(4,8)] generating graphics... => 1
[(1,7),(2,6),(3,4),(5,8)] generating graphics... => 1
[(1,7),(2,8),(3,4),(5,6)] generating graphics... => 1
[(1,7),(2,8),(3,5),(4,6)] generating graphics... => 1
[(1,7),(2,8),(3,6),(4,5)] generating graphics... => 1
[(1,8),(2,3),(4,5),(6,7)] generating graphics... => 2
[(1,8),(2,3),(4,6),(5,7)] generating graphics... => 1
[(1,8),(2,3),(4,7),(5,6)] generating graphics... => 1
[(1,8),(2,4),(3,5),(6,7)] generating graphics... => 2
[(1,8),(2,4),(3,6),(5,7)] generating graphics... => 1
[(1,8),(2,4),(3,7),(5,6)] generating graphics... => 1
[(1,8),(2,5),(3,4),(6,7)] generating graphics... => 2
[(1,8),(2,5),(3,6),(4,7)] generating graphics... => 1
[(1,8),(2,5),(3,7),(4,6)] generating graphics... => 1
[(1,8),(2,6),(3,4),(5,7)] generating graphics... => 1
[(1,8),(2,6),(3,5),(4,7)] generating graphics... => 1
[(1,8),(2,6),(3,7),(4,5)] generating graphics... => 1
[(1,8),(2,7),(3,4),(5,6)] generating graphics... => 1
[(1,8),(2,7),(3,5),(4,6)] generating graphics... => 1
[(1,8),(2,7),(3,6),(4,5)] generating graphics... => 1
[(1,2),(3,4),(5,6),(7,10),(8,9)] generating graphics... => 3
[(1,2),(3,4),(5,6),(7,9),(8,10)] generating graphics... => 3
[(1,2),(3,4),(5,6),(7,8),(9,10)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,10),(8,9)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,9),(8,10)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,8),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,7),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,9),(7,10)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,10),(7,9)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,7),(8,10)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,8),(7,10)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,10),(7,8)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,7),(8,9)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,8),(7,9)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,9),(7,8)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,10),(8,9)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,9),(8,10)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,8),(9,10)] generating graphics... => 3
[(1,2),(3,5),(4,7),(6,10),(8,9)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,9),(8,10)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,8),(9,10)] generating graphics... => 2
[(1,2),(3,5),(4,8),(6,7),(9,10)] generating graphics... => 2
[(1,2),(3,5),(4,8),(6,9),(7,10)] generating graphics... => 2
[(1,2),(3,5),(4,8),(6,10),(7,9)] generating graphics... => 2
[(1,2),(3,5),(4,9),(6,7),(8,10)] generating graphics... => 2
[(1,2),(3,5),(4,9),(6,8),(7,10)] generating graphics... => 2
[(1,2),(3,5),(4,9),(6,10),(7,8)] generating graphics... => 2
[(1,2),(3,5),(4,10),(6,7),(8,9)] generating graphics... => 2
[(1,2),(3,5),(4,10),(6,8),(7,9)] generating graphics... => 2
[(1,2),(3,5),(4,10),(6,9),(7,8)] generating graphics... => 2
[(1,2),(3,6),(4,5),(7,10),(8,9)] generating graphics... => 3
[(1,2),(3,6),(4,5),(7,9),(8,10)] generating graphics... => 3
[(1,2),(3,6),(4,5),(7,8),(9,10)] generating graphics... => 3
[(1,2),(3,6),(4,7),(5,10),(8,9)] generating graphics... => 2
[(1,2),(3,6),(4,7),(5,9),(8,10)] generating graphics... => 2
[(1,2),(3,6),(4,7),(5,8),(9,10)] generating graphics... => 2
[(1,2),(3,6),(4,8),(5,7),(9,10)] generating graphics... => 2
[(1,2),(3,6),(4,8),(5,9),(7,10)] generating graphics... => 2
[(1,2),(3,6),(4,8),(5,10),(7,9)] generating graphics... => 2
[(1,2),(3,6),(4,9),(5,7),(8,10)] generating graphics... => 2
[(1,2),(3,6),(4,9),(5,8),(7,10)] generating graphics... => 2
[(1,2),(3,6),(4,9),(5,10),(7,8)] generating graphics... => 2
[(1,2),(3,6),(4,10),(5,7),(8,9)] generating graphics... => 2
[(1,2),(3,6),(4,10),(5,8),(7,9)] generating graphics... => 2
[(1,2),(3,6),(4,10),(5,9),(7,8)] generating graphics... => 2
[(1,2),(3,7),(4,5),(6,10),(8,9)] generating graphics... => 2
[(1,2),(3,7),(4,5),(6,9),(8,10)] generating graphics... => 2
[(1,2),(3,7),(4,5),(6,8),(9,10)] generating graphics... => 2
[(1,2),(3,7),(4,6),(5,10),(8,9)] generating graphics... => 2
[(1,2),(3,7),(4,6),(5,9),(8,10)] generating graphics... => 2
[(1,2),(3,7),(4,6),(5,8),(9,10)] generating graphics... => 2
[(1,2),(3,7),(4,8),(5,6),(9,10)] generating graphics... => 2
[(1,2),(3,7),(4,8),(5,9),(6,10)] generating graphics... => 1
[(1,2),(3,7),(4,8),(5,10),(6,9)] generating graphics... => 1
[(1,2),(3,7),(4,9),(5,6),(8,10)] generating graphics... => 2
[(1,2),(3,7),(4,9),(5,8),(6,10)] generating graphics... => 1
[(1,2),(3,7),(4,9),(5,10),(6,8)] generating graphics... => 1
[(1,2),(3,7),(4,10),(5,6),(8,9)] generating graphics... => 2
[(1,2),(3,7),(4,10),(5,8),(6,9)] generating graphics... => 1
[(1,2),(3,7),(4,10),(5,9),(6,8)] generating graphics... => 1
[(1,2),(3,8),(4,5),(6,7),(9,10)] generating graphics... => 2
[(1,2),(3,8),(4,5),(6,9),(7,10)] generating graphics... => 2
[(1,2),(3,8),(4,5),(6,10),(7,9)] generating graphics... => 2
[(1,2),(3,8),(4,6),(5,7),(9,10)] generating graphics... => 2
[(1,2),(3,8),(4,6),(5,9),(7,10)] generating graphics... => 2
[(1,2),(3,8),(4,6),(5,10),(7,9)] generating graphics... => 2
[(1,2),(3,8),(4,7),(5,6),(9,10)] generating graphics... => 2
[(1,2),(3,8),(4,7),(5,9),(6,10)] generating graphics... => 1
[(1,2),(3,8),(4,7),(5,10),(6,9)] generating graphics... => 1
[(1,2),(3,8),(4,9),(5,10),(6,7)] generating graphics... => 1
[(1,2),(3,8),(4,9),(5,7),(6,10)] generating graphics... => 1
[(1,2),(3,8),(4,9),(5,6),(7,10)] generating graphics... => 2
[(1,2),(3,8),(4,10),(5,9),(6,7)] generating graphics... => 1
[(1,2),(3,8),(4,10),(5,7),(6,9)] generating graphics... => 1
[(1,2),(3,8),(4,10),(5,6),(7,9)] generating graphics... => 2
[(1,2),(3,9),(4,5),(6,7),(8,10)] generating graphics... => 2
[(1,2),(3,9),(4,5),(6,8),(7,10)] generating graphics... => 2
[(1,2),(3,9),(4,5),(6,10),(7,8)] generating graphics... => 2
[(1,2),(3,9),(4,6),(5,7),(8,10)] generating graphics... => 2
[(1,2),(3,9),(4,6),(5,8),(7,10)] generating graphics... => 2
[(1,2),(3,9),(4,6),(5,10),(7,8)] generating graphics... => 2
[(1,2),(3,9),(4,7),(5,6),(8,10)] generating graphics... => 2
[(1,2),(3,9),(4,7),(5,8),(6,10)] generating graphics... => 1
[(1,2),(3,9),(4,7),(5,10),(6,8)] generating graphics... => 1
[(1,2),(3,9),(4,8),(5,10),(6,7)] generating graphics... => 1
[(1,2),(3,9),(4,8),(5,7),(6,10)] generating graphics... => 1
[(1,2),(3,9),(4,8),(5,6),(7,10)] generating graphics... => 2
[(1,2),(3,9),(4,10),(5,8),(6,7)] generating graphics... => 1
[(1,2),(3,9),(4,10),(5,7),(6,8)] generating graphics... => 1
[(1,2),(3,9),(4,10),(5,6),(7,8)] generating graphics... => 2
[(1,2),(3,10),(4,5),(6,7),(8,9)] generating graphics... => 2
[(1,2),(3,10),(4,5),(6,8),(7,9)] generating graphics... => 2
[(1,2),(3,10),(4,5),(6,9),(7,8)] generating graphics... => 2
[(1,2),(3,10),(4,6),(5,7),(8,9)] generating graphics... => 2
[(1,2),(3,10),(4,6),(5,8),(7,9)] generating graphics... => 2
[(1,2),(3,10),(4,6),(5,9),(7,8)] generating graphics... => 2
[(1,2),(3,10),(4,7),(5,6),(8,9)] generating graphics... => 2
[(1,2),(3,10),(4,7),(5,8),(6,9)] generating graphics... => 1
[(1,2),(3,10),(4,7),(5,9),(6,8)] generating graphics... => 1
[(1,2),(3,10),(4,8),(5,9),(6,7)] generating graphics... => 1
[(1,2),(3,10),(4,8),(5,7),(6,9)] generating graphics... => 1
[(1,2),(3,10),(4,8),(5,6),(7,9)] generating graphics... => 2
[(1,2),(3,10),(4,9),(5,8),(6,7)] generating graphics... => 1
[(1,2),(3,10),(4,9),(5,7),(6,8)] generating graphics... => 1
[(1,2),(3,10),(4,9),(5,6),(7,8)] generating graphics... => 2
[(1,3),(2,4),(5,6),(7,10),(8,9)] generating graphics... => 3
[(1,3),(2,4),(5,6),(7,9),(8,10)] generating graphics... => 3
[(1,3),(2,4),(5,6),(7,8),(9,10)] generating graphics... => 3
[(1,3),(2,4),(5,7),(6,10),(8,9)] generating graphics... => 2
[(1,3),(2,4),(5,7),(6,9),(8,10)] generating graphics... => 2
[(1,3),(2,4),(5,7),(6,8),(9,10)] generating graphics... => 2
[(1,3),(2,4),(5,8),(6,7),(9,10)] generating graphics... => 2
[(1,3),(2,4),(5,8),(6,9),(7,10)] generating graphics... => 2
[(1,3),(2,4),(5,8),(6,10),(7,9)] generating graphics... => 2
[(1,3),(2,4),(5,9),(6,7),(8,10)] generating graphics... => 2
[(1,3),(2,4),(5,9),(6,8),(7,10)] generating graphics... => 2
[(1,3),(2,4),(5,9),(6,10),(7,8)] generating graphics... => 2
[(1,3),(2,4),(5,10),(6,7),(8,9)] generating graphics... => 2
[(1,3),(2,4),(5,10),(6,8),(7,9)] generating graphics... => 2
[(1,3),(2,4),(5,10),(6,9),(7,8)] generating graphics... => 2
[(1,3),(2,5),(4,6),(7,10),(8,9)] generating graphics... => 3
[(1,3),(2,5),(4,6),(7,9),(8,10)] generating graphics... => 3
[(1,3),(2,5),(4,6),(7,8),(9,10)] generating graphics... => 3
[(1,3),(2,5),(4,7),(6,10),(8,9)] generating graphics... => 2
[(1,3),(2,5),(4,7),(6,9),(8,10)] generating graphics... => 2
[(1,3),(2,5),(4,7),(6,8),(9,10)] generating graphics... => 2
[(1,3),(2,5),(4,8),(6,7),(9,10)] generating graphics... => 2
[(1,3),(2,5),(4,8),(6,9),(7,10)] generating graphics... => 2
[(1,3),(2,5),(4,8),(6,10),(7,9)] generating graphics... => 2
[(1,3),(2,5),(4,9),(6,7),(8,10)] generating graphics... => 2
[(1,3),(2,5),(4,9),(6,8),(7,10)] generating graphics... => 2
[(1,3),(2,5),(4,9),(6,10),(7,8)] generating graphics... => 2
[(1,3),(2,5),(4,10),(6,7),(8,9)] generating graphics... => 2
[(1,3),(2,5),(4,10),(6,8),(7,9)] generating graphics... => 2
[(1,3),(2,5),(4,10),(6,9),(7,8)] generating graphics... => 2
[(1,3),(2,6),(4,5),(7,10),(8,9)] generating graphics... => 3
[(1,3),(2,6),(4,5),(7,9),(8,10)] generating graphics... => 3
[(1,3),(2,6),(4,5),(7,8),(9,10)] generating graphics... => 3
[(1,3),(2,6),(4,7),(5,10),(8,9)] generating graphics... => 2
[(1,3),(2,6),(4,7),(5,9),(8,10)] generating graphics... => 2
[(1,3),(2,6),(4,7),(5,8),(9,10)] generating graphics... => 2
[(1,3),(2,6),(4,8),(5,7),(9,10)] generating graphics... => 2
[(1,3),(2,6),(4,8),(5,9),(7,10)] generating graphics... => 2
[(1,3),(2,6),(4,8),(5,10),(7,9)] generating graphics... => 2
[(1,3),(2,6),(4,9),(5,7),(8,10)] generating graphics... => 2
[(1,3),(2,6),(4,9),(5,8),(7,10)] generating graphics... => 2
[(1,3),(2,6),(4,9),(5,10),(7,8)] generating graphics... => 2
[(1,3),(2,6),(4,10),(5,7),(8,9)] generating graphics... => 2
[(1,3),(2,6),(4,10),(5,8),(7,9)] generating graphics... => 2
[(1,3),(2,6),(4,10),(5,9),(7,8)] generating graphics... => 2
[(1,3),(2,7),(4,5),(6,10),(8,9)] generating graphics... => 2
[(1,3),(2,7),(4,5),(6,9),(8,10)] generating graphics... => 2
[(1,3),(2,7),(4,5),(6,8),(9,10)] generating graphics... => 2
[(1,3),(2,7),(4,6),(5,10),(8,9)] generating graphics... => 2
[(1,3),(2,7),(4,6),(5,9),(8,10)] generating graphics... => 2
[(1,3),(2,7),(4,6),(5,8),(9,10)] generating graphics... => 2
[(1,3),(2,7),(4,8),(5,6),(9,10)] generating graphics... => 2
[(1,3),(2,7),(4,8),(5,9),(6,10)] generating graphics... => 1
[(1,3),(2,7),(4,8),(5,10),(6,9)] generating graphics... => 1
[(1,3),(2,7),(4,9),(5,6),(8,10)] generating graphics... => 2
[(1,3),(2,7),(4,9),(5,8),(6,10)] generating graphics... => 1
[(1,3),(2,7),(4,9),(5,10),(6,8)] generating graphics... => 1
[(1,3),(2,7),(4,10),(5,6),(8,9)] generating graphics... => 2
[(1,3),(2,7),(4,10),(5,8),(6,9)] generating graphics... => 1
[(1,3),(2,7),(4,10),(5,9),(6,8)] generating graphics... => 1
[(1,3),(2,8),(4,5),(6,7),(9,10)] generating graphics... => 2
[(1,3),(2,8),(4,5),(6,9),(7,10)] generating graphics... => 2
[(1,3),(2,8),(4,5),(6,10),(7,9)] generating graphics... => 2
[(1,3),(2,8),(4,6),(5,7),(9,10)] generating graphics... => 2
[(1,3),(2,8),(4,6),(5,9),(7,10)] generating graphics... => 2
[(1,3),(2,8),(4,6),(5,10),(7,9)] generating graphics... => 2
[(1,3),(2,8),(4,7),(5,6),(9,10)] generating graphics... => 2
[(1,3),(2,8),(4,7),(5,9),(6,10)] generating graphics... => 1
[(1,3),(2,8),(4,7),(5,10),(6,9)] generating graphics... => 1
[(1,3),(2,8),(4,9),(5,10),(6,7)] generating graphics... => 1
[(1,3),(2,8),(4,9),(5,7),(6,10)] generating graphics... => 1
[(1,3),(2,8),(4,9),(5,6),(7,10)] generating graphics... => 2
[(1,3),(2,8),(4,10),(5,9),(6,7)] generating graphics... => 1
[(1,3),(2,8),(4,10),(5,7),(6,9)] generating graphics... => 1
[(1,3),(2,8),(4,10),(5,6),(7,9)] generating graphics... => 2
[(1,3),(2,9),(4,5),(6,7),(8,10)] generating graphics... => 2
[(1,3),(2,9),(4,5),(6,8),(7,10)] generating graphics... => 2
[(1,3),(2,9),(4,5),(6,10),(7,8)] generating graphics... => 2
[(1,3),(2,9),(4,6),(5,7),(8,10)] generating graphics... => 2
[(1,3),(2,9),(4,6),(5,8),(7,10)] generating graphics... => 2
[(1,3),(2,9),(4,6),(5,10),(7,8)] generating graphics... => 2
[(1,3),(2,9),(4,7),(5,6),(8,10)] generating graphics... => 2
[(1,3),(2,9),(4,7),(5,8),(6,10)] generating graphics... => 1
[(1,3),(2,9),(4,7),(5,10),(6,8)] generating graphics... => 1
[(1,3),(2,9),(4,8),(5,10),(6,7)] generating graphics... => 1
[(1,3),(2,9),(4,8),(5,7),(6,10)] generating graphics... => 1
[(1,3),(2,9),(4,8),(5,6),(7,10)] generating graphics... => 2
[(1,3),(2,9),(4,10),(5,8),(6,7)] generating graphics... => 1
[(1,3),(2,9),(4,10),(5,7),(6,8)] generating graphics... => 1
[(1,3),(2,9),(4,10),(5,6),(7,8)] generating graphics... => 2
[(1,3),(2,10),(4,5),(6,7),(8,9)] generating graphics... => 2
[(1,3),(2,10),(4,5),(6,8),(7,9)] generating graphics... => 2
[(1,3),(2,10),(4,5),(6,9),(7,8)] generating graphics... => 2
[(1,3),(2,10),(4,6),(5,7),(8,9)] generating graphics... => 2
[(1,3),(2,10),(4,6),(5,8),(7,9)] generating graphics... => 2
[(1,3),(2,10),(4,6),(5,9),(7,8)] generating graphics... => 2
[(1,3),(2,10),(4,7),(5,6),(8,9)] generating graphics... => 2
[(1,3),(2,10),(4,7),(5,8),(6,9)] generating graphics... => 1
[(1,3),(2,10),(4,7),(5,9),(6,8)] generating graphics... => 1
[(1,3),(2,10),(4,8),(5,9),(6,7)] generating graphics... => 1
[(1,3),(2,10),(4,8),(5,7),(6,9)] generating graphics... => 1
[(1,3),(2,10),(4,8),(5,6),(7,9)] generating graphics... => 2
[(1,3),(2,10),(4,9),(5,8),(6,7)] generating graphics... => 1
[(1,3),(2,10),(4,9),(5,7),(6,8)] generating graphics... => 1
[(1,3),(2,10),(4,9),(5,6),(7,8)] generating graphics... => 2
[(1,4),(2,3),(5,6),(7,10),(8,9)] generating graphics... => 3
[(1,4),(2,3),(5,6),(7,9),(8,10)] generating graphics... => 3
[(1,4),(2,3),(5,6),(7,8),(9,10)] generating graphics... => 3
[(1,4),(2,3),(5,7),(6,10),(8,9)] generating graphics... => 2
[(1,4),(2,3),(5,7),(6,9),(8,10)] generating graphics... => 2
[(1,4),(2,3),(5,7),(6,8),(9,10)] generating graphics... => 2
[(1,4),(2,3),(5,8),(6,7),(9,10)] generating graphics... => 2
[(1,4),(2,3),(5,8),(6,9),(7,10)] generating graphics... => 2
[(1,4),(2,3),(5,8),(6,10),(7,9)] generating graphics... => 2
[(1,4),(2,3),(5,9),(6,7),(8,10)] generating graphics... => 2
[(1,4),(2,3),(5,9),(6,8),(7,10)] generating graphics... => 2
[(1,4),(2,3),(5,9),(6,10),(7,8)] generating graphics... => 2
[(1,4),(2,3),(5,10),(6,7),(8,9)] generating graphics... => 2
[(1,4),(2,3),(5,10),(6,8),(7,9)] generating graphics... => 2
[(1,4),(2,3),(5,10),(6,9),(7,8)] generating graphics... => 2
[(1,4),(2,5),(3,6),(7,10),(8,9)] generating graphics... => 3
[(1,4),(2,5),(3,6),(7,9),(8,10)] generating graphics... => 3
[(1,4),(2,5),(3,6),(7,8),(9,10)] generating graphics... => 3
[(1,4),(2,5),(3,7),(6,10),(8,9)] generating graphics... => 2
[(1,4),(2,5),(3,7),(6,9),(8,10)] generating graphics... => 2
[(1,4),(2,5),(3,7),(6,8),(9,10)] generating graphics... => 2
[(1,4),(2,5),(3,8),(6,7),(9,10)] generating graphics... => 2
[(1,4),(2,5),(3,8),(6,9),(7,10)] generating graphics... => 2
[(1,4),(2,5),(3,8),(6,10),(7,9)] generating graphics... => 2
[(1,4),(2,5),(3,9),(6,7),(8,10)] generating graphics... => 2
[(1,4),(2,5),(3,9),(6,8),(7,10)] generating graphics... => 2
[(1,4),(2,5),(3,9),(6,10),(7,8)] generating graphics... => 2
[(1,4),(2,5),(3,10),(6,7),(8,9)] generating graphics... => 2
[(1,4),(2,5),(3,10),(6,8),(7,9)] generating graphics... => 2
[(1,4),(2,5),(3,10),(6,9),(7,8)] generating graphics... => 2
[(1,4),(2,6),(3,5),(7,10),(8,9)] generating graphics... => 3
[(1,4),(2,6),(3,5),(7,9),(8,10)] generating graphics... => 3
[(1,4),(2,6),(3,5),(7,8),(9,10)] generating graphics... => 3
[(1,4),(2,6),(3,7),(5,10),(8,9)] generating graphics... => 2
[(1,4),(2,6),(3,7),(5,9),(8,10)] generating graphics... => 2
[(1,4),(2,6),(3,7),(5,8),(9,10)] generating graphics... => 2
[(1,4),(2,6),(3,8),(5,7),(9,10)] generating graphics... => 2
[(1,4),(2,6),(3,8),(5,9),(7,10)] generating graphics... => 2
[(1,4),(2,6),(3,8),(5,10),(7,9)] generating graphics... => 2
[(1,4),(2,6),(3,9),(5,7),(8,10)] generating graphics... => 2
[(1,4),(2,6),(3,9),(5,8),(7,10)] generating graphics... => 2
[(1,4),(2,6),(3,9),(5,10),(7,8)] generating graphics... => 2
[(1,4),(2,6),(3,10),(5,7),(8,9)] generating graphics... => 2
[(1,4),(2,6),(3,10),(5,8),(7,9)] generating graphics... => 2
[(1,4),(2,6),(3,10),(5,9),(7,8)] generating graphics... => 2
[(1,4),(2,7),(3,5),(6,10),(8,9)] generating graphics... => 2
[(1,4),(2,7),(3,5),(6,9),(8,10)] generating graphics... => 2
[(1,4),(2,7),(3,5),(6,8),(9,10)] generating graphics... => 2
[(1,4),(2,7),(3,6),(5,10),(8,9)] generating graphics... => 2
[(1,4),(2,7),(3,6),(5,9),(8,10)] generating graphics... => 2
[(1,4),(2,7),(3,6),(5,8),(9,10)] generating graphics... => 2
[(1,4),(2,7),(3,8),(5,6),(9,10)] generating graphics... => 2
[(1,4),(2,7),(3,8),(5,9),(6,10)] generating graphics... => 1
[(1,4),(2,7),(3,8),(5,10),(6,9)] generating graphics... => 1
[(1,4),(2,7),(3,9),(5,6),(8,10)] generating graphics... => 2
[(1,4),(2,7),(3,9),(5,8),(6,10)] generating graphics... => 1
[(1,4),(2,7),(3,9),(5,10),(6,8)] generating graphics... => 1
[(1,4),(2,7),(3,10),(5,6),(8,9)] generating graphics... => 2
[(1,4),(2,7),(3,10),(5,8),(6,9)] generating graphics... => 1
[(1,4),(2,7),(3,10),(5,9),(6,8)] generating graphics... => 1
[(1,4),(2,8),(3,5),(6,7),(9,10)] generating graphics... => 2
[(1,4),(2,8),(3,5),(6,9),(7,10)] generating graphics... => 2
[(1,4),(2,8),(3,5),(6,10),(7,9)] generating graphics... => 2
[(1,4),(2,8),(3,6),(5,7),(9,10)] generating graphics... => 2
[(1,4),(2,8),(3,6),(5,9),(7,10)] generating graphics... => 2
[(1,4),(2,8),(3,6),(5,10),(7,9)] generating graphics... => 2
[(1,4),(2,8),(3,7),(5,6),(9,10)] generating graphics... => 2
[(1,4),(2,8),(3,7),(5,9),(6,10)] generating graphics... => 1
[(1,4),(2,8),(3,7),(5,10),(6,9)] generating graphics... => 1
[(1,4),(2,8),(3,9),(5,10),(6,7)] generating graphics... => 1
[(1,4),(2,8),(3,9),(5,7),(6,10)] generating graphics... => 1
[(1,4),(2,8),(3,9),(5,6),(7,10)] generating graphics... => 2
[(1,4),(2,8),(3,10),(5,9),(6,7)] generating graphics... => 1
[(1,4),(2,8),(3,10),(5,7),(6,9)] generating graphics... => 1
[(1,4),(2,8),(3,10),(5,6),(7,9)] generating graphics... => 2
[(1,4),(2,9),(3,5),(6,7),(8,10)] generating graphics... => 2
[(1,4),(2,9),(3,5),(6,8),(7,10)] generating graphics... => 2
[(1,4),(2,9),(3,5),(6,10),(7,8)] generating graphics... => 2
[(1,4),(2,9),(3,6),(5,7),(8,10)] generating graphics... => 2
[(1,4),(2,9),(3,6),(5,8),(7,10)] generating graphics... => 2
[(1,4),(2,9),(3,6),(5,10),(7,8)] generating graphics... => 2
[(1,4),(2,9),(3,7),(5,6),(8,10)] generating graphics... => 2
[(1,4),(2,9),(3,7),(5,8),(6,10)] generating graphics... => 1
[(1,4),(2,9),(3,7),(5,10),(6,8)] generating graphics... => 1
[(1,4),(2,9),(3,8),(5,10),(6,7)] generating graphics... => 1
[(1,4),(2,9),(3,8),(5,7),(6,10)] generating graphics... => 1
[(1,4),(2,9),(3,8),(5,6),(7,10)] generating graphics... => 2
[(1,4),(2,9),(3,10),(5,8),(6,7)] generating graphics... => 1
[(1,4),(2,9),(3,10),(5,7),(6,8)] generating graphics... => 1
[(1,4),(2,9),(3,10),(5,6),(7,8)] generating graphics... => 2
[(1,4),(2,10),(3,5),(6,7),(8,9)] generating graphics... => 2
[(1,4),(2,10),(3,5),(6,8),(7,9)] generating graphics... => 2
[(1,4),(2,10),(3,5),(6,9),(7,8)] generating graphics... => 2
[(1,4),(2,10),(3,6),(5,7),(8,9)] generating graphics... => 2
[(1,4),(2,10),(3,6),(5,8),(7,9)] generating graphics... => 2
[(1,4),(2,10),(3,6),(5,9),(7,8)] generating graphics... => 2
[(1,4),(2,10),(3,7),(5,6),(8,9)] generating graphics... => 2
[(1,4),(2,10),(3,7),(5,8),(6,9)] generating graphics... => 1
[(1,4),(2,10),(3,7),(5,9),(6,8)] generating graphics... => 1
[(1,4),(2,10),(3,8),(5,9),(6,7)] generating graphics... => 1
[(1,4),(2,10),(3,8),(5,7),(6,9)] generating graphics... => 1
[(1,4),(2,10),(3,8),(5,6),(7,9)] generating graphics... => 2
[(1,4),(2,10),(3,9),(5,8),(6,7)] generating graphics... => 1
[(1,4),(2,10),(3,9),(5,7),(6,8)] generating graphics... => 1
[(1,4),(2,10),(3,9),(5,6),(7,8)] generating graphics... => 2
[(1,5),(2,3),(4,6),(7,10),(8,9)] generating graphics... => 3
[(1,5),(2,3),(4,6),(7,9),(8,10)] generating graphics... => 3
[(1,5),(2,3),(4,6),(7,8),(9,10)] generating graphics... => 3
[(1,5),(2,3),(4,7),(6,10),(8,9)] generating graphics... => 2
[(1,5),(2,3),(4,7),(6,9),(8,10)] generating graphics... => 2
[(1,5),(2,3),(4,7),(6,8),(9,10)] generating graphics... => 2
[(1,5),(2,3),(4,8),(6,7),(9,10)] generating graphics... => 2
[(1,5),(2,3),(4,8),(6,9),(7,10)] generating graphics... => 2
[(1,5),(2,3),(4,8),(6,10),(7,9)] generating graphics... => 2
[(1,5),(2,3),(4,9),(6,7),(8,10)] generating graphics... => 2
[(1,5),(2,3),(4,9),(6,8),(7,10)] generating graphics... => 2
[(1,5),(2,3),(4,9),(6,10),(7,8)] generating graphics... => 2
[(1,5),(2,3),(4,10),(6,7),(8,9)] generating graphics... => 2
[(1,5),(2,3),(4,10),(6,8),(7,9)] generating graphics... => 2
[(1,5),(2,3),(4,10),(6,9),(7,8)] generating graphics... => 2
[(1,5),(2,4),(3,6),(7,10),(8,9)] generating graphics... => 3
[(1,5),(2,4),(3,6),(7,9),(8,10)] generating graphics... => 3
[(1,5),(2,4),(3,6),(7,8),(9,10)] generating graphics... => 3
[(1,5),(2,4),(3,7),(6,10),(8,9)] generating graphics... => 2
[(1,5),(2,4),(3,7),(6,9),(8,10)] generating graphics... => 2
[(1,5),(2,4),(3,7),(6,8),(9,10)] generating graphics... => 2
[(1,5),(2,4),(3,8),(6,7),(9,10)] generating graphics... => 2
[(1,5),(2,4),(3,8),(6,9),(7,10)] generating graphics... => 2
[(1,5),(2,4),(3,8),(6,10),(7,9)] generating graphics... => 2
[(1,5),(2,4),(3,9),(6,7),(8,10)] generating graphics... => 2
[(1,5),(2,4),(3,9),(6,8),(7,10)] generating graphics... => 2
[(1,5),(2,4),(3,9),(6,10),(7,8)] generating graphics... => 2
[(1,5),(2,4),(3,10),(6,7),(8,9)] generating graphics... => 2
[(1,5),(2,4),(3,10),(6,8),(7,9)] generating graphics... => 2
[(1,5),(2,4),(3,10),(6,9),(7,8)] generating graphics... => 2
[(1,5),(2,6),(3,4),(7,10),(8,9)] generating graphics... => 3
[(1,5),(2,6),(3,4),(7,9),(8,10)] generating graphics... => 3
[(1,5),(2,6),(3,4),(7,8),(9,10)] generating graphics... => 3
[(1,5),(2,6),(3,7),(4,10),(8,9)] generating graphics... => 2
[(1,5),(2,6),(3,7),(4,9),(8,10)] generating graphics... => 2
[(1,5),(2,6),(3,7),(4,8),(9,10)] generating graphics... => 2
[(1,5),(2,6),(3,8),(4,7),(9,10)] generating graphics... => 2
[(1,5),(2,6),(3,8),(4,9),(7,10)] generating graphics... => 2
[(1,5),(2,6),(3,8),(4,10),(7,9)] generating graphics... => 2
[(1,5),(2,6),(3,9),(4,7),(8,10)] generating graphics... => 2
[(1,5),(2,6),(3,9),(4,8),(7,10)] generating graphics... => 2
[(1,5),(2,6),(3,9),(4,10),(7,8)] generating graphics... => 2
[(1,5),(2,6),(3,10),(4,7),(8,9)] generating graphics... => 2
[(1,5),(2,6),(3,10),(4,8),(7,9)] generating graphics... => 2
[(1,5),(2,6),(3,10),(4,9),(7,8)] generating graphics... => 2
[(1,5),(2,7),(3,4),(6,10),(8,9)] generating graphics... => 2
[(1,5),(2,7),(3,4),(6,9),(8,10)] generating graphics... => 2
[(1,5),(2,7),(3,4),(6,8),(9,10)] generating graphics... => 2
[(1,5),(2,7),(3,6),(4,10),(8,9)] generating graphics... => 2
[(1,5),(2,7),(3,6),(4,9),(8,10)] generating graphics... => 2
[(1,5),(2,7),(3,6),(4,8),(9,10)] generating graphics... => 2
[(1,5),(2,7),(3,8),(4,6),(9,10)] generating graphics... => 2
[(1,5),(2,7),(3,8),(4,9),(6,10)] generating graphics... => 1
[(1,5),(2,7),(3,8),(4,10),(6,9)] generating graphics... => 1
[(1,5),(2,7),(3,9),(4,6),(8,10)] generating graphics... => 2
[(1,5),(2,7),(3,9),(4,8),(6,10)] generating graphics... => 1
[(1,5),(2,7),(3,9),(4,10),(6,8)] generating graphics... => 1
[(1,5),(2,7),(3,10),(4,6),(8,9)] generating graphics... => 2
[(1,5),(2,7),(3,10),(4,8),(6,9)] generating graphics... => 1
[(1,5),(2,7),(3,10),(4,9),(6,8)] generating graphics... => 1
[(1,5),(2,8),(3,4),(6,7),(9,10)] generating graphics... => 2
[(1,5),(2,8),(3,4),(6,9),(7,10)] generating graphics... => 2
[(1,5),(2,8),(3,4),(6,10),(7,9)] generating graphics... => 2
[(1,5),(2,8),(3,6),(4,7),(9,10)] generating graphics... => 2
[(1,5),(2,8),(3,6),(4,9),(7,10)] generating graphics... => 2
[(1,5),(2,8),(3,6),(4,10),(7,9)] generating graphics... => 2
[(1,5),(2,8),(3,7),(4,6),(9,10)] generating graphics... => 2
[(1,5),(2,8),(3,7),(4,9),(6,10)] generating graphics... => 1
[(1,5),(2,8),(3,7),(4,10),(6,9)] generating graphics... => 1
[(1,5),(2,8),(3,9),(4,10),(6,7)] generating graphics... => 1
[(1,5),(2,8),(3,9),(4,7),(6,10)] generating graphics... => 1
[(1,5),(2,8),(3,9),(4,6),(7,10)] generating graphics... => 2
[(1,5),(2,8),(3,10),(4,9),(6,7)] generating graphics... => 1
[(1,5),(2,8),(3,10),(4,7),(6,9)] generating graphics... => 1
[(1,5),(2,8),(3,10),(4,6),(7,9)] generating graphics... => 2
[(1,5),(2,9),(3,4),(6,7),(8,10)] generating graphics... => 2
[(1,5),(2,9),(3,4),(6,8),(7,10)] generating graphics... => 2
[(1,5),(2,9),(3,4),(6,10),(7,8)] generating graphics... => 2
[(1,5),(2,9),(3,6),(4,7),(8,10)] generating graphics... => 2
[(1,5),(2,9),(3,6),(4,8),(7,10)] generating graphics... => 2
[(1,5),(2,9),(3,6),(4,10),(7,8)] generating graphics... => 2
[(1,5),(2,9),(3,7),(4,6),(8,10)] generating graphics... => 2
[(1,5),(2,9),(3,7),(4,8),(6,10)] generating graphics... => 1
[(1,5),(2,9),(3,7),(4,10),(6,8)] generating graphics... => 1
[(1,5),(2,9),(3,8),(4,10),(6,7)] generating graphics... => 1
[(1,5),(2,9),(3,8),(4,7),(6,10)] generating graphics... => 1
[(1,5),(2,9),(3,8),(4,6),(7,10)] generating graphics... => 2
[(1,5),(2,9),(3,10),(4,8),(6,7)] generating graphics... => 1
[(1,5),(2,9),(3,10),(4,7),(6,8)] generating graphics... => 1
[(1,5),(2,9),(3,10),(4,6),(7,8)] generating graphics... => 2
[(1,5),(2,10),(3,4),(6,7),(8,9)] generating graphics... => 2
[(1,5),(2,10),(3,4),(6,8),(7,9)] generating graphics... => 2
[(1,5),(2,10),(3,4),(6,9),(7,8)] generating graphics... => 2
[(1,5),(2,10),(3,6),(4,7),(8,9)] generating graphics... => 2
[(1,5),(2,10),(3,6),(4,8),(7,9)] generating graphics... => 2
[(1,5),(2,10),(3,6),(4,9),(7,8)] generating graphics... => 2
[(1,5),(2,10),(3,7),(4,6),(8,9)] generating graphics... => 2
[(1,5),(2,10),(3,7),(4,8),(6,9)] generating graphics... => 1
[(1,5),(2,10),(3,7),(4,9),(6,8)] generating graphics... => 1
[(1,5),(2,10),(3,8),(4,9),(6,7)] generating graphics... => 1
[(1,5),(2,10),(3,8),(4,7),(6,9)] generating graphics... => 1
[(1,5),(2,10),(3,8),(4,6),(7,9)] generating graphics... => 2
[(1,5),(2,10),(3,9),(4,8),(6,7)] generating graphics... => 1
[(1,5),(2,10),(3,9),(4,7),(6,8)] generating graphics... => 1
[(1,5),(2,10),(3,9),(4,6),(7,8)] generating graphics... => 2
[(1,6),(2,3),(4,5),(7,10),(8,9)] generating graphics... => 3
[(1,6),(2,3),(4,5),(7,9),(8,10)] generating graphics... => 3
[(1,6),(2,3),(4,5),(7,8),(9,10)] generating graphics... => 3
[(1,6),(2,3),(4,7),(5,10),(8,9)] generating graphics... => 2
[(1,6),(2,3),(4,7),(5,9),(8,10)] generating graphics... => 2
[(1,6),(2,3),(4,7),(5,8),(9,10)] generating graphics... => 2
[(1,6),(2,3),(4,8),(5,7),(9,10)] generating graphics... => 2
[(1,6),(2,3),(4,8),(5,9),(7,10)] generating graphics... => 2
[(1,6),(2,3),(4,8),(5,10),(7,9)] generating graphics... => 2
[(1,6),(2,3),(4,9),(5,7),(8,10)] generating graphics... => 2
[(1,6),(2,3),(4,9),(5,8),(7,10)] generating graphics... => 2
[(1,6),(2,3),(4,9),(5,10),(7,8)] generating graphics... => 2
[(1,6),(2,3),(4,10),(5,7),(8,9)] generating graphics... => 2
[(1,6),(2,3),(4,10),(5,8),(7,9)] generating graphics... => 2
[(1,6),(2,3),(4,10),(5,9),(7,8)] generating graphics... => 2
[(1,6),(2,4),(3,5),(7,10),(8,9)] generating graphics... => 3
[(1,6),(2,4),(3,5),(7,9),(8,10)] generating graphics... => 3
[(1,6),(2,4),(3,5),(7,8),(9,10)] generating graphics... => 3
[(1,6),(2,4),(3,7),(5,10),(8,9)] generating graphics... => 2
[(1,6),(2,4),(3,7),(5,9),(8,10)] generating graphics... => 2
[(1,6),(2,4),(3,7),(5,8),(9,10)] generating graphics... => 2
[(1,6),(2,4),(3,8),(5,7),(9,10)] generating graphics... => 2
[(1,6),(2,4),(3,8),(5,9),(7,10)] generating graphics... => 2
[(1,6),(2,4),(3,8),(5,10),(7,9)] generating graphics... => 2
[(1,6),(2,4),(3,9),(5,7),(8,10)] generating graphics... => 2
[(1,6),(2,4),(3,9),(5,8),(7,10)] generating graphics... => 2
[(1,6),(2,4),(3,9),(5,10),(7,8)] generating graphics... => 2
[(1,6),(2,4),(3,10),(5,7),(8,9)] generating graphics... => 2
[(1,6),(2,4),(3,10),(5,8),(7,9)] generating graphics... => 2
[(1,6),(2,4),(3,10),(5,9),(7,8)] generating graphics... => 2
[(1,6),(2,5),(3,4),(7,10),(8,9)] generating graphics... => 3
[(1,6),(2,5),(3,4),(7,9),(8,10)] generating graphics... => 3
[(1,6),(2,5),(3,4),(7,8),(9,10)] generating graphics... => 3
[(1,6),(2,5),(3,7),(4,10),(8,9)] generating graphics... => 2
[(1,6),(2,5),(3,7),(4,9),(8,10)] generating graphics... => 2
[(1,6),(2,5),(3,7),(4,8),(9,10)] generating graphics... => 2
[(1,6),(2,5),(3,8),(4,7),(9,10)] generating graphics... => 2
[(1,6),(2,5),(3,8),(4,9),(7,10)] generating graphics... => 2
[(1,6),(2,5),(3,8),(4,10),(7,9)] generating graphics... => 2
[(1,6),(2,5),(3,9),(4,7),(8,10)] generating graphics... => 2
[(1,6),(2,5),(3,9),(4,8),(7,10)] generating graphics... => 2
[(1,6),(2,5),(3,9),(4,10),(7,8)] generating graphics... => 2
[(1,6),(2,5),(3,10),(4,7),(8,9)] generating graphics... => 2
[(1,6),(2,5),(3,10),(4,8),(7,9)] generating graphics... => 2
[(1,6),(2,5),(3,10),(4,9),(7,8)] generating graphics... => 2
[(1,6),(2,7),(3,4),(5,10),(8,9)] generating graphics... => 2
[(1,6),(2,7),(3,4),(5,9),(8,10)] generating graphics... => 2
[(1,6),(2,7),(3,4),(5,8),(9,10)] generating graphics... => 2
[(1,6),(2,7),(3,5),(4,10),(8,9)] generating graphics... => 2
[(1,6),(2,7),(3,5),(4,9),(8,10)] generating graphics... => 2
[(1,6),(2,7),(3,5),(4,8),(9,10)] generating graphics... => 2
[(1,6),(2,7),(3,8),(4,5),(9,10)] generating graphics... => 2
[(1,6),(2,7),(3,8),(4,9),(5,10)] generating graphics... => 1
[(1,6),(2,7),(3,8),(4,10),(5,9)] generating graphics... => 1
[(1,6),(2,7),(3,9),(4,5),(8,10)] generating graphics... => 2
[(1,6),(2,7),(3,9),(4,8),(5,10)] generating graphics... => 1
[(1,6),(2,7),(3,9),(4,10),(5,8)] generating graphics... => 1
[(1,6),(2,7),(3,10),(4,5),(8,9)] generating graphics... => 2
[(1,6),(2,7),(3,10),(4,8),(5,9)] generating graphics... => 1
[(1,6),(2,7),(3,10),(4,9),(5,8)] generating graphics... => 1
[(1,6),(2,8),(3,4),(5,7),(9,10)] generating graphics... => 2
[(1,6),(2,8),(3,4),(5,9),(7,10)] generating graphics... => 2
[(1,6),(2,8),(3,4),(5,10),(7,9)] generating graphics... => 2
[(1,6),(2,8),(3,5),(4,7),(9,10)] generating graphics... => 2
[(1,6),(2,8),(3,5),(4,9),(7,10)] generating graphics... => 2
[(1,6),(2,8),(3,5),(4,10),(7,9)] generating graphics... => 2
[(1,6),(2,8),(3,7),(4,5),(9,10)] generating graphics... => 2
[(1,6),(2,8),(3,7),(4,9),(5,10)] generating graphics... => 1
[(1,6),(2,8),(3,7),(4,10),(5,9)] generating graphics... => 1
[(1,6),(2,8),(3,9),(4,10),(5,7)] generating graphics... => 1
[(1,6),(2,8),(3,9),(4,7),(5,10)] generating graphics... => 1
[(1,6),(2,8),(3,9),(4,5),(7,10)] generating graphics... => 2
[(1,6),(2,8),(3,10),(4,9),(5,7)] generating graphics... => 1
[(1,6),(2,8),(3,10),(4,7),(5,9)] generating graphics... => 1
[(1,6),(2,8),(3,10),(4,5),(7,9)] generating graphics... => 2
[(1,6),(2,9),(3,4),(5,7),(8,10)] generating graphics... => 2
[(1,6),(2,9),(3,4),(5,8),(7,10)] generating graphics... => 2
[(1,6),(2,9),(3,4),(5,10),(7,8)] generating graphics... => 2
[(1,6),(2,9),(3,5),(4,7),(8,10)] generating graphics... => 2
[(1,6),(2,9),(3,5),(4,8),(7,10)] generating graphics... => 2
[(1,6),(2,9),(3,5),(4,10),(7,8)] generating graphics... => 2
[(1,6),(2,9),(3,7),(4,5),(8,10)] generating graphics... => 2
[(1,6),(2,9),(3,7),(4,8),(5,10)] generating graphics... => 1
[(1,6),(2,9),(3,7),(4,10),(5,8)] generating graphics... => 1
[(1,6),(2,9),(3,8),(4,10),(5,7)] generating graphics... => 1
[(1,6),(2,9),(3,8),(4,7),(5,10)] generating graphics... => 1
[(1,6),(2,9),(3,8),(4,5),(7,10)] generating graphics... => 2
[(1,6),(2,9),(3,10),(4,8),(5,7)] generating graphics... => 1
[(1,6),(2,9),(3,10),(4,7),(5,8)] generating graphics... => 1
[(1,6),(2,9),(3,10),(4,5),(7,8)] generating graphics... => 2
[(1,6),(2,10),(3,4),(5,7),(8,9)] generating graphics... => 2
[(1,6),(2,10),(3,4),(5,8),(7,9)] generating graphics... => 2
[(1,6),(2,10),(3,4),(5,9),(7,8)] generating graphics... => 2
[(1,6),(2,10),(3,5),(4,7),(8,9)] generating graphics... => 2
[(1,6),(2,10),(3,5),(4,8),(7,9)] generating graphics... => 2
[(1,6),(2,10),(3,5),(4,9),(7,8)] generating graphics... => 2
[(1,6),(2,10),(3,7),(4,5),(8,9)] generating graphics... => 2
[(1,6),(2,10),(3,7),(4,8),(5,9)] generating graphics... => 1
[(1,6),(2,10),(3,7),(4,9),(5,8)] generating graphics... => 1
[(1,6),(2,10),(3,8),(4,9),(5,7)] generating graphics... => 1
[(1,6),(2,10),(3,8),(4,7),(5,9)] generating graphics... => 1
[(1,6),(2,10),(3,8),(4,5),(7,9)] generating graphics... => 2
[(1,6),(2,10),(3,9),(4,8),(5,7)] generating graphics... => 1
[(1,6),(2,10),(3,9),(4,7),(5,8)] generating graphics... => 1
[(1,6),(2,10),(3,9),(4,5),(7,8)] generating graphics... => 2
[(1,7),(2,3),(4,5),(6,10),(8,9)] generating graphics... => 2
[(1,7),(2,3),(4,5),(6,9),(8,10)] generating graphics... => 2
[(1,7),(2,3),(4,5),(6,8),(9,10)] generating graphics... => 2
[(1,7),(2,3),(4,6),(5,10),(8,9)] generating graphics... => 2
[(1,7),(2,3),(4,6),(5,9),(8,10)] generating graphics... => 2
[(1,7),(2,3),(4,6),(5,8),(9,10)] generating graphics... => 2
[(1,7),(2,3),(4,8),(5,6),(9,10)] generating graphics... => 2
[(1,7),(2,3),(4,8),(5,9),(6,10)] generating graphics... => 1
[(1,7),(2,3),(4,8),(5,10),(6,9)] generating graphics... => 1
[(1,7),(2,3),(4,9),(5,6),(8,10)] generating graphics... => 2
[(1,7),(2,3),(4,9),(5,8),(6,10)] generating graphics... => 1
[(1,7),(2,3),(4,9),(5,10),(6,8)] generating graphics... => 1
[(1,7),(2,3),(4,10),(5,6),(8,9)] generating graphics... => 2
[(1,7),(2,3),(4,10),(5,8),(6,9)] generating graphics... => 1
[(1,7),(2,3),(4,10),(5,9),(6,8)] generating graphics... => 1
[(1,7),(2,4),(3,5),(6,10),(8,9)] generating graphics... => 2
[(1,7),(2,4),(3,5),(6,9),(8,10)] generating graphics... => 2
[(1,7),(2,4),(3,5),(6,8),(9,10)] generating graphics... => 2
[(1,7),(2,4),(3,6),(5,10),(8,9)] generating graphics... => 2
[(1,7),(2,4),(3,6),(5,9),(8,10)] generating graphics... => 2
[(1,7),(2,4),(3,6),(5,8),(9,10)] generating graphics... => 2
[(1,7),(2,4),(3,8),(5,6),(9,10)] generating graphics... => 2
[(1,7),(2,4),(3,8),(5,9),(6,10)] generating graphics... => 1
[(1,7),(2,4),(3,8),(5,10),(6,9)] generating graphics... => 1
[(1,7),(2,4),(3,9),(5,6),(8,10)] generating graphics... => 2
[(1,7),(2,4),(3,9),(5,8),(6,10)] generating graphics... => 1
[(1,7),(2,4),(3,9),(5,10),(6,8)] generating graphics... => 1
[(1,7),(2,4),(3,10),(5,6),(8,9)] generating graphics... => 2
[(1,7),(2,4),(3,10),(5,8),(6,9)] generating graphics... => 1
[(1,7),(2,4),(3,10),(5,9),(6,8)] generating graphics... => 1
[(1,7),(2,5),(3,4),(6,10),(8,9)] generating graphics... => 2
[(1,7),(2,5),(3,4),(6,9),(8,10)] generating graphics... => 2
[(1,7),(2,5),(3,4),(6,8),(9,10)] generating graphics... => 2
[(1,7),(2,5),(3,6),(4,10),(8,9)] generating graphics... => 2
[(1,7),(2,5),(3,6),(4,9),(8,10)] generating graphics... => 2
[(1,7),(2,5),(3,6),(4,8),(9,10)] generating graphics... => 2
[(1,7),(2,5),(3,8),(4,6),(9,10)] generating graphics... => 2
[(1,7),(2,5),(3,8),(4,9),(6,10)] generating graphics... => 1
[(1,7),(2,5),(3,8),(4,10),(6,9)] generating graphics... => 1
[(1,7),(2,5),(3,9),(4,6),(8,10)] generating graphics... => 2
[(1,7),(2,5),(3,9),(4,8),(6,10)] generating graphics... => 1
[(1,7),(2,5),(3,9),(4,10),(6,8)] generating graphics... => 1
[(1,7),(2,5),(3,10),(4,6),(8,9)] generating graphics... => 2
[(1,7),(2,5),(3,10),(4,8),(6,9)] generating graphics... => 1
[(1,7),(2,5),(3,10),(4,9),(6,8)] generating graphics... => 1
[(1,7),(2,6),(3,4),(5,10),(8,9)] generating graphics... => 2
[(1,7),(2,6),(3,4),(5,9),(8,10)] generating graphics... => 2
[(1,7),(2,6),(3,4),(5,8),(9,10)] generating graphics... => 2
[(1,7),(2,6),(3,5),(4,10),(8,9)] generating graphics... => 2
[(1,7),(2,6),(3,5),(4,9),(8,10)] generating graphics... => 2
[(1,7),(2,6),(3,5),(4,8),(9,10)] generating graphics... => 2
[(1,7),(2,6),(3,8),(4,5),(9,10)] generating graphics... => 2
[(1,7),(2,6),(3,8),(4,9),(5,10)] generating graphics... => 1
[(1,7),(2,6),(3,8),(4,10),(5,9)] generating graphics... => 1
[(1,7),(2,6),(3,9),(4,5),(8,10)] generating graphics... => 2
[(1,7),(2,6),(3,9),(4,8),(5,10)] generating graphics... => 1
[(1,7),(2,6),(3,9),(4,10),(5,8)] generating graphics... => 1
[(1,7),(2,6),(3,10),(4,5),(8,9)] generating graphics... => 2
[(1,7),(2,6),(3,10),(4,8),(5,9)] generating graphics... => 1
[(1,7),(2,6),(3,10),(4,9),(5,8)] generating graphics... => 1
[(1,7),(2,8),(3,4),(5,6),(9,10)] generating graphics... => 2
[(1,7),(2,8),(3,4),(5,9),(6,10)] generating graphics... => 1
[(1,7),(2,8),(3,4),(5,10),(6,9)] generating graphics... => 1
[(1,7),(2,8),(3,5),(4,6),(9,10)] generating graphics... => 2
[(1,7),(2,8),(3,5),(4,9),(6,10)] generating graphics... => 1
[(1,7),(2,8),(3,5),(4,10),(6,9)] generating graphics... => 1
[(1,7),(2,8),(3,6),(4,5),(9,10)] generating graphics... => 2
[(1,7),(2,8),(3,6),(4,9),(5,10)] generating graphics... => 1
[(1,7),(2,8),(3,6),(4,10),(5,9)] generating graphics... => 1
[(1,7),(2,8),(3,9),(4,10),(5,6)] generating graphics... => 1
[(1,7),(2,8),(3,9),(4,6),(5,10)] generating graphics... => 1
[(1,7),(2,8),(3,9),(4,5),(6,10)] generating graphics... => 1
[(1,7),(2,8),(3,10),(4,9),(5,6)] generating graphics... => 1
[(1,7),(2,8),(3,10),(4,6),(5,9)] generating graphics... => 1
[(1,7),(2,8),(3,10),(4,5),(6,9)] generating graphics... => 1
[(1,7),(2,9),(3,4),(5,6),(8,10)] generating graphics... => 2
[(1,7),(2,9),(3,4),(5,8),(6,10)] generating graphics... => 1
[(1,7),(2,9),(3,4),(5,10),(6,8)] generating graphics... => 1
[(1,7),(2,9),(3,5),(4,6),(8,10)] generating graphics... => 2
[(1,7),(2,9),(3,5),(4,8),(6,10)] generating graphics... => 1
[(1,7),(2,9),(3,5),(4,10),(6,8)] generating graphics... => 1
[(1,7),(2,9),(3,6),(4,5),(8,10)] generating graphics... => 2
[(1,7),(2,9),(3,6),(4,8),(5,10)] generating graphics... => 1
[(1,7),(2,9),(3,6),(4,10),(5,8)] generating graphics... => 1
[(1,7),(2,9),(3,8),(4,10),(5,6)] generating graphics... => 1
[(1,7),(2,9),(3,8),(4,6),(5,10)] generating graphics... => 1
[(1,7),(2,9),(3,8),(4,5),(6,10)] generating graphics... => 1
[(1,7),(2,9),(3,10),(4,8),(5,6)] generating graphics... => 1
[(1,7),(2,9),(3,10),(4,6),(5,8)] generating graphics... => 1
[(1,7),(2,9),(3,10),(4,5),(6,8)] generating graphics... => 1
[(1,7),(2,10),(3,4),(5,6),(8,9)] generating graphics... => 2
[(1,7),(2,10),(3,4),(5,8),(6,9)] generating graphics... => 1
[(1,7),(2,10),(3,4),(5,9),(6,8)] generating graphics... => 1
[(1,7),(2,10),(3,5),(4,6),(8,9)] generating graphics... => 2
[(1,7),(2,10),(3,5),(4,8),(6,9)] generating graphics... => 1
[(1,7),(2,10),(3,5),(4,9),(6,8)] generating graphics... => 1
[(1,7),(2,10),(3,6),(4,5),(8,9)] generating graphics... => 2
[(1,7),(2,10),(3,6),(4,8),(5,9)] generating graphics... => 1
[(1,7),(2,10),(3,6),(4,9),(5,8)] generating graphics... => 1
[(1,7),(2,10),(3,8),(4,9),(5,6)] generating graphics... => 1
[(1,7),(2,10),(3,8),(4,6),(5,9)] generating graphics... => 1
[(1,7),(2,10),(3,8),(4,5),(6,9)] generating graphics... => 1
[(1,7),(2,10),(3,9),(4,8),(5,6)] generating graphics... => 1
[(1,7),(2,10),(3,9),(4,6),(5,8)] generating graphics... => 1
[(1,7),(2,10),(3,9),(4,5),(6,8)] generating graphics... => 1
[(1,8),(2,3),(4,5),(6,7),(9,10)] generating graphics... => 2
[(1,8),(2,3),(4,5),(6,9),(7,10)] generating graphics... => 2
[(1,8),(2,3),(4,5),(6,10),(7,9)] generating graphics... => 2
[(1,8),(2,3),(4,6),(5,7),(9,10)] generating graphics... => 2
[(1,8),(2,3),(4,6),(5,9),(7,10)] generating graphics... => 2
[(1,8),(2,3),(4,6),(5,10),(7,9)] generating graphics... => 2
[(1,8),(2,3),(4,7),(5,6),(9,10)] generating graphics... => 2
[(1,8),(2,3),(4,7),(5,9),(6,10)] generating graphics... => 1
[(1,8),(2,3),(4,7),(5,10),(6,9)] generating graphics... => 1
[(1,8),(2,3),(4,9),(5,10),(6,7)] generating graphics... => 1
[(1,8),(2,3),(4,9),(5,7),(6,10)] generating graphics... => 1
[(1,8),(2,3),(4,9),(5,6),(7,10)] generating graphics... => 2
[(1,8),(2,3),(4,10),(5,9),(6,7)] generating graphics... => 1
[(1,8),(2,3),(4,10),(5,7),(6,9)] generating graphics... => 1
[(1,8),(2,3),(4,10),(5,6),(7,9)] generating graphics... => 2
[(1,8),(2,4),(3,5),(6,7),(9,10)] generating graphics... => 2
[(1,8),(2,4),(3,5),(6,9),(7,10)] generating graphics... => 2
[(1,8),(2,4),(3,5),(6,10),(7,9)] generating graphics... => 2
[(1,8),(2,4),(3,6),(5,7),(9,10)] generating graphics... => 2
[(1,8),(2,4),(3,6),(5,9),(7,10)] generating graphics... => 2
[(1,8),(2,4),(3,6),(5,10),(7,9)] generating graphics... => 2
[(1,8),(2,4),(3,7),(5,6),(9,10)] generating graphics... => 2
[(1,8),(2,4),(3,7),(5,9),(6,10)] generating graphics... => 1
[(1,8),(2,4),(3,7),(5,10),(6,9)] generating graphics... => 1
[(1,8),(2,4),(3,9),(5,10),(6,7)] generating graphics... => 1
[(1,8),(2,4),(3,9),(5,7),(6,10)] generating graphics... => 1
[(1,8),(2,4),(3,9),(5,6),(7,10)] generating graphics... => 2
[(1,8),(2,4),(3,10),(5,9),(6,7)] generating graphics... => 1
[(1,8),(2,4),(3,10),(5,7),(6,9)] generating graphics... => 1
[(1,8),(2,4),(3,10),(5,6),(7,9)] generating graphics... => 2
[(1,8),(2,5),(3,4),(6,7),(9,10)] generating graphics... => 2
[(1,8),(2,5),(3,4),(6,9),(7,10)] generating graphics... => 2
[(1,8),(2,5),(3,4),(6,10),(7,9)] generating graphics... => 2
[(1,8),(2,5),(3,6),(4,7),(9,10)] generating graphics... => 2
[(1,8),(2,5),(3,6),(4,9),(7,10)] generating graphics... => 2
[(1,8),(2,5),(3,6),(4,10),(7,9)] generating graphics... => 2
[(1,8),(2,5),(3,7),(4,6),(9,10)] generating graphics... => 2
[(1,8),(2,5),(3,7),(4,9),(6,10)] generating graphics... => 1
[(1,8),(2,5),(3,7),(4,10),(6,9)] generating graphics... => 1
[(1,8),(2,5),(3,9),(4,10),(6,7)] generating graphics... => 1
[(1,8),(2,5),(3,9),(4,7),(6,10)] generating graphics... => 1
[(1,8),(2,5),(3,9),(4,6),(7,10)] generating graphics... => 2
[(1,8),(2,5),(3,10),(4,9),(6,7)] generating graphics... => 1
[(1,8),(2,5),(3,10),(4,7),(6,9)] generating graphics... => 1
[(1,8),(2,5),(3,10),(4,6),(7,9)] generating graphics... => 2
[(1,8),(2,6),(3,4),(5,7),(9,10)] generating graphics... => 2
[(1,8),(2,6),(3,4),(5,9),(7,10)] generating graphics... => 2
[(1,8),(2,6),(3,4),(5,10),(7,9)] generating graphics... => 2
[(1,8),(2,6),(3,5),(4,7),(9,10)] generating graphics... => 2
[(1,8),(2,6),(3,5),(4,9),(7,10)] generating graphics... => 2
[(1,8),(2,6),(3,5),(4,10),(7,9)] generating graphics... => 2
[(1,8),(2,6),(3,7),(4,5),(9,10)] generating graphics... => 2
[(1,8),(2,6),(3,7),(4,9),(5,10)] generating graphics... => 1
[(1,8),(2,6),(3,7),(4,10),(5,9)] generating graphics... => 1
[(1,8),(2,6),(3,9),(4,10),(5,7)] generating graphics... => 1
[(1,8),(2,6),(3,9),(4,7),(5,10)] generating graphics... => 1
[(1,8),(2,6),(3,9),(4,5),(7,10)] generating graphics... => 2
[(1,8),(2,6),(3,10),(4,9),(5,7)] generating graphics... => 1
[(1,8),(2,6),(3,10),(4,7),(5,9)] generating graphics... => 1
[(1,8),(2,6),(3,10),(4,5),(7,9)] generating graphics... => 2
[(1,8),(2,7),(3,4),(5,6),(9,10)] generating graphics... => 2
[(1,8),(2,7),(3,4),(5,9),(6,10)] generating graphics... => 1
[(1,8),(2,7),(3,4),(5,10),(6,9)] generating graphics... => 1
[(1,8),(2,7),(3,5),(4,6),(9,10)] generating graphics... => 2
[(1,8),(2,7),(3,5),(4,9),(6,10)] generating graphics... => 1
[(1,8),(2,7),(3,5),(4,10),(6,9)] generating graphics... => 1
[(1,8),(2,7),(3,6),(4,5),(9,10)] generating graphics... => 2
[(1,8),(2,7),(3,6),(4,9),(5,10)] generating graphics... => 1
[(1,8),(2,7),(3,6),(4,10),(5,9)] generating graphics... => 1
[(1,8),(2,7),(3,9),(4,10),(5,6)] generating graphics... => 1
[(1,8),(2,7),(3,9),(4,6),(5,10)] generating graphics... => 1
[(1,8),(2,7),(3,9),(4,5),(6,10)] generating graphics... => 1
[(1,8),(2,7),(3,10),(4,9),(5,6)] generating graphics... => 1
[(1,8),(2,7),(3,10),(4,6),(5,9)] generating graphics... => 1
[(1,8),(2,7),(3,10),(4,5),(6,9)] generating graphics... => 1
[(1,8),(2,9),(3,4),(5,10),(6,7)] generating graphics... => 1
[(1,8),(2,9),(3,4),(5,7),(6,10)] generating graphics... => 1
[(1,8),(2,9),(3,4),(5,6),(7,10)] generating graphics... => 2
[(1,8),(2,9),(3,5),(4,10),(6,7)] generating graphics... => 1
[(1,8),(2,9),(3,5),(4,7),(6,10)] generating graphics... => 1
[(1,8),(2,9),(3,5),(4,6),(7,10)] generating graphics... => 2
[(1,8),(2,9),(3,6),(4,10),(5,7)] generating graphics... => 1
[(1,8),(2,9),(3,6),(4,7),(5,10)] generating graphics... => 1
[(1,8),(2,9),(3,6),(4,5),(7,10)] generating graphics... => 2
[(1,8),(2,9),(3,7),(4,10),(5,6)] generating graphics... => 1
[(1,8),(2,9),(3,7),(4,6),(5,10)] generating graphics... => 1
[(1,8),(2,9),(3,7),(4,5),(6,10)] generating graphics... => 1
[(1,8),(2,9),(3,10),(4,5),(6,7)] generating graphics... => 1
[(1,8),(2,9),(3,10),(4,6),(5,7)] generating graphics... => 1
[(1,8),(2,9),(3,10),(4,7),(5,6)] generating graphics... => 1
[(1,8),(2,10),(3,4),(5,9),(6,7)] generating graphics... => 1
[(1,8),(2,10),(3,4),(5,7),(6,9)] generating graphics... => 1
[(1,8),(2,10),(3,4),(5,6),(7,9)] generating graphics... => 2
[(1,8),(2,10),(3,5),(4,9),(6,7)] generating graphics... => 1
[(1,8),(2,10),(3,5),(4,7),(6,9)] generating graphics... => 1
[(1,8),(2,10),(3,5),(4,6),(7,9)] generating graphics... => 2
[(1,8),(2,10),(3,6),(4,9),(5,7)] generating graphics... => 1
[(1,8),(2,10),(3,6),(4,7),(5,9)] generating graphics... => 1
[(1,8),(2,10),(3,6),(4,5),(7,9)] generating graphics... => 2
[(1,8),(2,10),(3,7),(4,9),(5,6)] generating graphics... => 1
[(1,8),(2,10),(3,7),(4,6),(5,9)] generating graphics... => 1
[(1,8),(2,10),(3,7),(4,5),(6,9)] generating graphics... => 1
[(1,8),(2,10),(3,9),(4,5),(6,7)] generating graphics... => 1
[(1,8),(2,10),(3,9),(4,6),(5,7)] generating graphics... => 1
[(1,8),(2,10),(3,9),(4,7),(5,6)] generating graphics... => 1
[(1,9),(2,3),(4,5),(6,7),(8,10)] generating graphics... => 2
[(1,9),(2,3),(4,5),(6,8),(7,10)] generating graphics... => 2
[(1,9),(2,3),(4,5),(6,10),(7,8)] generating graphics... => 2
[(1,9),(2,3),(4,6),(5,7),(8,10)] generating graphics... => 2
[(1,9),(2,3),(4,6),(5,8),(7,10)] generating graphics... => 2
[(1,9),(2,3),(4,6),(5,10),(7,8)] generating graphics... => 2
[(1,9),(2,3),(4,7),(5,6),(8,10)] generating graphics... => 2
[(1,9),(2,3),(4,7),(5,8),(6,10)] generating graphics... => 1
[(1,9),(2,3),(4,7),(5,10),(6,8)] generating graphics... => 1
[(1,9),(2,3),(4,8),(5,10),(6,7)] generating graphics... => 1
[(1,9),(2,3),(4,8),(5,7),(6,10)] generating graphics... => 1
[(1,9),(2,3),(4,8),(5,6),(7,10)] generating graphics... => 2
[(1,9),(2,3),(4,10),(5,8),(6,7)] generating graphics... => 1
[(1,9),(2,3),(4,10),(5,7),(6,8)] generating graphics... => 1
[(1,9),(2,3),(4,10),(5,6),(7,8)] generating graphics... => 2
[(1,9),(2,4),(3,5),(6,7),(8,10)] generating graphics... => 2
[(1,9),(2,4),(3,5),(6,8),(7,10)] generating graphics... => 2
[(1,9),(2,4),(3,5),(6,10),(7,8)] generating graphics... => 2
[(1,9),(2,4),(3,6),(5,7),(8,10)] generating graphics... => 2
[(1,9),(2,4),(3,6),(5,8),(7,10)] generating graphics... => 2
[(1,9),(2,4),(3,6),(5,10),(7,8)] generating graphics... => 2
[(1,9),(2,4),(3,7),(5,6),(8,10)] generating graphics... => 2
[(1,9),(2,4),(3,7),(5,8),(6,10)] generating graphics... => 1
[(1,9),(2,4),(3,7),(5,10),(6,8)] generating graphics... => 1
[(1,9),(2,4),(3,8),(5,10),(6,7)] generating graphics... => 1
[(1,9),(2,4),(3,8),(5,7),(6,10)] generating graphics... => 1
[(1,9),(2,4),(3,8),(5,6),(7,10)] generating graphics... => 2
[(1,9),(2,4),(3,10),(5,8),(6,7)] generating graphics... => 1
[(1,9),(2,4),(3,10),(5,7),(6,8)] generating graphics... => 1
[(1,9),(2,4),(3,10),(5,6),(7,8)] generating graphics... => 2
[(1,9),(2,5),(3,4),(6,7),(8,10)] generating graphics... => 2
[(1,9),(2,5),(3,4),(6,8),(7,10)] generating graphics... => 2
[(1,9),(2,5),(3,4),(6,10),(7,8)] generating graphics... => 2
[(1,9),(2,5),(3,6),(4,7),(8,10)] generating graphics... => 2
[(1,9),(2,5),(3,6),(4,8),(7,10)] generating graphics... => 2
[(1,9),(2,5),(3,6),(4,10),(7,8)] generating graphics... => 2
[(1,9),(2,5),(3,7),(4,6),(8,10)] generating graphics... => 2
[(1,9),(2,5),(3,7),(4,8),(6,10)] generating graphics... => 1
[(1,9),(2,5),(3,7),(4,10),(6,8)] generating graphics... => 1
[(1,9),(2,5),(3,8),(4,10),(6,7)] generating graphics... => 1
[(1,9),(2,5),(3,8),(4,7),(6,10)] generating graphics... => 1
[(1,9),(2,5),(3,8),(4,6),(7,10)] generating graphics... => 2
[(1,9),(2,5),(3,10),(4,8),(6,7)] generating graphics... => 1
[(1,9),(2,5),(3,10),(4,7),(6,8)] generating graphics... => 1
[(1,9),(2,5),(3,10),(4,6),(7,8)] generating graphics... => 2
[(1,9),(2,6),(3,4),(5,7),(8,10)] generating graphics... => 2
[(1,9),(2,6),(3,4),(5,8),(7,10)] generating graphics... => 2
[(1,9),(2,6),(3,4),(5,10),(7,8)] generating graphics... => 2
[(1,9),(2,6),(3,5),(4,7),(8,10)] generating graphics... => 2
[(1,9),(2,6),(3,5),(4,8),(7,10)] generating graphics... => 2
[(1,9),(2,6),(3,5),(4,10),(7,8)] generating graphics... => 2
[(1,9),(2,6),(3,7),(4,5),(8,10)] generating graphics... => 2
[(1,9),(2,6),(3,7),(4,8),(5,10)] generating graphics... => 1
[(1,9),(2,6),(3,7),(4,10),(5,8)] generating graphics... => 1
[(1,9),(2,6),(3,8),(4,10),(5,7)] generating graphics... => 1
[(1,9),(2,6),(3,8),(4,7),(5,10)] generating graphics... => 1
[(1,9),(2,6),(3,8),(4,5),(7,10)] generating graphics... => 2
[(1,9),(2,6),(3,10),(4,8),(5,7)] generating graphics... => 1
[(1,9),(2,6),(3,10),(4,7),(5,8)] generating graphics... => 1
[(1,9),(2,6),(3,10),(4,5),(7,8)] generating graphics... => 2
[(1,9),(2,7),(3,4),(5,6),(8,10)] generating graphics... => 2
[(1,9),(2,7),(3,4),(5,8),(6,10)] generating graphics... => 1
[(1,9),(2,7),(3,4),(5,10),(6,8)] generating graphics... => 1
[(1,9),(2,7),(3,5),(4,6),(8,10)] generating graphics... => 2
[(1,9),(2,7),(3,5),(4,8),(6,10)] generating graphics... => 1
[(1,9),(2,7),(3,5),(4,10),(6,8)] generating graphics... => 1
[(1,9),(2,7),(3,6),(4,5),(8,10)] generating graphics... => 2
[(1,9),(2,7),(3,6),(4,8),(5,10)] generating graphics... => 1
[(1,9),(2,7),(3,6),(4,10),(5,8)] generating graphics... => 1
[(1,9),(2,7),(3,8),(4,10),(5,6)] generating graphics... => 1
[(1,9),(2,7),(3,8),(4,6),(5,10)] generating graphics... => 1
[(1,9),(2,7),(3,8),(4,5),(6,10)] generating graphics... => 1
[(1,9),(2,7),(3,10),(4,8),(5,6)] generating graphics... => 1
[(1,9),(2,7),(3,10),(4,6),(5,8)] generating graphics... => 1
[(1,9),(2,7),(3,10),(4,5),(6,8)] generating graphics... => 1
[(1,9),(2,8),(3,4),(5,10),(6,7)] generating graphics... => 1
[(1,9),(2,8),(3,4),(5,7),(6,10)] generating graphics... => 1
[(1,9),(2,8),(3,4),(5,6),(7,10)] generating graphics... => 2
[(1,9),(2,8),(3,5),(4,10),(6,7)] generating graphics... => 1
[(1,9),(2,8),(3,5),(4,7),(6,10)] generating graphics... => 1
[(1,9),(2,8),(3,5),(4,6),(7,10)] generating graphics... => 2
[(1,9),(2,8),(3,6),(4,10),(5,7)] generating graphics... => 1
[(1,9),(2,8),(3,6),(4,7),(5,10)] generating graphics... => 1
[(1,9),(2,8),(3,6),(4,5),(7,10)] generating graphics... => 2
[(1,9),(2,8),(3,7),(4,10),(5,6)] generating graphics... => 1
[(1,9),(2,8),(3,7),(4,6),(5,10)] generating graphics... => 1
[(1,9),(2,8),(3,7),(4,5),(6,10)] generating graphics... => 1
[(1,9),(2,8),(3,10),(4,5),(6,7)] generating graphics... => 1
[(1,9),(2,8),(3,10),(4,6),(5,7)] generating graphics... => 1
[(1,9),(2,8),(3,10),(4,7),(5,6)] generating graphics... => 1
[(1,9),(2,10),(3,4),(5,8),(6,7)] generating graphics... => 1
[(1,9),(2,10),(3,4),(5,7),(6,8)] generating graphics... => 1
[(1,9),(2,10),(3,4),(5,6),(7,8)] generating graphics... => 2
[(1,9),(2,10),(3,5),(4,8),(6,7)] generating graphics... => 1
[(1,9),(2,10),(3,5),(4,7),(6,8)] generating graphics... => 1
[(1,9),(2,10),(3,5),(4,6),(7,8)] generating graphics... => 2
[(1,9),(2,10),(3,6),(4,8),(5,7)] generating graphics... => 1
[(1,9),(2,10),(3,6),(4,7),(5,8)] generating graphics... => 1
[(1,9),(2,10),(3,6),(4,5),(7,8)] generating graphics... => 2
[(1,9),(2,10),(3,7),(4,8),(5,6)] generating graphics... => 1
[(1,9),(2,10),(3,7),(4,6),(5,8)] generating graphics... => 1
[(1,9),(2,10),(3,7),(4,5),(6,8)] generating graphics... => 1
[(1,9),(2,10),(3,8),(4,5),(6,7)] generating graphics... => 1
[(1,9),(2,10),(3,8),(4,6),(5,7)] generating graphics... => 1
[(1,9),(2,10),(3,8),(4,7),(5,6)] generating graphics... => 1
[(1,10),(2,3),(4,5),(6,7),(8,9)] generating graphics... => 2
[(1,10),(2,3),(4,5),(6,8),(7,9)] generating graphics... => 2
[(1,10),(2,3),(4,5),(6,9),(7,8)] generating graphics... => 2
[(1,10),(2,3),(4,6),(5,7),(8,9)] generating graphics... => 2
[(1,10),(2,3),(4,6),(5,8),(7,9)] generating graphics... => 2
[(1,10),(2,3),(4,6),(5,9),(7,8)] generating graphics... => 2
[(1,10),(2,3),(4,7),(5,6),(8,9)] generating graphics... => 2
[(1,10),(2,3),(4,7),(5,8),(6,9)] generating graphics... => 1
[(1,10),(2,3),(4,7),(5,9),(6,8)] generating graphics... => 1
[(1,10),(2,3),(4,8),(5,9),(6,7)] generating graphics... => 1
[(1,10),(2,3),(4,8),(5,7),(6,9)] generating graphics... => 1
[(1,10),(2,3),(4,8),(5,6),(7,9)] generating graphics... => 2
[(1,10),(2,3),(4,9),(5,8),(6,7)] generating graphics... => 1
[(1,10),(2,3),(4,9),(5,7),(6,8)] generating graphics... => 1
[(1,10),(2,3),(4,9),(5,6),(7,8)] generating graphics... => 2
[(1,10),(2,4),(3,5),(6,7),(8,9)] generating graphics... => 2
[(1,10),(2,4),(3,5),(6,8),(7,9)] generating graphics... => 2
[(1,10),(2,4),(3,5),(6,9),(7,8)] generating graphics... => 2
[(1,10),(2,4),(3,6),(5,7),(8,9)] generating graphics... => 2
[(1,10),(2,4),(3,6),(5,8),(7,9)] generating graphics... => 2
[(1,10),(2,4),(3,6),(5,9),(7,8)] generating graphics... => 2
[(1,10),(2,4),(3,7),(5,6),(8,9)] generating graphics... => 2
[(1,10),(2,4),(3,7),(5,8),(6,9)] generating graphics... => 1
[(1,10),(2,4),(3,7),(5,9),(6,8)] generating graphics... => 1
[(1,10),(2,4),(3,8),(5,9),(6,7)] generating graphics... => 1
[(1,10),(2,4),(3,8),(5,7),(6,9)] generating graphics... => 1
[(1,10),(2,4),(3,8),(5,6),(7,9)] generating graphics... => 2
[(1,10),(2,4),(3,9),(5,8),(6,7)] generating graphics... => 1
[(1,10),(2,4),(3,9),(5,7),(6,8)] generating graphics... => 1
[(1,10),(2,4),(3,9),(5,6),(7,8)] generating graphics... => 2
[(1,10),(2,5),(3,4),(6,7),(8,9)] generating graphics... => 2
[(1,10),(2,5),(3,4),(6,8),(7,9)] generating graphics... => 2
[(1,10),(2,5),(3,4),(6,9),(7,8)] generating graphics... => 2
[(1,10),(2,5),(3,6),(4,7),(8,9)] generating graphics... => 2
[(1,10),(2,5),(3,6),(4,8),(7,9)] generating graphics... => 2
[(1,10),(2,5),(3,6),(4,9),(7,8)] generating graphics... => 2
[(1,10),(2,5),(3,7),(4,6),(8,9)] generating graphics... => 2
[(1,10),(2,5),(3,7),(4,8),(6,9)] generating graphics... => 1
[(1,10),(2,5),(3,7),(4,9),(6,8)] generating graphics... => 1
[(1,10),(2,5),(3,8),(4,9),(6,7)] generating graphics... => 1
[(1,10),(2,5),(3,8),(4,7),(6,9)] generating graphics... => 1
[(1,10),(2,5),(3,8),(4,6),(7,9)] generating graphics... => 2
[(1,10),(2,5),(3,9),(4,8),(6,7)] generating graphics... => 1
[(1,10),(2,5),(3,9),(4,7),(6,8)] generating graphics... => 1
[(1,10),(2,5),(3,9),(4,6),(7,8)] generating graphics... => 2
[(1,10),(2,6),(3,4),(5,7),(8,9)] generating graphics... => 2
[(1,10),(2,6),(3,4),(5,8),(7,9)] generating graphics... => 2
[(1,10),(2,6),(3,4),(5,9),(7,8)] generating graphics... => 2
[(1,10),(2,6),(3,5),(4,7),(8,9)] generating graphics... => 2
[(1,10),(2,6),(3,5),(4,8),(7,9)] generating graphics... => 2
[(1,10),(2,6),(3,5),(4,9),(7,8)] generating graphics... => 2
[(1,10),(2,6),(3,7),(4,5),(8,9)] generating graphics... => 2
[(1,10),(2,6),(3,7),(4,8),(5,9)] generating graphics... => 1
[(1,10),(2,6),(3,7),(4,9),(5,8)] generating graphics... => 1
[(1,10),(2,6),(3,8),(4,9),(5,7)] generating graphics... => 1
[(1,10),(2,6),(3,8),(4,7),(5,9)] generating graphics... => 1
[(1,10),(2,6),(3,8),(4,5),(7,9)] generating graphics... => 2
[(1,10),(2,6),(3,9),(4,8),(5,7)] generating graphics... => 1
[(1,10),(2,6),(3,9),(4,7),(5,8)] generating graphics... => 1
[(1,10),(2,6),(3,9),(4,5),(7,8)] generating graphics... => 2
[(1,10),(2,7),(3,4),(5,6),(8,9)] generating graphics... => 2
[(1,10),(2,7),(3,4),(5,8),(6,9)] generating graphics... => 1
[(1,10),(2,7),(3,4),(5,9),(6,8)] generating graphics... => 1
[(1,10),(2,7),(3,5),(4,6),(8,9)] generating graphics... => 2
[(1,10),(2,7),(3,5),(4,8),(6,9)] generating graphics... => 1
[(1,10),(2,7),(3,5),(4,9),(6,8)] generating graphics... => 1
[(1,10),(2,7),(3,6),(4,5),(8,9)] generating graphics... => 2
[(1,10),(2,7),(3,6),(4,8),(5,9)] generating graphics... => 1
[(1,10),(2,7),(3,6),(4,9),(5,8)] generating graphics... => 1
[(1,10),(2,7),(3,8),(4,9),(5,6)] generating graphics... => 1
[(1,10),(2,7),(3,8),(4,6),(5,9)] generating graphics... => 1
[(1,10),(2,7),(3,8),(4,5),(6,9)] generating graphics... => 1
[(1,10),(2,7),(3,9),(4,8),(5,6)] generating graphics... => 1
[(1,10),(2,7),(3,9),(4,6),(5,8)] generating graphics... => 1
[(1,10),(2,7),(3,9),(4,5),(6,8)] generating graphics... => 1
[(1,10),(2,8),(3,4),(5,9),(6,7)] generating graphics... => 1
[(1,10),(2,8),(3,4),(5,7),(6,9)] generating graphics... => 1
[(1,10),(2,8),(3,4),(5,6),(7,9)] generating graphics... => 2
[(1,10),(2,8),(3,5),(4,9),(6,7)] generating graphics... => 1
[(1,10),(2,8),(3,5),(4,7),(6,9)] generating graphics... => 1
[(1,10),(2,8),(3,5),(4,6),(7,9)] generating graphics... => 2
[(1,10),(2,8),(3,6),(4,9),(5,7)] generating graphics... => 1
[(1,10),(2,8),(3,6),(4,7),(5,9)] generating graphics... => 1
[(1,10),(2,8),(3,6),(4,5),(7,9)] generating graphics... => 2
[(1,10),(2,8),(3,7),(4,9),(5,6)] generating graphics... => 1
[(1,10),(2,8),(3,7),(4,6),(5,9)] generating graphics... => 1
[(1,10),(2,8),(3,7),(4,5),(6,9)] generating graphics... => 1
[(1,10),(2,8),(3,9),(4,5),(6,7)] generating graphics... => 1
[(1,10),(2,8),(3,9),(4,6),(5,7)] generating graphics... => 1
[(1,10),(2,8),(3,9),(4,7),(5,6)] generating graphics... => 1
[(1,10),(2,9),(3,4),(5,8),(6,7)] generating graphics... => 1
[(1,10),(2,9),(3,4),(5,7),(6,8)] generating graphics... => 1
[(1,10),(2,9),(3,4),(5,6),(7,8)] generating graphics... => 2
[(1,10),(2,9),(3,5),(4,8),(6,7)] generating graphics... => 1
[(1,10),(2,9),(3,5),(4,7),(6,8)] generating graphics... => 1
[(1,10),(2,9),(3,5),(4,6),(7,8)] generating graphics... => 2
[(1,10),(2,9),(3,6),(4,8),(5,7)] generating graphics... => 1
[(1,10),(2,9),(3,6),(4,7),(5,8)] generating graphics... => 1
[(1,10),(2,9),(3,6),(4,5),(7,8)] generating graphics... => 2
[(1,10),(2,9),(3,7),(4,8),(5,6)] generating graphics... => 1
[(1,10),(2,9),(3,7),(4,6),(5,8)] generating graphics... => 1
[(1,10),(2,9),(3,7),(4,5),(6,8)] generating graphics... => 1
[(1,10),(2,9),(3,8),(4,5),(6,7)] generating graphics... => 1
[(1,10),(2,9),(3,8),(4,6),(5,7)] generating graphics... => 1
[(1,10),(2,9),(3,8),(4,7),(5,6)] generating graphics... => 1
[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] generating graphics... => 3
[(1,2),(3,4),(5,6),(7,8),(9,11),(10,12)] generating graphics... => 3
[(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)] generating graphics... => 3
[(1,2),(3,4),(5,6),(7,9),(8,10),(11,12)] generating graphics... => 3
[(1,2),(3,4),(5,6),(7,9),(8,11),(10,12)] generating graphics... => 3
[(1,2),(3,4),(5,6),(7,9),(8,12),(10,11)] generating graphics... => 3
[(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)] generating graphics... => 3
[(1,2),(3,4),(5,6),(7,10),(8,11),(9,12)] generating graphics... => 3
[(1,2),(3,4),(5,6),(7,10),(8,12),(9,11)] generating graphics... => 3
[(1,2),(3,4),(5,6),(7,11),(8,9),(10,12)] generating graphics... => 3
[(1,2),(3,4),(5,6),(7,11),(8,10),(9,12)] generating graphics... => 3
[(1,2),(3,4),(5,6),(7,11),(8,12),(9,10)] generating graphics... => 3
[(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)] generating graphics... => 3
[(1,2),(3,4),(5,6),(7,12),(8,10),(9,11)] generating graphics... => 3
[(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,8),(9,10),(11,12)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,8),(9,11),(10,12)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,8),(9,12),(10,11)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,9),(8,10),(11,12)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,9),(8,11),(10,12)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,9),(8,12),(10,11)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,10),(8,9),(11,12)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,10),(8,11),(9,12)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,10),(8,12),(9,11)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,11),(8,9),(10,12)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,11),(8,10),(9,12)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,11),(8,12),(9,10)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,12),(8,9),(10,11)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,12),(8,10),(9,11)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,12),(8,11),(9,10)] generating graphics... => 3
[(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)] generating graphics... => 3
[(1,2),(3,4),(5,8),(6,7),(9,11),(10,12)] generating graphics... => 3
[(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)] generating graphics... => 3
[(1,2),(3,4),(5,8),(6,9),(7,12),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,9),(7,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,9),(7,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,10),(7,12),(9,11)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,10),(7,11),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,10),(7,9),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,11),(7,12),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,11),(7,10),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,11),(7,9),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,12),(7,11),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,12),(7,10),(9,11)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,12),(7,9),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,7),(8,10),(11,12)] generating graphics... => 3
[(1,2),(3,4),(5,9),(6,7),(8,11),(10,12)] generating graphics... => 3
[(1,2),(3,4),(5,9),(6,7),(8,12),(10,11)] generating graphics... => 3
[(1,2),(3,4),(5,9),(6,8),(7,12),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,8),(7,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,8),(7,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,10),(7,12),(8,11)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,10),(7,11),(8,12)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,10),(7,8),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,11),(7,12),(8,10)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,11),(7,10),(8,12)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,11),(7,8),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,12),(7,11),(8,10)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,12),(7,10),(8,11)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,12),(7,8),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)] generating graphics... => 3
[(1,2),(3,4),(5,10),(6,7),(8,11),(9,12)] generating graphics... => 3
[(1,2),(3,4),(5,10),(6,7),(8,12),(9,11)] generating graphics... => 3
[(1,2),(3,4),(5,10),(6,8),(7,12),(9,11)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,8),(7,11),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,8),(7,9),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,9),(7,12),(8,11)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,9),(7,11),(8,12)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,11),(7,12),(8,9)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,11),(7,9),(8,12)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,11),(7,8),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,12),(7,11),(8,9)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,12),(7,9),(8,11)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,12),(7,8),(9,11)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,7),(8,9),(10,12)] generating graphics... => 3
[(1,2),(3,4),(5,11),(6,7),(8,10),(9,12)] generating graphics... => 3
[(1,2),(3,4),(5,11),(6,7),(8,12),(9,10)] generating graphics... => 3
[(1,2),(3,4),(5,11),(6,8),(7,12),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,8),(7,10),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,8),(7,9),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,9),(7,12),(8,10)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,9),(7,10),(8,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,9),(7,8),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,10),(7,12),(8,9)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,10),(7,9),(8,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,10),(7,8),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,12),(7,10),(8,9)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,12),(7,9),(8,10)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,12),(7,8),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)] generating graphics... => 3
[(1,2),(3,4),(5,12),(6,7),(8,10),(9,11)] generating graphics... => 3
[(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)] generating graphics... => 3
[(1,2),(3,4),(5,12),(6,8),(7,11),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,8),(7,10),(9,11)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,8),(7,9),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,9),(7,11),(8,10)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,9),(7,10),(8,11)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,10),(7,11),(8,9)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,10),(7,9),(8,11)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,10),(7,8),(9,11)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,11),(7,9),(8,10)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,8),(9,10),(11,12)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,8),(9,11),(10,12)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,8),(9,12),(10,11)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,9),(8,10),(11,12)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,9),(8,11),(10,12)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,9),(8,12),(10,11)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,10),(8,9),(11,12)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,10),(8,11),(9,12)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,10),(8,12),(9,11)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,11),(8,9),(10,12)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,11),(8,10),(9,12)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,11),(8,12),(9,10)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,12),(8,9),(10,11)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,12),(8,10),(9,11)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,12),(8,11),(9,10)] generating graphics... => 3
[(1,2),(3,5),(4,7),(6,8),(9,10),(11,12)] generating graphics... => 3
[(1,2),(3,5),(4,7),(6,8),(9,11),(10,12)] generating graphics... => 3
[(1,2),(3,5),(4,7),(6,8),(9,12),(10,11)] generating graphics... => 3
[(1,2),(3,5),(4,7),(6,9),(8,10),(11,12)] generating graphics... => 3
[(1,2),(3,5),(4,7),(6,9),(8,11),(10,12)] generating graphics... => 3
[(1,2),(3,5),(4,7),(6,9),(8,12),(10,11)] generating graphics... => 3
[(1,2),(3,5),(4,7),(6,10),(8,9),(11,12)] generating graphics... => 3
[(1,2),(3,5),(4,7),(6,10),(8,11),(9,12)] generating graphics... => 3
[(1,2),(3,5),(4,7),(6,10),(8,12),(9,11)] generating graphics... => 3
[(1,2),(3,5),(4,7),(6,11),(8,9),(10,12)] generating graphics... => 3
[(1,2),(3,5),(4,7),(6,11),(8,10),(9,12)] generating graphics... => 3
click to show generating function       
Description
The number of pairs whose larger element is at most one more than half the size of the perfect matching.
Under the bijection between perfect matchings of $\{1,\dots,2n\}$ and rooted unordered binary trees with $n+1$ labelled leaves described in Example 5.2.6 of [1], this is the number of nodes having two leaves as children.
The number of perfect matchings of $\{1,\dots,2n\}$ with $j$ such pairs, computed in [2], is
$$ \frac{(2j-3)!! (n+1)!}{2^j j!}\binom{n-1}{2j-2}. $$
References
[1] Stanley, R. P. Enumerative combinatorics. Vol. 2 MathSciNet:1676282
[2] Dale, M. R. T., Moon, J. W. The permuted analogues of three Catalan sets MathSciNet:1209991
Code
def statistic(m):
    return len([1 for a,b in m if max(a,b) <= m.size()//2 + 1])

Created
Nov 09, 2017 at 20:56 by Martin Rubey
Updated
Nov 09, 2017 at 20:56 by Martin Rubey