Identifier
Identifier
Values
[(1,2)] generating graphics... => 1
[(1,2),(3,4)] generating graphics... => 1
[(1,3),(2,4)] generating graphics... => 1
[(1,4),(2,3)] generating graphics... => 1
[(1,2),(3,4),(5,6)] generating graphics... => 2
[(1,2),(3,5),(4,6)] generating graphics... => 1
[(1,2),(3,6),(4,5)] generating graphics... => 1
[(1,3),(2,4),(5,6)] generating graphics... => 2
[(1,3),(2,5),(4,6)] generating graphics... => 1
[(1,3),(2,6),(4,5)] generating graphics... => 1
[(1,4),(2,3),(5,6)] generating graphics... => 2
[(1,4),(2,5),(3,6)] generating graphics... => 1
[(1,4),(2,6),(3,5)] generating graphics... => 1
[(1,5),(2,3),(4,6)] generating graphics... => 1
[(1,5),(2,4),(3,6)] generating graphics... => 1
[(1,5),(2,6),(3,4)] generating graphics... => 1
[(1,6),(2,3),(4,5)] generating graphics... => 1
[(1,6),(2,4),(3,5)] generating graphics... => 1
[(1,6),(2,5),(3,4)] generating graphics... => 1
[(1,2),(3,4),(5,8),(6,7)] generating graphics... => 1
[(1,2),(3,4),(5,7),(6,8)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,8)] generating graphics... => 2
[(1,2),(3,5),(4,8),(6,7)] generating graphics... => 1
[(1,2),(3,5),(4,7),(6,8)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,8)] generating graphics... => 2
[(1,2),(3,6),(4,8),(5,7)] generating graphics... => 1
[(1,2),(3,6),(4,7),(5,8)] generating graphics... => 1
[(1,2),(3,6),(4,5),(7,8)] generating graphics... => 2
[(1,2),(3,7),(4,8),(5,6)] generating graphics... => 1
[(1,2),(3,7),(4,6),(5,8)] generating graphics... => 1
[(1,2),(3,7),(4,5),(6,8)] generating graphics... => 2
[(1,2),(3,8),(4,5),(6,7)] generating graphics... => 1
[(1,2),(3,8),(4,6),(5,7)] generating graphics... => 1
[(1,2),(3,8),(4,7),(5,6)] generating graphics... => 1
[(1,3),(2,4),(5,8),(6,7)] generating graphics... => 1
[(1,3),(2,4),(5,7),(6,8)] generating graphics... => 2
[(1,3),(2,4),(5,6),(7,8)] generating graphics... => 2
[(1,3),(2,5),(4,8),(6,7)] generating graphics... => 1
[(1,3),(2,5),(4,7),(6,8)] generating graphics... => 2
[(1,3),(2,5),(4,6),(7,8)] generating graphics... => 2
[(1,3),(2,6),(4,8),(5,7)] generating graphics... => 1
[(1,3),(2,6),(4,7),(5,8)] generating graphics... => 1
[(1,3),(2,6),(4,5),(7,8)] generating graphics... => 2
[(1,3),(2,7),(4,8),(5,6)] generating graphics... => 1
[(1,3),(2,7),(4,6),(5,8)] generating graphics... => 1
[(1,3),(2,7),(4,5),(6,8)] generating graphics... => 2
[(1,3),(2,8),(4,5),(6,7)] generating graphics... => 1
[(1,3),(2,8),(4,6),(5,7)] generating graphics... => 1
[(1,3),(2,8),(4,7),(5,6)] generating graphics... => 1
[(1,4),(2,3),(5,8),(6,7)] generating graphics... => 1
[(1,4),(2,3),(5,7),(6,8)] generating graphics... => 2
[(1,4),(2,3),(5,6),(7,8)] generating graphics... => 2
[(1,4),(2,5),(3,8),(6,7)] generating graphics... => 1
[(1,4),(2,5),(3,7),(6,8)] generating graphics... => 2
[(1,4),(2,5),(3,6),(7,8)] generating graphics... => 2
[(1,4),(2,6),(3,8),(5,7)] generating graphics... => 1
[(1,4),(2,6),(3,7),(5,8)] generating graphics... => 1
[(1,4),(2,6),(3,5),(7,8)] generating graphics... => 2
[(1,4),(2,7),(3,8),(5,6)] generating graphics... => 1
[(1,4),(2,7),(3,6),(5,8)] generating graphics... => 1
[(1,4),(2,7),(3,5),(6,8)] generating graphics... => 2
[(1,4),(2,8),(3,5),(6,7)] generating graphics... => 1
[(1,4),(2,8),(3,6),(5,7)] generating graphics... => 1
[(1,4),(2,8),(3,7),(5,6)] generating graphics... => 1
[(1,5),(2,3),(4,8),(6,7)] generating graphics... => 1
[(1,5),(2,3),(4,7),(6,8)] generating graphics... => 2
[(1,5),(2,3),(4,6),(7,8)] generating graphics... => 2
[(1,5),(2,4),(3,8),(6,7)] generating graphics... => 1
[(1,5),(2,4),(3,7),(6,8)] generating graphics... => 2
[(1,5),(2,4),(3,6),(7,8)] generating graphics... => 2
[(1,5),(2,6),(3,8),(4,7)] generating graphics... => 1
[(1,5),(2,6),(3,7),(4,8)] generating graphics... => 1
[(1,5),(2,6),(3,4),(7,8)] generating graphics... => 2
[(1,5),(2,7),(3,8),(4,6)] generating graphics... => 1
[(1,5),(2,7),(3,6),(4,8)] generating graphics... => 1
[(1,5),(2,7),(3,4),(6,8)] generating graphics... => 2
[(1,5),(2,8),(3,4),(6,7)] generating graphics... => 1
[(1,5),(2,8),(3,6),(4,7)] generating graphics... => 1
[(1,5),(2,8),(3,7),(4,6)] generating graphics... => 1
[(1,6),(2,3),(4,8),(5,7)] generating graphics... => 1
[(1,6),(2,3),(4,7),(5,8)] generating graphics... => 1
[(1,6),(2,3),(4,5),(7,8)] generating graphics... => 2
[(1,6),(2,4),(3,8),(5,7)] generating graphics... => 1
[(1,6),(2,4),(3,7),(5,8)] generating graphics... => 1
[(1,6),(2,4),(3,5),(7,8)] generating graphics... => 2
[(1,6),(2,5),(3,8),(4,7)] generating graphics... => 1
[(1,6),(2,5),(3,7),(4,8)] generating graphics... => 1
[(1,6),(2,5),(3,4),(7,8)] generating graphics... => 2
[(1,6),(2,7),(3,8),(4,5)] generating graphics... => 1
[(1,6),(2,7),(3,5),(4,8)] generating graphics... => 1
[(1,6),(2,7),(3,4),(5,8)] generating graphics... => 1
[(1,6),(2,8),(3,4),(5,7)] generating graphics... => 1
[(1,6),(2,8),(3,5),(4,7)] generating graphics... => 1
[(1,6),(2,8),(3,7),(4,5)] generating graphics... => 1
[(1,7),(2,3),(4,8),(5,6)] generating graphics... => 1
[(1,7),(2,3),(4,6),(5,8)] generating graphics... => 1
[(1,7),(2,3),(4,5),(6,8)] generating graphics... => 2
[(1,7),(2,4),(3,8),(5,6)] generating graphics... => 1
[(1,7),(2,4),(3,6),(5,8)] generating graphics... => 1
[(1,7),(2,4),(3,5),(6,8)] generating graphics... => 2
[(1,7),(2,5),(3,8),(4,6)] generating graphics... => 1
[(1,7),(2,5),(3,6),(4,8)] generating graphics... => 1
[(1,7),(2,5),(3,4),(6,8)] generating graphics... => 2
[(1,7),(2,6),(3,8),(4,5)] generating graphics... => 1
[(1,7),(2,6),(3,5),(4,8)] generating graphics... => 1
[(1,7),(2,6),(3,4),(5,8)] generating graphics... => 1
[(1,7),(2,8),(3,4),(5,6)] generating graphics... => 1
[(1,7),(2,8),(3,5),(4,6)] generating graphics... => 1
[(1,7),(2,8),(3,6),(4,5)] generating graphics... => 1
[(1,8),(2,3),(4,5),(6,7)] generating graphics... => 1
[(1,8),(2,3),(4,6),(5,7)] generating graphics... => 1
[(1,8),(2,3),(4,7),(5,6)] generating graphics... => 1
[(1,8),(2,4),(3,5),(6,7)] generating graphics... => 1
[(1,8),(2,4),(3,6),(5,7)] generating graphics... => 1
[(1,8),(2,4),(3,7),(5,6)] generating graphics... => 1
[(1,8),(2,5),(3,4),(6,7)] generating graphics... => 1
[(1,8),(2,5),(3,6),(4,7)] generating graphics... => 1
[(1,8),(2,5),(3,7),(4,6)] generating graphics... => 1
[(1,8),(2,6),(3,4),(5,7)] generating graphics... => 1
[(1,8),(2,6),(3,5),(4,7)] generating graphics... => 1
[(1,8),(2,6),(3,7),(4,5)] generating graphics... => 1
[(1,8),(2,7),(3,4),(5,6)] generating graphics... => 1
[(1,8),(2,7),(3,5),(4,6)] generating graphics... => 1
[(1,8),(2,7),(3,6),(4,5)] generating graphics... => 1
[(1,2),(3,4),(5,6),(7,10),(8,9)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,9),(8,10)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,8),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,10),(8,9)] generating graphics... => 1
[(1,2),(3,4),(5,7),(6,9),(8,10)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,8),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,7),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,9),(7,10)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,10),(7,9)] generating graphics... => 1
[(1,2),(3,4),(5,9),(6,7),(8,10)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,8),(7,10)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,10),(7,8)] generating graphics... => 1
[(1,2),(3,4),(5,10),(6,7),(8,9)] generating graphics... => 1
[(1,2),(3,4),(5,10),(6,8),(7,9)] generating graphics... => 1
[(1,2),(3,4),(5,10),(6,9),(7,8)] generating graphics... => 1
[(1,2),(3,5),(4,6),(7,10),(8,9)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,9),(8,10)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,8),(9,10)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,10),(8,9)] generating graphics... => 1
[(1,2),(3,5),(4,7),(6,9),(8,10)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,8),(9,10)] generating graphics... => 2
[(1,2),(3,5),(4,8),(6,7),(9,10)] generating graphics... => 2
[(1,2),(3,5),(4,8),(6,9),(7,10)] generating graphics... => 2
[(1,2),(3,5),(4,8),(6,10),(7,9)] generating graphics... => 1
[(1,2),(3,5),(4,9),(6,7),(8,10)] generating graphics... => 2
[(1,2),(3,5),(4,9),(6,8),(7,10)] generating graphics... => 2
[(1,2),(3,5),(4,9),(6,10),(7,8)] generating graphics... => 1
[(1,2),(3,5),(4,10),(6,7),(8,9)] generating graphics... => 1
[(1,2),(3,5),(4,10),(6,8),(7,9)] generating graphics... => 1
[(1,2),(3,5),(4,10),(6,9),(7,8)] generating graphics... => 1
[(1,2),(3,6),(4,5),(7,10),(8,9)] generating graphics... => 2
[(1,2),(3,6),(4,5),(7,9),(8,10)] generating graphics... => 2
[(1,2),(3,6),(4,5),(7,8),(9,10)] generating graphics... => 2
[(1,2),(3,6),(4,7),(5,10),(8,9)] generating graphics... => 1
[(1,2),(3,6),(4,7),(5,9),(8,10)] generating graphics... => 2
[(1,2),(3,6),(4,7),(5,8),(9,10)] generating graphics... => 2
[(1,2),(3,6),(4,8),(5,7),(9,10)] generating graphics... => 2
[(1,2),(3,6),(4,8),(5,9),(7,10)] generating graphics... => 2
[(1,2),(3,6),(4,8),(5,10),(7,9)] generating graphics... => 1
[(1,2),(3,6),(4,9),(5,7),(8,10)] generating graphics... => 2
[(1,2),(3,6),(4,9),(5,8),(7,10)] generating graphics... => 2
[(1,2),(3,6),(4,9),(5,10),(7,8)] generating graphics... => 1
[(1,2),(3,6),(4,10),(5,7),(8,9)] generating graphics... => 1
[(1,2),(3,6),(4,10),(5,8),(7,9)] generating graphics... => 1
[(1,2),(3,6),(4,10),(5,9),(7,8)] generating graphics... => 1
[(1,2),(3,7),(4,5),(6,10),(8,9)] generating graphics... => 1
[(1,2),(3,7),(4,5),(6,9),(8,10)] generating graphics... => 2
[(1,2),(3,7),(4,5),(6,8),(9,10)] generating graphics... => 2
[(1,2),(3,7),(4,6),(5,10),(8,9)] generating graphics... => 1
[(1,2),(3,7),(4,6),(5,9),(8,10)] generating graphics... => 2
[(1,2),(3,7),(4,6),(5,8),(9,10)] generating graphics... => 2
[(1,2),(3,7),(4,8),(5,6),(9,10)] generating graphics... => 2
[(1,2),(3,7),(4,8),(5,9),(6,10)] generating graphics... => 1
[(1,2),(3,7),(4,8),(5,10),(6,9)] generating graphics... => 1
[(1,2),(3,7),(4,9),(5,6),(8,10)] generating graphics... => 2
[(1,2),(3,7),(4,9),(5,8),(6,10)] generating graphics... => 1
[(1,2),(3,7),(4,9),(5,10),(6,8)] generating graphics... => 1
[(1,2),(3,7),(4,10),(5,6),(8,9)] generating graphics... => 1
[(1,2),(3,7),(4,10),(5,8),(6,9)] generating graphics... => 1
[(1,2),(3,7),(4,10),(5,9),(6,8)] generating graphics... => 1
[(1,2),(3,8),(4,5),(6,7),(9,10)] generating graphics... => 2
[(1,2),(3,8),(4,5),(6,9),(7,10)] generating graphics... => 2
[(1,2),(3,8),(4,5),(6,10),(7,9)] generating graphics... => 1
[(1,2),(3,8),(4,6),(5,7),(9,10)] generating graphics... => 2
[(1,2),(3,8),(4,6),(5,9),(7,10)] generating graphics... => 2
[(1,2),(3,8),(4,6),(5,10),(7,9)] generating graphics... => 1
[(1,2),(3,8),(4,7),(5,6),(9,10)] generating graphics... => 2
[(1,2),(3,8),(4,7),(5,9),(6,10)] generating graphics... => 1
[(1,2),(3,8),(4,7),(5,10),(6,9)] generating graphics... => 1
[(1,2),(3,8),(4,9),(5,10),(6,7)] generating graphics... => 1
[(1,2),(3,8),(4,9),(5,7),(6,10)] generating graphics... => 1
[(1,2),(3,8),(4,9),(5,6),(7,10)] generating graphics... => 2
[(1,2),(3,8),(4,10),(5,9),(6,7)] generating graphics... => 1
[(1,2),(3,8),(4,10),(5,7),(6,9)] generating graphics... => 1
[(1,2),(3,8),(4,10),(5,6),(7,9)] generating graphics... => 1
[(1,2),(3,9),(4,5),(6,7),(8,10)] generating graphics... => 2
[(1,2),(3,9),(4,5),(6,8),(7,10)] generating graphics... => 2
[(1,2),(3,9),(4,5),(6,10),(7,8)] generating graphics... => 1
[(1,2),(3,9),(4,6),(5,7),(8,10)] generating graphics... => 2
[(1,2),(3,9),(4,6),(5,8),(7,10)] generating graphics... => 2
[(1,2),(3,9),(4,6),(5,10),(7,8)] generating graphics... => 1
[(1,2),(3,9),(4,7),(5,6),(8,10)] generating graphics... => 2
[(1,2),(3,9),(4,7),(5,8),(6,10)] generating graphics... => 1
[(1,2),(3,9),(4,7),(5,10),(6,8)] generating graphics... => 1
[(1,2),(3,9),(4,8),(5,10),(6,7)] generating graphics... => 1
[(1,2),(3,9),(4,8),(5,7),(6,10)] generating graphics... => 1
[(1,2),(3,9),(4,8),(5,6),(7,10)] generating graphics... => 2
[(1,2),(3,9),(4,10),(5,8),(6,7)] generating graphics... => 1
[(1,2),(3,9),(4,10),(5,7),(6,8)] generating graphics... => 1
[(1,2),(3,9),(4,10),(5,6),(7,8)] generating graphics... => 1
[(1,2),(3,10),(4,5),(6,7),(8,9)] generating graphics... => 1
[(1,2),(3,10),(4,5),(6,8),(7,9)] generating graphics... => 1
[(1,2),(3,10),(4,5),(6,9),(7,8)] generating graphics... => 1
[(1,2),(3,10),(4,6),(5,7),(8,9)] generating graphics... => 1
[(1,2),(3,10),(4,6),(5,8),(7,9)] generating graphics... => 1
[(1,2),(3,10),(4,6),(5,9),(7,8)] generating graphics... => 1
[(1,2),(3,10),(4,7),(5,6),(8,9)] generating graphics... => 1
[(1,2),(3,10),(4,7),(5,8),(6,9)] generating graphics... => 1
[(1,2),(3,10),(4,7),(5,9),(6,8)] generating graphics... => 1
[(1,2),(3,10),(4,8),(5,9),(6,7)] generating graphics... => 1
[(1,2),(3,10),(4,8),(5,7),(6,9)] generating graphics... => 1
[(1,2),(3,10),(4,8),(5,6),(7,9)] generating graphics... => 1
[(1,2),(3,10),(4,9),(5,8),(6,7)] generating graphics... => 1
[(1,2),(3,10),(4,9),(5,7),(6,8)] generating graphics... => 1
[(1,2),(3,10),(4,9),(5,6),(7,8)] generating graphics... => 1
[(1,3),(2,4),(5,6),(7,10),(8,9)] generating graphics... => 2
[(1,3),(2,4),(5,6),(7,9),(8,10)] generating graphics... => 2
[(1,3),(2,4),(5,6),(7,8),(9,10)] generating graphics... => 2
[(1,3),(2,4),(5,7),(6,10),(8,9)] generating graphics... => 1
[(1,3),(2,4),(5,7),(6,9),(8,10)] generating graphics... => 2
[(1,3),(2,4),(5,7),(6,8),(9,10)] generating graphics... => 2
[(1,3),(2,4),(5,8),(6,7),(9,10)] generating graphics... => 2
[(1,3),(2,4),(5,8),(6,9),(7,10)] generating graphics... => 2
[(1,3),(2,4),(5,8),(6,10),(7,9)] generating graphics... => 1
[(1,3),(2,4),(5,9),(6,7),(8,10)] generating graphics... => 2
[(1,3),(2,4),(5,9),(6,8),(7,10)] generating graphics... => 2
[(1,3),(2,4),(5,9),(6,10),(7,8)] generating graphics... => 1
[(1,3),(2,4),(5,10),(6,7),(8,9)] generating graphics... => 1
[(1,3),(2,4),(5,10),(6,8),(7,9)] generating graphics... => 1
[(1,3),(2,4),(5,10),(6,9),(7,8)] generating graphics... => 1
[(1,3),(2,5),(4,6),(7,10),(8,9)] generating graphics... => 2
[(1,3),(2,5),(4,6),(7,9),(8,10)] generating graphics... => 2
[(1,3),(2,5),(4,6),(7,8),(9,10)] generating graphics... => 2
[(1,3),(2,5),(4,7),(6,10),(8,9)] generating graphics... => 1
[(1,3),(2,5),(4,7),(6,9),(8,10)] generating graphics... => 2
[(1,3),(2,5),(4,7),(6,8),(9,10)] generating graphics... => 2
[(1,3),(2,5),(4,8),(6,7),(9,10)] generating graphics... => 2
[(1,3),(2,5),(4,8),(6,9),(7,10)] generating graphics... => 2
[(1,3),(2,5),(4,8),(6,10),(7,9)] generating graphics... => 1
[(1,3),(2,5),(4,9),(6,7),(8,10)] generating graphics... => 2
[(1,3),(2,5),(4,9),(6,8),(7,10)] generating graphics... => 2
[(1,3),(2,5),(4,9),(6,10),(7,8)] generating graphics... => 1
[(1,3),(2,5),(4,10),(6,7),(8,9)] generating graphics... => 1
[(1,3),(2,5),(4,10),(6,8),(7,9)] generating graphics... => 1
[(1,3),(2,5),(4,10),(6,9),(7,8)] generating graphics... => 1
[(1,3),(2,6),(4,5),(7,10),(8,9)] generating graphics... => 2
[(1,3),(2,6),(4,5),(7,9),(8,10)] generating graphics... => 2
[(1,3),(2,6),(4,5),(7,8),(9,10)] generating graphics... => 2
[(1,3),(2,6),(4,7),(5,10),(8,9)] generating graphics... => 1
[(1,3),(2,6),(4,7),(5,9),(8,10)] generating graphics... => 2
[(1,3),(2,6),(4,7),(5,8),(9,10)] generating graphics... => 2
[(1,3),(2,6),(4,8),(5,7),(9,10)] generating graphics... => 2
[(1,3),(2,6),(4,8),(5,9),(7,10)] generating graphics... => 2
[(1,3),(2,6),(4,8),(5,10),(7,9)] generating graphics... => 1
[(1,3),(2,6),(4,9),(5,7),(8,10)] generating graphics... => 2
[(1,3),(2,6),(4,9),(5,8),(7,10)] generating graphics... => 2
[(1,3),(2,6),(4,9),(5,10),(7,8)] generating graphics... => 1
[(1,3),(2,6),(4,10),(5,7),(8,9)] generating graphics... => 1
[(1,3),(2,6),(4,10),(5,8),(7,9)] generating graphics... => 1
[(1,3),(2,6),(4,10),(5,9),(7,8)] generating graphics... => 1
[(1,3),(2,7),(4,5),(6,10),(8,9)] generating graphics... => 1
[(1,3),(2,7),(4,5),(6,9),(8,10)] generating graphics... => 2
[(1,3),(2,7),(4,5),(6,8),(9,10)] generating graphics... => 2
[(1,3),(2,7),(4,6),(5,10),(8,9)] generating graphics... => 1
[(1,3),(2,7),(4,6),(5,9),(8,10)] generating graphics... => 2
[(1,3),(2,7),(4,6),(5,8),(9,10)] generating graphics... => 2
[(1,3),(2,7),(4,8),(5,6),(9,10)] generating graphics... => 2
[(1,3),(2,7),(4,8),(5,9),(6,10)] generating graphics... => 1
[(1,3),(2,7),(4,8),(5,10),(6,9)] generating graphics... => 1
[(1,3),(2,7),(4,9),(5,6),(8,10)] generating graphics... => 2
[(1,3),(2,7),(4,9),(5,8),(6,10)] generating graphics... => 1
[(1,3),(2,7),(4,9),(5,10),(6,8)] generating graphics... => 1
[(1,3),(2,7),(4,10),(5,6),(8,9)] generating graphics... => 1
[(1,3),(2,7),(4,10),(5,8),(6,9)] generating graphics... => 1
[(1,3),(2,7),(4,10),(5,9),(6,8)] generating graphics... => 1
[(1,3),(2,8),(4,5),(6,7),(9,10)] generating graphics... => 2
[(1,3),(2,8),(4,5),(6,9),(7,10)] generating graphics... => 2
[(1,3),(2,8),(4,5),(6,10),(7,9)] generating graphics... => 1
[(1,3),(2,8),(4,6),(5,7),(9,10)] generating graphics... => 2
[(1,3),(2,8),(4,6),(5,9),(7,10)] generating graphics... => 2
[(1,3),(2,8),(4,6),(5,10),(7,9)] generating graphics... => 1
[(1,3),(2,8),(4,7),(5,6),(9,10)] generating graphics... => 2
[(1,3),(2,8),(4,7),(5,9),(6,10)] generating graphics... => 1
[(1,3),(2,8),(4,7),(5,10),(6,9)] generating graphics... => 1
[(1,3),(2,8),(4,9),(5,10),(6,7)] generating graphics... => 1
[(1,3),(2,8),(4,9),(5,7),(6,10)] generating graphics... => 1
[(1,3),(2,8),(4,9),(5,6),(7,10)] generating graphics... => 2
[(1,3),(2,8),(4,10),(5,9),(6,7)] generating graphics... => 1
[(1,3),(2,8),(4,10),(5,7),(6,9)] generating graphics... => 1
[(1,3),(2,8),(4,10),(5,6),(7,9)] generating graphics... => 1
[(1,3),(2,9),(4,5),(6,7),(8,10)] generating graphics... => 2
[(1,3),(2,9),(4,5),(6,8),(7,10)] generating graphics... => 2
[(1,3),(2,9),(4,5),(6,10),(7,8)] generating graphics... => 1
[(1,3),(2,9),(4,6),(5,7),(8,10)] generating graphics... => 2
[(1,3),(2,9),(4,6),(5,8),(7,10)] generating graphics... => 2
[(1,3),(2,9),(4,6),(5,10),(7,8)] generating graphics... => 1
[(1,3),(2,9),(4,7),(5,6),(8,10)] generating graphics... => 2
[(1,3),(2,9),(4,7),(5,8),(6,10)] generating graphics... => 1
[(1,3),(2,9),(4,7),(5,10),(6,8)] generating graphics... => 1
[(1,3),(2,9),(4,8),(5,10),(6,7)] generating graphics... => 1
[(1,3),(2,9),(4,8),(5,7),(6,10)] generating graphics... => 1
[(1,3),(2,9),(4,8),(5,6),(7,10)] generating graphics... => 2
[(1,3),(2,9),(4,10),(5,8),(6,7)] generating graphics... => 1
[(1,3),(2,9),(4,10),(5,7),(6,8)] generating graphics... => 1
[(1,3),(2,9),(4,10),(5,6),(7,8)] generating graphics... => 1
[(1,3),(2,10),(4,5),(6,7),(8,9)] generating graphics... => 1
[(1,3),(2,10),(4,5),(6,8),(7,9)] generating graphics... => 1
[(1,3),(2,10),(4,5),(6,9),(7,8)] generating graphics... => 1
[(1,3),(2,10),(4,6),(5,7),(8,9)] generating graphics... => 1
[(1,3),(2,10),(4,6),(5,8),(7,9)] generating graphics... => 1
[(1,3),(2,10),(4,6),(5,9),(7,8)] generating graphics... => 1
[(1,3),(2,10),(4,7),(5,6),(8,9)] generating graphics... => 1
[(1,3),(2,10),(4,7),(5,8),(6,9)] generating graphics... => 1
[(1,3),(2,10),(4,7),(5,9),(6,8)] generating graphics... => 1
[(1,3),(2,10),(4,8),(5,9),(6,7)] generating graphics... => 1
[(1,3),(2,10),(4,8),(5,7),(6,9)] generating graphics... => 1
[(1,3),(2,10),(4,8),(5,6),(7,9)] generating graphics... => 1
[(1,3),(2,10),(4,9),(5,8),(6,7)] generating graphics... => 1
[(1,3),(2,10),(4,9),(5,7),(6,8)] generating graphics... => 1
[(1,3),(2,10),(4,9),(5,6),(7,8)] generating graphics... => 1
[(1,4),(2,3),(5,6),(7,10),(8,9)] generating graphics... => 2
[(1,4),(2,3),(5,6),(7,9),(8,10)] generating graphics... => 2
[(1,4),(2,3),(5,6),(7,8),(9,10)] generating graphics... => 2
[(1,4),(2,3),(5,7),(6,10),(8,9)] generating graphics... => 1
[(1,4),(2,3),(5,7),(6,9),(8,10)] generating graphics... => 2
[(1,4),(2,3),(5,7),(6,8),(9,10)] generating graphics... => 2
[(1,4),(2,3),(5,8),(6,7),(9,10)] generating graphics... => 2
[(1,4),(2,3),(5,8),(6,9),(7,10)] generating graphics... => 2
[(1,4),(2,3),(5,8),(6,10),(7,9)] generating graphics... => 1
[(1,4),(2,3),(5,9),(6,7),(8,10)] generating graphics... => 2
[(1,4),(2,3),(5,9),(6,8),(7,10)] generating graphics... => 2
[(1,4),(2,3),(5,9),(6,10),(7,8)] generating graphics... => 1
[(1,4),(2,3),(5,10),(6,7),(8,9)] generating graphics... => 1
[(1,4),(2,3),(5,10),(6,8),(7,9)] generating graphics... => 1
[(1,4),(2,3),(5,10),(6,9),(7,8)] generating graphics... => 1
[(1,4),(2,5),(3,6),(7,10),(8,9)] generating graphics... => 2
[(1,4),(2,5),(3,6),(7,9),(8,10)] generating graphics... => 2
[(1,4),(2,5),(3,6),(7,8),(9,10)] generating graphics... => 2
[(1,4),(2,5),(3,7),(6,10),(8,9)] generating graphics... => 1
[(1,4),(2,5),(3,7),(6,9),(8,10)] generating graphics... => 2
[(1,4),(2,5),(3,7),(6,8),(9,10)] generating graphics... => 2
[(1,4),(2,5),(3,8),(6,7),(9,10)] generating graphics... => 2
[(1,4),(2,5),(3,8),(6,9),(7,10)] generating graphics... => 2
[(1,4),(2,5),(3,8),(6,10),(7,9)] generating graphics... => 1
[(1,4),(2,5),(3,9),(6,7),(8,10)] generating graphics... => 2
[(1,4),(2,5),(3,9),(6,8),(7,10)] generating graphics... => 2
[(1,4),(2,5),(3,9),(6,10),(7,8)] generating graphics... => 1
[(1,4),(2,5),(3,10),(6,7),(8,9)] generating graphics... => 1
[(1,4),(2,5),(3,10),(6,8),(7,9)] generating graphics... => 1
[(1,4),(2,5),(3,10),(6,9),(7,8)] generating graphics... => 1
[(1,4),(2,6),(3,5),(7,10),(8,9)] generating graphics... => 2
[(1,4),(2,6),(3,5),(7,9),(8,10)] generating graphics... => 2
[(1,4),(2,6),(3,5),(7,8),(9,10)] generating graphics... => 2
[(1,4),(2,6),(3,7),(5,10),(8,9)] generating graphics... => 1
[(1,4),(2,6),(3,7),(5,9),(8,10)] generating graphics... => 2
[(1,4),(2,6),(3,7),(5,8),(9,10)] generating graphics... => 2
[(1,4),(2,6),(3,8),(5,7),(9,10)] generating graphics... => 2
[(1,4),(2,6),(3,8),(5,9),(7,10)] generating graphics... => 2
[(1,4),(2,6),(3,8),(5,10),(7,9)] generating graphics... => 1
[(1,4),(2,6),(3,9),(5,7),(8,10)] generating graphics... => 2
[(1,4),(2,6),(3,9),(5,8),(7,10)] generating graphics... => 2
[(1,4),(2,6),(3,9),(5,10),(7,8)] generating graphics... => 1
[(1,4),(2,6),(3,10),(5,7),(8,9)] generating graphics... => 1
[(1,4),(2,6),(3,10),(5,8),(7,9)] generating graphics... => 1
[(1,4),(2,6),(3,10),(5,9),(7,8)] generating graphics... => 1
[(1,4),(2,7),(3,5),(6,10),(8,9)] generating graphics... => 1
[(1,4),(2,7),(3,5),(6,9),(8,10)] generating graphics... => 2
[(1,4),(2,7),(3,5),(6,8),(9,10)] generating graphics... => 2
[(1,4),(2,7),(3,6),(5,10),(8,9)] generating graphics... => 1
[(1,4),(2,7),(3,6),(5,9),(8,10)] generating graphics... => 2
[(1,4),(2,7),(3,6),(5,8),(9,10)] generating graphics... => 2
[(1,4),(2,7),(3,8),(5,6),(9,10)] generating graphics... => 2
[(1,4),(2,7),(3,8),(5,9),(6,10)] generating graphics... => 1
[(1,4),(2,7),(3,8),(5,10),(6,9)] generating graphics... => 1
[(1,4),(2,7),(3,9),(5,6),(8,10)] generating graphics... => 2
[(1,4),(2,7),(3,9),(5,8),(6,10)] generating graphics... => 1
[(1,4),(2,7),(3,9),(5,10),(6,8)] generating graphics... => 1
[(1,4),(2,7),(3,10),(5,6),(8,9)] generating graphics... => 1
[(1,4),(2,7),(3,10),(5,8),(6,9)] generating graphics... => 1
[(1,4),(2,7),(3,10),(5,9),(6,8)] generating graphics... => 1
[(1,4),(2,8),(3,5),(6,7),(9,10)] generating graphics... => 2
[(1,4),(2,8),(3,5),(6,9),(7,10)] generating graphics... => 2
[(1,4),(2,8),(3,5),(6,10),(7,9)] generating graphics... => 1
[(1,4),(2,8),(3,6),(5,7),(9,10)] generating graphics... => 2
[(1,4),(2,8),(3,6),(5,9),(7,10)] generating graphics... => 2
[(1,4),(2,8),(3,6),(5,10),(7,9)] generating graphics... => 1
[(1,4),(2,8),(3,7),(5,6),(9,10)] generating graphics... => 2
[(1,4),(2,8),(3,7),(5,9),(6,10)] generating graphics... => 1
[(1,4),(2,8),(3,7),(5,10),(6,9)] generating graphics... => 1
[(1,4),(2,8),(3,9),(5,10),(6,7)] generating graphics... => 1
[(1,4),(2,8),(3,9),(5,7),(6,10)] generating graphics... => 1
[(1,4),(2,8),(3,9),(5,6),(7,10)] generating graphics... => 2
[(1,4),(2,8),(3,10),(5,9),(6,7)] generating graphics... => 1
[(1,4),(2,8),(3,10),(5,7),(6,9)] generating graphics... => 1
[(1,4),(2,8),(3,10),(5,6),(7,9)] generating graphics... => 1
[(1,4),(2,9),(3,5),(6,7),(8,10)] generating graphics... => 2
[(1,4),(2,9),(3,5),(6,8),(7,10)] generating graphics... => 2
[(1,4),(2,9),(3,5),(6,10),(7,8)] generating graphics... => 1
[(1,4),(2,9),(3,6),(5,7),(8,10)] generating graphics... => 2
[(1,4),(2,9),(3,6),(5,8),(7,10)] generating graphics... => 2
[(1,4),(2,9),(3,6),(5,10),(7,8)] generating graphics... => 1
[(1,4),(2,9),(3,7),(5,6),(8,10)] generating graphics... => 2
[(1,4),(2,9),(3,7),(5,8),(6,10)] generating graphics... => 1
[(1,4),(2,9),(3,7),(5,10),(6,8)] generating graphics... => 1
[(1,4),(2,9),(3,8),(5,10),(6,7)] generating graphics... => 1
[(1,4),(2,9),(3,8),(5,7),(6,10)] generating graphics... => 1
[(1,4),(2,9),(3,8),(5,6),(7,10)] generating graphics... => 2
[(1,4),(2,9),(3,10),(5,8),(6,7)] generating graphics... => 1
[(1,4),(2,9),(3,10),(5,7),(6,8)] generating graphics... => 1
[(1,4),(2,9),(3,10),(5,6),(7,8)] generating graphics... => 1
[(1,4),(2,10),(3,5),(6,7),(8,9)] generating graphics... => 1
[(1,4),(2,10),(3,5),(6,8),(7,9)] generating graphics... => 1
[(1,4),(2,10),(3,5),(6,9),(7,8)] generating graphics... => 1
[(1,4),(2,10),(3,6),(5,7),(8,9)] generating graphics... => 1
[(1,4),(2,10),(3,6),(5,8),(7,9)] generating graphics... => 1
[(1,4),(2,10),(3,6),(5,9),(7,8)] generating graphics... => 1
[(1,4),(2,10),(3,7),(5,6),(8,9)] generating graphics... => 1
[(1,4),(2,10),(3,7),(5,8),(6,9)] generating graphics... => 1
[(1,4),(2,10),(3,7),(5,9),(6,8)] generating graphics... => 1
[(1,4),(2,10),(3,8),(5,9),(6,7)] generating graphics... => 1
[(1,4),(2,10),(3,8),(5,7),(6,9)] generating graphics... => 1
[(1,4),(2,10),(3,8),(5,6),(7,9)] generating graphics... => 1
[(1,4),(2,10),(3,9),(5,8),(6,7)] generating graphics... => 1
[(1,4),(2,10),(3,9),(5,7),(6,8)] generating graphics... => 1
[(1,4),(2,10),(3,9),(5,6),(7,8)] generating graphics... => 1
[(1,5),(2,3),(4,6),(7,10),(8,9)] generating graphics... => 2
[(1,5),(2,3),(4,6),(7,9),(8,10)] generating graphics... => 2
[(1,5),(2,3),(4,6),(7,8),(9,10)] generating graphics... => 2
[(1,5),(2,3),(4,7),(6,10),(8,9)] generating graphics... => 1
[(1,5),(2,3),(4,7),(6,9),(8,10)] generating graphics... => 2
[(1,5),(2,3),(4,7),(6,8),(9,10)] generating graphics... => 2
[(1,5),(2,3),(4,8),(6,7),(9,10)] generating graphics... => 2
[(1,5),(2,3),(4,8),(6,9),(7,10)] generating graphics... => 2
[(1,5),(2,3),(4,8),(6,10),(7,9)] generating graphics... => 1
[(1,5),(2,3),(4,9),(6,7),(8,10)] generating graphics... => 2
[(1,5),(2,3),(4,9),(6,8),(7,10)] generating graphics... => 2
[(1,5),(2,3),(4,9),(6,10),(7,8)] generating graphics... => 1
[(1,5),(2,3),(4,10),(6,7),(8,9)] generating graphics... => 1
[(1,5),(2,3),(4,10),(6,8),(7,9)] generating graphics... => 1
[(1,5),(2,3),(4,10),(6,9),(7,8)] generating graphics... => 1
[(1,5),(2,4),(3,6),(7,10),(8,9)] generating graphics... => 2
[(1,5),(2,4),(3,6),(7,9),(8,10)] generating graphics... => 2
[(1,5),(2,4),(3,6),(7,8),(9,10)] generating graphics... => 2
[(1,5),(2,4),(3,7),(6,10),(8,9)] generating graphics... => 1
[(1,5),(2,4),(3,7),(6,9),(8,10)] generating graphics... => 2
[(1,5),(2,4),(3,7),(6,8),(9,10)] generating graphics... => 2
[(1,5),(2,4),(3,8),(6,7),(9,10)] generating graphics... => 2
[(1,5),(2,4),(3,8),(6,9),(7,10)] generating graphics... => 2
[(1,5),(2,4),(3,8),(6,10),(7,9)] generating graphics... => 1
[(1,5),(2,4),(3,9),(6,7),(8,10)] generating graphics... => 2
[(1,5),(2,4),(3,9),(6,8),(7,10)] generating graphics... => 2
[(1,5),(2,4),(3,9),(6,10),(7,8)] generating graphics... => 1
[(1,5),(2,4),(3,10),(6,7),(8,9)] generating graphics... => 1
[(1,5),(2,4),(3,10),(6,8),(7,9)] generating graphics... => 1
[(1,5),(2,4),(3,10),(6,9),(7,8)] generating graphics... => 1
[(1,5),(2,6),(3,4),(7,10),(8,9)] generating graphics... => 2
[(1,5),(2,6),(3,4),(7,9),(8,10)] generating graphics... => 2
[(1,5),(2,6),(3,4),(7,8),(9,10)] generating graphics... => 2
[(1,5),(2,6),(3,7),(4,10),(8,9)] generating graphics... => 1
[(1,5),(2,6),(3,7),(4,9),(8,10)] generating graphics... => 2
[(1,5),(2,6),(3,7),(4,8),(9,10)] generating graphics... => 2
[(1,5),(2,6),(3,8),(4,7),(9,10)] generating graphics... => 2
[(1,5),(2,6),(3,8),(4,9),(7,10)] generating graphics... => 2
[(1,5),(2,6),(3,8),(4,10),(7,9)] generating graphics... => 1
[(1,5),(2,6),(3,9),(4,7),(8,10)] generating graphics... => 2
[(1,5),(2,6),(3,9),(4,8),(7,10)] generating graphics... => 2
[(1,5),(2,6),(3,9),(4,10),(7,8)] generating graphics... => 1
[(1,5),(2,6),(3,10),(4,7),(8,9)] generating graphics... => 1
[(1,5),(2,6),(3,10),(4,8),(7,9)] generating graphics... => 1
[(1,5),(2,6),(3,10),(4,9),(7,8)] generating graphics... => 1
[(1,5),(2,7),(3,4),(6,10),(8,9)] generating graphics... => 1
[(1,5),(2,7),(3,4),(6,9),(8,10)] generating graphics... => 2
[(1,5),(2,7),(3,4),(6,8),(9,10)] generating graphics... => 2
[(1,5),(2,7),(3,6),(4,10),(8,9)] generating graphics... => 1
[(1,5),(2,7),(3,6),(4,9),(8,10)] generating graphics... => 2
[(1,5),(2,7),(3,6),(4,8),(9,10)] generating graphics... => 2
[(1,5),(2,7),(3,8),(4,6),(9,10)] generating graphics... => 2
[(1,5),(2,7),(3,8),(4,9),(6,10)] generating graphics... => 1
[(1,5),(2,7),(3,8),(4,10),(6,9)] generating graphics... => 1
[(1,5),(2,7),(3,9),(4,6),(8,10)] generating graphics... => 2
[(1,5),(2,7),(3,9),(4,8),(6,10)] generating graphics... => 1
[(1,5),(2,7),(3,9),(4,10),(6,8)] generating graphics... => 1
[(1,5),(2,7),(3,10),(4,6),(8,9)] generating graphics... => 1
[(1,5),(2,7),(3,10),(4,8),(6,9)] generating graphics... => 1
[(1,5),(2,7),(3,10),(4,9),(6,8)] generating graphics... => 1
[(1,5),(2,8),(3,4),(6,7),(9,10)] generating graphics... => 2
[(1,5),(2,8),(3,4),(6,9),(7,10)] generating graphics... => 2
[(1,5),(2,8),(3,4),(6,10),(7,9)] generating graphics... => 1
[(1,5),(2,8),(3,6),(4,7),(9,10)] generating graphics... => 2
[(1,5),(2,8),(3,6),(4,9),(7,10)] generating graphics... => 2
[(1,5),(2,8),(3,6),(4,10),(7,9)] generating graphics... => 1
[(1,5),(2,8),(3,7),(4,6),(9,10)] generating graphics... => 2
[(1,5),(2,8),(3,7),(4,9),(6,10)] generating graphics... => 1
[(1,5),(2,8),(3,7),(4,10),(6,9)] generating graphics... => 1
[(1,5),(2,8),(3,9),(4,10),(6,7)] generating graphics... => 1
[(1,5),(2,8),(3,9),(4,7),(6,10)] generating graphics... => 1
[(1,5),(2,8),(3,9),(4,6),(7,10)] generating graphics... => 2
[(1,5),(2,8),(3,10),(4,9),(6,7)] generating graphics... => 1
[(1,5),(2,8),(3,10),(4,7),(6,9)] generating graphics... => 1
[(1,5),(2,8),(3,10),(4,6),(7,9)] generating graphics... => 1
[(1,5),(2,9),(3,4),(6,7),(8,10)] generating graphics... => 2
[(1,5),(2,9),(3,4),(6,8),(7,10)] generating graphics... => 2
[(1,5),(2,9),(3,4),(6,10),(7,8)] generating graphics... => 1
[(1,5),(2,9),(3,6),(4,7),(8,10)] generating graphics... => 2
[(1,5),(2,9),(3,6),(4,8),(7,10)] generating graphics... => 2
[(1,5),(2,9),(3,6),(4,10),(7,8)] generating graphics... => 1
[(1,5),(2,9),(3,7),(4,6),(8,10)] generating graphics... => 2
[(1,5),(2,9),(3,7),(4,8),(6,10)] generating graphics... => 1
[(1,5),(2,9),(3,7),(4,10),(6,8)] generating graphics... => 1
[(1,5),(2,9),(3,8),(4,10),(6,7)] generating graphics... => 1
[(1,5),(2,9),(3,8),(4,7),(6,10)] generating graphics... => 1
[(1,5),(2,9),(3,8),(4,6),(7,10)] generating graphics... => 2
[(1,5),(2,9),(3,10),(4,8),(6,7)] generating graphics... => 1
[(1,5),(2,9),(3,10),(4,7),(6,8)] generating graphics... => 1
[(1,5),(2,9),(3,10),(4,6),(7,8)] generating graphics... => 1
[(1,5),(2,10),(3,4),(6,7),(8,9)] generating graphics... => 1
[(1,5),(2,10),(3,4),(6,8),(7,9)] generating graphics... => 1
[(1,5),(2,10),(3,4),(6,9),(7,8)] generating graphics... => 1
[(1,5),(2,10),(3,6),(4,7),(8,9)] generating graphics... => 1
[(1,5),(2,10),(3,6),(4,8),(7,9)] generating graphics... => 1
[(1,5),(2,10),(3,6),(4,9),(7,8)] generating graphics... => 1
[(1,5),(2,10),(3,7),(4,6),(8,9)] generating graphics... => 1
[(1,5),(2,10),(3,7),(4,8),(6,9)] generating graphics... => 1
[(1,5),(2,10),(3,7),(4,9),(6,8)] generating graphics... => 1
[(1,5),(2,10),(3,8),(4,9),(6,7)] generating graphics... => 1
[(1,5),(2,10),(3,8),(4,7),(6,9)] generating graphics... => 1
[(1,5),(2,10),(3,8),(4,6),(7,9)] generating graphics... => 1
[(1,5),(2,10),(3,9),(4,8),(6,7)] generating graphics... => 1
[(1,5),(2,10),(3,9),(4,7),(6,8)] generating graphics... => 1
[(1,5),(2,10),(3,9),(4,6),(7,8)] generating graphics... => 1
[(1,6),(2,3),(4,5),(7,10),(8,9)] generating graphics... => 2
[(1,6),(2,3),(4,5),(7,9),(8,10)] generating graphics... => 2
[(1,6),(2,3),(4,5),(7,8),(9,10)] generating graphics... => 2
[(1,6),(2,3),(4,7),(5,10),(8,9)] generating graphics... => 1
[(1,6),(2,3),(4,7),(5,9),(8,10)] generating graphics... => 2
[(1,6),(2,3),(4,7),(5,8),(9,10)] generating graphics... => 2
[(1,6),(2,3),(4,8),(5,7),(9,10)] generating graphics... => 2
[(1,6),(2,3),(4,8),(5,9),(7,10)] generating graphics... => 2
[(1,6),(2,3),(4,8),(5,10),(7,9)] generating graphics... => 1
[(1,6),(2,3),(4,9),(5,7),(8,10)] generating graphics... => 2
[(1,6),(2,3),(4,9),(5,8),(7,10)] generating graphics... => 2
[(1,6),(2,3),(4,9),(5,10),(7,8)] generating graphics... => 1
[(1,6),(2,3),(4,10),(5,7),(8,9)] generating graphics... => 1
[(1,6),(2,3),(4,10),(5,8),(7,9)] generating graphics... => 1
[(1,6),(2,3),(4,10),(5,9),(7,8)] generating graphics... => 1
[(1,6),(2,4),(3,5),(7,10),(8,9)] generating graphics... => 2
[(1,6),(2,4),(3,5),(7,9),(8,10)] generating graphics... => 2
[(1,6),(2,4),(3,5),(7,8),(9,10)] generating graphics... => 2
[(1,6),(2,4),(3,7),(5,10),(8,9)] generating graphics... => 1
[(1,6),(2,4),(3,7),(5,9),(8,10)] generating graphics... => 2
[(1,6),(2,4),(3,7),(5,8),(9,10)] generating graphics... => 2
[(1,6),(2,4),(3,8),(5,7),(9,10)] generating graphics... => 2
[(1,6),(2,4),(3,8),(5,9),(7,10)] generating graphics... => 2
[(1,6),(2,4),(3,8),(5,10),(7,9)] generating graphics... => 1
[(1,6),(2,4),(3,9),(5,7),(8,10)] generating graphics... => 2
[(1,6),(2,4),(3,9),(5,8),(7,10)] generating graphics... => 2
[(1,6),(2,4),(3,9),(5,10),(7,8)] generating graphics... => 1
[(1,6),(2,4),(3,10),(5,7),(8,9)] generating graphics... => 1
[(1,6),(2,4),(3,10),(5,8),(7,9)] generating graphics... => 1
[(1,6),(2,4),(3,10),(5,9),(7,8)] generating graphics... => 1
[(1,6),(2,5),(3,4),(7,10),(8,9)] generating graphics... => 2
[(1,6),(2,5),(3,4),(7,9),(8,10)] generating graphics... => 2
[(1,6),(2,5),(3,4),(7,8),(9,10)] generating graphics... => 2
[(1,6),(2,5),(3,7),(4,10),(8,9)] generating graphics... => 1
[(1,6),(2,5),(3,7),(4,9),(8,10)] generating graphics... => 2
[(1,6),(2,5),(3,7),(4,8),(9,10)] generating graphics... => 2
[(1,6),(2,5),(3,8),(4,7),(9,10)] generating graphics... => 2
[(1,6),(2,5),(3,8),(4,9),(7,10)] generating graphics... => 2
[(1,6),(2,5),(3,8),(4,10),(7,9)] generating graphics... => 1
[(1,6),(2,5),(3,9),(4,7),(8,10)] generating graphics... => 2
[(1,6),(2,5),(3,9),(4,8),(7,10)] generating graphics... => 2
[(1,6),(2,5),(3,9),(4,10),(7,8)] generating graphics... => 1
[(1,6),(2,5),(3,10),(4,7),(8,9)] generating graphics... => 1
[(1,6),(2,5),(3,10),(4,8),(7,9)] generating graphics... => 1
[(1,6),(2,5),(3,10),(4,9),(7,8)] generating graphics... => 1
[(1,6),(2,7),(3,4),(5,10),(8,9)] generating graphics... => 1
[(1,6),(2,7),(3,4),(5,9),(8,10)] generating graphics... => 2
[(1,6),(2,7),(3,4),(5,8),(9,10)] generating graphics... => 2
[(1,6),(2,7),(3,5),(4,10),(8,9)] generating graphics... => 1
[(1,6),(2,7),(3,5),(4,9),(8,10)] generating graphics... => 2
[(1,6),(2,7),(3,5),(4,8),(9,10)] generating graphics... => 2
[(1,6),(2,7),(3,8),(4,5),(9,10)] generating graphics... => 2
[(1,6),(2,7),(3,8),(4,9),(5,10)] generating graphics... => 1
[(1,6),(2,7),(3,8),(4,10),(5,9)] generating graphics... => 1
[(1,6),(2,7),(3,9),(4,5),(8,10)] generating graphics... => 2
[(1,6),(2,7),(3,9),(4,8),(5,10)] generating graphics... => 1
[(1,6),(2,7),(3,9),(4,10),(5,8)] generating graphics... => 1
[(1,6),(2,7),(3,10),(4,5),(8,9)] generating graphics... => 1
[(1,6),(2,7),(3,10),(4,8),(5,9)] generating graphics... => 1
[(1,6),(2,7),(3,10),(4,9),(5,8)] generating graphics... => 1
[(1,6),(2,8),(3,4),(5,7),(9,10)] generating graphics... => 2
[(1,6),(2,8),(3,4),(5,9),(7,10)] generating graphics... => 2
[(1,6),(2,8),(3,4),(5,10),(7,9)] generating graphics... => 1
[(1,6),(2,8),(3,5),(4,7),(9,10)] generating graphics... => 2
[(1,6),(2,8),(3,5),(4,9),(7,10)] generating graphics... => 2
[(1,6),(2,8),(3,5),(4,10),(7,9)] generating graphics... => 1
[(1,6),(2,8),(3,7),(4,5),(9,10)] generating graphics... => 2
[(1,6),(2,8),(3,7),(4,9),(5,10)] generating graphics... => 1
[(1,6),(2,8),(3,7),(4,10),(5,9)] generating graphics... => 1
[(1,6),(2,8),(3,9),(4,10),(5,7)] generating graphics... => 1
[(1,6),(2,8),(3,9),(4,7),(5,10)] generating graphics... => 1
[(1,6),(2,8),(3,9),(4,5),(7,10)] generating graphics... => 2
[(1,6),(2,8),(3,10),(4,9),(5,7)] generating graphics... => 1
[(1,6),(2,8),(3,10),(4,7),(5,9)] generating graphics... => 1
[(1,6),(2,8),(3,10),(4,5),(7,9)] generating graphics... => 1
[(1,6),(2,9),(3,4),(5,7),(8,10)] generating graphics... => 2
[(1,6),(2,9),(3,4),(5,8),(7,10)] generating graphics... => 2
[(1,6),(2,9),(3,4),(5,10),(7,8)] generating graphics... => 1
[(1,6),(2,9),(3,5),(4,7),(8,10)] generating graphics... => 2
[(1,6),(2,9),(3,5),(4,8),(7,10)] generating graphics... => 2
[(1,6),(2,9),(3,5),(4,10),(7,8)] generating graphics... => 1
[(1,6),(2,9),(3,7),(4,5),(8,10)] generating graphics... => 2
[(1,6),(2,9),(3,7),(4,8),(5,10)] generating graphics... => 1
[(1,6),(2,9),(3,7),(4,10),(5,8)] generating graphics... => 1
[(1,6),(2,9),(3,8),(4,10),(5,7)] generating graphics... => 1
[(1,6),(2,9),(3,8),(4,7),(5,10)] generating graphics... => 1
[(1,6),(2,9),(3,8),(4,5),(7,10)] generating graphics... => 2
[(1,6),(2,9),(3,10),(4,8),(5,7)] generating graphics... => 1
[(1,6),(2,9),(3,10),(4,7),(5,8)] generating graphics... => 1
[(1,6),(2,9),(3,10),(4,5),(7,8)] generating graphics... => 1
[(1,6),(2,10),(3,4),(5,7),(8,9)] generating graphics... => 1
[(1,6),(2,10),(3,4),(5,8),(7,9)] generating graphics... => 1
[(1,6),(2,10),(3,4),(5,9),(7,8)] generating graphics... => 1
[(1,6),(2,10),(3,5),(4,7),(8,9)] generating graphics... => 1
[(1,6),(2,10),(3,5),(4,8),(7,9)] generating graphics... => 1
[(1,6),(2,10),(3,5),(4,9),(7,8)] generating graphics... => 1
[(1,6),(2,10),(3,7),(4,5),(8,9)] generating graphics... => 1
[(1,6),(2,10),(3,7),(4,8),(5,9)] generating graphics... => 1
[(1,6),(2,10),(3,7),(4,9),(5,8)] generating graphics... => 1
[(1,6),(2,10),(3,8),(4,9),(5,7)] generating graphics... => 1
[(1,6),(2,10),(3,8),(4,7),(5,9)] generating graphics... => 1
[(1,6),(2,10),(3,8),(4,5),(7,9)] generating graphics... => 1
[(1,6),(2,10),(3,9),(4,8),(5,7)] generating graphics... => 1
[(1,6),(2,10),(3,9),(4,7),(5,8)] generating graphics... => 1
[(1,6),(2,10),(3,9),(4,5),(7,8)] generating graphics... => 1
[(1,7),(2,3),(4,5),(6,10),(8,9)] generating graphics... => 1
[(1,7),(2,3),(4,5),(6,9),(8,10)] generating graphics... => 2
[(1,7),(2,3),(4,5),(6,8),(9,10)] generating graphics... => 2
[(1,7),(2,3),(4,6),(5,10),(8,9)] generating graphics... => 1
[(1,7),(2,3),(4,6),(5,9),(8,10)] generating graphics... => 2
[(1,7),(2,3),(4,6),(5,8),(9,10)] generating graphics... => 2
[(1,7),(2,3),(4,8),(5,6),(9,10)] generating graphics... => 2
[(1,7),(2,3),(4,8),(5,9),(6,10)] generating graphics... => 1
[(1,7),(2,3),(4,8),(5,10),(6,9)] generating graphics... => 1
[(1,7),(2,3),(4,9),(5,6),(8,10)] generating graphics... => 2
[(1,7),(2,3),(4,9),(5,8),(6,10)] generating graphics... => 1
[(1,7),(2,3),(4,9),(5,10),(6,8)] generating graphics... => 1
[(1,7),(2,3),(4,10),(5,6),(8,9)] generating graphics... => 1
[(1,7),(2,3),(4,10),(5,8),(6,9)] generating graphics... => 1
[(1,7),(2,3),(4,10),(5,9),(6,8)] generating graphics... => 1
[(1,7),(2,4),(3,5),(6,10),(8,9)] generating graphics... => 1
[(1,7),(2,4),(3,5),(6,9),(8,10)] generating graphics... => 2
[(1,7),(2,4),(3,5),(6,8),(9,10)] generating graphics... => 2
[(1,7),(2,4),(3,6),(5,10),(8,9)] generating graphics... => 1
[(1,7),(2,4),(3,6),(5,9),(8,10)] generating graphics... => 2
[(1,7),(2,4),(3,6),(5,8),(9,10)] generating graphics... => 2
[(1,7),(2,4),(3,8),(5,6),(9,10)] generating graphics... => 2
[(1,7),(2,4),(3,8),(5,9),(6,10)] generating graphics... => 1
[(1,7),(2,4),(3,8),(5,10),(6,9)] generating graphics... => 1
[(1,7),(2,4),(3,9),(5,6),(8,10)] generating graphics... => 2
[(1,7),(2,4),(3,9),(5,8),(6,10)] generating graphics... => 1
[(1,7),(2,4),(3,9),(5,10),(6,8)] generating graphics... => 1
[(1,7),(2,4),(3,10),(5,6),(8,9)] generating graphics... => 1
[(1,7),(2,4),(3,10),(5,8),(6,9)] generating graphics... => 1
[(1,7),(2,4),(3,10),(5,9),(6,8)] generating graphics... => 1
[(1,7),(2,5),(3,4),(6,10),(8,9)] generating graphics... => 1
[(1,7),(2,5),(3,4),(6,9),(8,10)] generating graphics... => 2
[(1,7),(2,5),(3,4),(6,8),(9,10)] generating graphics... => 2
[(1,7),(2,5),(3,6),(4,10),(8,9)] generating graphics... => 1
[(1,7),(2,5),(3,6),(4,9),(8,10)] generating graphics... => 2
[(1,7),(2,5),(3,6),(4,8),(9,10)] generating graphics... => 2
[(1,7),(2,5),(3,8),(4,6),(9,10)] generating graphics... => 2
[(1,7),(2,5),(3,8),(4,9),(6,10)] generating graphics... => 1
[(1,7),(2,5),(3,8),(4,10),(6,9)] generating graphics... => 1
[(1,7),(2,5),(3,9),(4,6),(8,10)] generating graphics... => 2
[(1,7),(2,5),(3,9),(4,8),(6,10)] generating graphics... => 1
[(1,7),(2,5),(3,9),(4,10),(6,8)] generating graphics... => 1
[(1,7),(2,5),(3,10),(4,6),(8,9)] generating graphics... => 1
[(1,7),(2,5),(3,10),(4,8),(6,9)] generating graphics... => 1
[(1,7),(2,5),(3,10),(4,9),(6,8)] generating graphics... => 1
[(1,7),(2,6),(3,4),(5,10),(8,9)] generating graphics... => 1
[(1,7),(2,6),(3,4),(5,9),(8,10)] generating graphics... => 2
[(1,7),(2,6),(3,4),(5,8),(9,10)] generating graphics... => 2
[(1,7),(2,6),(3,5),(4,10),(8,9)] generating graphics... => 1
[(1,7),(2,6),(3,5),(4,9),(8,10)] generating graphics... => 2
[(1,7),(2,6),(3,5),(4,8),(9,10)] generating graphics... => 2
[(1,7),(2,6),(3,8),(4,5),(9,10)] generating graphics... => 2
[(1,7),(2,6),(3,8),(4,9),(5,10)] generating graphics... => 1
[(1,7),(2,6),(3,8),(4,10),(5,9)] generating graphics... => 1
[(1,7),(2,6),(3,9),(4,5),(8,10)] generating graphics... => 2
[(1,7),(2,6),(3,9),(4,8),(5,10)] generating graphics... => 1
[(1,7),(2,6),(3,9),(4,10),(5,8)] generating graphics... => 1
[(1,7),(2,6),(3,10),(4,5),(8,9)] generating graphics... => 1
[(1,7),(2,6),(3,10),(4,8),(5,9)] generating graphics... => 1
[(1,7),(2,6),(3,10),(4,9),(5,8)] generating graphics... => 1
[(1,7),(2,8),(3,4),(5,6),(9,10)] generating graphics... => 2
[(1,7),(2,8),(3,4),(5,9),(6,10)] generating graphics... => 1
[(1,7),(2,8),(3,4),(5,10),(6,9)] generating graphics... => 1
[(1,7),(2,8),(3,5),(4,6),(9,10)] generating graphics... => 2
[(1,7),(2,8),(3,5),(4,9),(6,10)] generating graphics... => 1
[(1,7),(2,8),(3,5),(4,10),(6,9)] generating graphics... => 1
[(1,7),(2,8),(3,6),(4,5),(9,10)] generating graphics... => 2
[(1,7),(2,8),(3,6),(4,9),(5,10)] generating graphics... => 1
[(1,7),(2,8),(3,6),(4,10),(5,9)] generating graphics... => 1
[(1,7),(2,8),(3,9),(4,10),(5,6)] generating graphics... => 1
[(1,7),(2,8),(3,9),(4,6),(5,10)] generating graphics... => 1
[(1,7),(2,8),(3,9),(4,5),(6,10)] generating graphics... => 1
[(1,7),(2,8),(3,10),(4,9),(5,6)] generating graphics... => 1
[(1,7),(2,8),(3,10),(4,6),(5,9)] generating graphics... => 1
[(1,7),(2,8),(3,10),(4,5),(6,9)] generating graphics... => 1
[(1,7),(2,9),(3,4),(5,6),(8,10)] generating graphics... => 2
[(1,7),(2,9),(3,4),(5,8),(6,10)] generating graphics... => 1
[(1,7),(2,9),(3,4),(5,10),(6,8)] generating graphics... => 1
[(1,7),(2,9),(3,5),(4,6),(8,10)] generating graphics... => 2
[(1,7),(2,9),(3,5),(4,8),(6,10)] generating graphics... => 1
[(1,7),(2,9),(3,5),(4,10),(6,8)] generating graphics... => 1
[(1,7),(2,9),(3,6),(4,5),(8,10)] generating graphics... => 2
[(1,7),(2,9),(3,6),(4,8),(5,10)] generating graphics... => 1
[(1,7),(2,9),(3,6),(4,10),(5,8)] generating graphics... => 1
[(1,7),(2,9),(3,8),(4,10),(5,6)] generating graphics... => 1
[(1,7),(2,9),(3,8),(4,6),(5,10)] generating graphics... => 1
[(1,7),(2,9),(3,8),(4,5),(6,10)] generating graphics... => 1
[(1,7),(2,9),(3,10),(4,8),(5,6)] generating graphics... => 1
[(1,7),(2,9),(3,10),(4,6),(5,8)] generating graphics... => 1
[(1,7),(2,9),(3,10),(4,5),(6,8)] generating graphics... => 1
[(1,7),(2,10),(3,4),(5,6),(8,9)] generating graphics... => 1
[(1,7),(2,10),(3,4),(5,8),(6,9)] generating graphics... => 1
[(1,7),(2,10),(3,4),(5,9),(6,8)] generating graphics... => 1
[(1,7),(2,10),(3,5),(4,6),(8,9)] generating graphics... => 1
[(1,7),(2,10),(3,5),(4,8),(6,9)] generating graphics... => 1
[(1,7),(2,10),(3,5),(4,9),(6,8)] generating graphics... => 1
[(1,7),(2,10),(3,6),(4,5),(8,9)] generating graphics... => 1
[(1,7),(2,10),(3,6),(4,8),(5,9)] generating graphics... => 1
[(1,7),(2,10),(3,6),(4,9),(5,8)] generating graphics... => 1
[(1,7),(2,10),(3,8),(4,9),(5,6)] generating graphics... => 1
[(1,7),(2,10),(3,8),(4,6),(5,9)] generating graphics... => 1
[(1,7),(2,10),(3,8),(4,5),(6,9)] generating graphics... => 1
[(1,7),(2,10),(3,9),(4,8),(5,6)] generating graphics... => 1
[(1,7),(2,10),(3,9),(4,6),(5,8)] generating graphics... => 1
[(1,7),(2,10),(3,9),(4,5),(6,8)] generating graphics... => 1
[(1,8),(2,3),(4,5),(6,7),(9,10)] generating graphics... => 2
[(1,8),(2,3),(4,5),(6,9),(7,10)] generating graphics... => 2
[(1,8),(2,3),(4,5),(6,10),(7,9)] generating graphics... => 1
[(1,8),(2,3),(4,6),(5,7),(9,10)] generating graphics... => 2
[(1,8),(2,3),(4,6),(5,9),(7,10)] generating graphics... => 2
[(1,8),(2,3),(4,6),(5,10),(7,9)] generating graphics... => 1
[(1,8),(2,3),(4,7),(5,6),(9,10)] generating graphics... => 2
[(1,8),(2,3),(4,7),(5,9),(6,10)] generating graphics... => 1
[(1,8),(2,3),(4,7),(5,10),(6,9)] generating graphics... => 1
[(1,8),(2,3),(4,9),(5,10),(6,7)] generating graphics... => 1
[(1,8),(2,3),(4,9),(5,7),(6,10)] generating graphics... => 1
[(1,8),(2,3),(4,9),(5,6),(7,10)] generating graphics... => 2
[(1,8),(2,3),(4,10),(5,9),(6,7)] generating graphics... => 1
[(1,8),(2,3),(4,10),(5,7),(6,9)] generating graphics... => 1
[(1,8),(2,3),(4,10),(5,6),(7,9)] generating graphics... => 1
[(1,8),(2,4),(3,5),(6,7),(9,10)] generating graphics... => 2
[(1,8),(2,4),(3,5),(6,9),(7,10)] generating graphics... => 2
[(1,8),(2,4),(3,5),(6,10),(7,9)] generating graphics... => 1
[(1,8),(2,4),(3,6),(5,7),(9,10)] generating graphics... => 2
[(1,8),(2,4),(3,6),(5,9),(7,10)] generating graphics... => 2
[(1,8),(2,4),(3,6),(5,10),(7,9)] generating graphics... => 1
[(1,8),(2,4),(3,7),(5,6),(9,10)] generating graphics... => 2
[(1,8),(2,4),(3,7),(5,9),(6,10)] generating graphics... => 1
[(1,8),(2,4),(3,7),(5,10),(6,9)] generating graphics... => 1
[(1,8),(2,4),(3,9),(5,10),(6,7)] generating graphics... => 1
[(1,8),(2,4),(3,9),(5,7),(6,10)] generating graphics... => 1
[(1,8),(2,4),(3,9),(5,6),(7,10)] generating graphics... => 2
[(1,8),(2,4),(3,10),(5,9),(6,7)] generating graphics... => 1
[(1,8),(2,4),(3,10),(5,7),(6,9)] generating graphics... => 1
[(1,8),(2,4),(3,10),(5,6),(7,9)] generating graphics... => 1
[(1,8),(2,5),(3,4),(6,7),(9,10)] generating graphics... => 2
[(1,8),(2,5),(3,4),(6,9),(7,10)] generating graphics... => 2
[(1,8),(2,5),(3,4),(6,10),(7,9)] generating graphics... => 1
[(1,8),(2,5),(3,6),(4,7),(9,10)] generating graphics... => 2
[(1,8),(2,5),(3,6),(4,9),(7,10)] generating graphics... => 2
[(1,8),(2,5),(3,6),(4,10),(7,9)] generating graphics... => 1
[(1,8),(2,5),(3,7),(4,6),(9,10)] generating graphics... => 2
[(1,8),(2,5),(3,7),(4,9),(6,10)] generating graphics... => 1
[(1,8),(2,5),(3,7),(4,10),(6,9)] generating graphics... => 1
[(1,8),(2,5),(3,9),(4,10),(6,7)] generating graphics... => 1
[(1,8),(2,5),(3,9),(4,7),(6,10)] generating graphics... => 1
[(1,8),(2,5),(3,9),(4,6),(7,10)] generating graphics... => 2
[(1,8),(2,5),(3,10),(4,9),(6,7)] generating graphics... => 1
[(1,8),(2,5),(3,10),(4,7),(6,9)] generating graphics... => 1
[(1,8),(2,5),(3,10),(4,6),(7,9)] generating graphics... => 1
[(1,8),(2,6),(3,4),(5,7),(9,10)] generating graphics... => 2
[(1,8),(2,6),(3,4),(5,9),(7,10)] generating graphics... => 2
[(1,8),(2,6),(3,4),(5,10),(7,9)] generating graphics... => 1
[(1,8),(2,6),(3,5),(4,7),(9,10)] generating graphics... => 2
[(1,8),(2,6),(3,5),(4,9),(7,10)] generating graphics... => 2
[(1,8),(2,6),(3,5),(4,10),(7,9)] generating graphics... => 1
[(1,8),(2,6),(3,7),(4,5),(9,10)] generating graphics... => 2
[(1,8),(2,6),(3,7),(4,9),(5,10)] generating graphics... => 1
[(1,8),(2,6),(3,7),(4,10),(5,9)] generating graphics... => 1
[(1,8),(2,6),(3,9),(4,10),(5,7)] generating graphics... => 1
[(1,8),(2,6),(3,9),(4,7),(5,10)] generating graphics... => 1
[(1,8),(2,6),(3,9),(4,5),(7,10)] generating graphics... => 2
[(1,8),(2,6),(3,10),(4,9),(5,7)] generating graphics... => 1
[(1,8),(2,6),(3,10),(4,7),(5,9)] generating graphics... => 1
[(1,8),(2,6),(3,10),(4,5),(7,9)] generating graphics... => 1
[(1,8),(2,7),(3,4),(5,6),(9,10)] generating graphics... => 2
[(1,8),(2,7),(3,4),(5,9),(6,10)] generating graphics... => 1
[(1,8),(2,7),(3,4),(5,10),(6,9)] generating graphics... => 1
[(1,8),(2,7),(3,5),(4,6),(9,10)] generating graphics... => 2
[(1,8),(2,7),(3,5),(4,9),(6,10)] generating graphics... => 1
[(1,8),(2,7),(3,5),(4,10),(6,9)] generating graphics... => 1
[(1,8),(2,7),(3,6),(4,5),(9,10)] generating graphics... => 2
[(1,8),(2,7),(3,6),(4,9),(5,10)] generating graphics... => 1
[(1,8),(2,7),(3,6),(4,10),(5,9)] generating graphics... => 1
[(1,8),(2,7),(3,9),(4,10),(5,6)] generating graphics... => 1
[(1,8),(2,7),(3,9),(4,6),(5,10)] generating graphics... => 1
[(1,8),(2,7),(3,9),(4,5),(6,10)] generating graphics... => 1
[(1,8),(2,7),(3,10),(4,9),(5,6)] generating graphics... => 1
[(1,8),(2,7),(3,10),(4,6),(5,9)] generating graphics... => 1
[(1,8),(2,7),(3,10),(4,5),(6,9)] generating graphics... => 1
[(1,8),(2,9),(3,4),(5,10),(6,7)] generating graphics... => 1
[(1,8),(2,9),(3,4),(5,7),(6,10)] generating graphics... => 1
[(1,8),(2,9),(3,4),(5,6),(7,10)] generating graphics... => 2
[(1,8),(2,9),(3,5),(4,10),(6,7)] generating graphics... => 1
[(1,8),(2,9),(3,5),(4,7),(6,10)] generating graphics... => 1
[(1,8),(2,9),(3,5),(4,6),(7,10)] generating graphics... => 2
[(1,8),(2,9),(3,6),(4,10),(5,7)] generating graphics... => 1
[(1,8),(2,9),(3,6),(4,7),(5,10)] generating graphics... => 1
[(1,8),(2,9),(3,6),(4,5),(7,10)] generating graphics... => 2
[(1,8),(2,9),(3,7),(4,10),(5,6)] generating graphics... => 1
[(1,8),(2,9),(3,7),(4,6),(5,10)] generating graphics... => 1
[(1,8),(2,9),(3,7),(4,5),(6,10)] generating graphics... => 1
[(1,8),(2,9),(3,10),(4,5),(6,7)] generating graphics... => 1
[(1,8),(2,9),(3,10),(4,6),(5,7)] generating graphics... => 1
[(1,8),(2,9),(3,10),(4,7),(5,6)] generating graphics... => 1
[(1,8),(2,10),(3,4),(5,9),(6,7)] generating graphics... => 1
[(1,8),(2,10),(3,4),(5,7),(6,9)] generating graphics... => 1
[(1,8),(2,10),(3,4),(5,6),(7,9)] generating graphics... => 1
[(1,8),(2,10),(3,5),(4,9),(6,7)] generating graphics... => 1
[(1,8),(2,10),(3,5),(4,7),(6,9)] generating graphics... => 1
[(1,8),(2,10),(3,5),(4,6),(7,9)] generating graphics... => 1
[(1,8),(2,10),(3,6),(4,9),(5,7)] generating graphics... => 1
[(1,8),(2,10),(3,6),(4,7),(5,9)] generating graphics... => 1
[(1,8),(2,10),(3,6),(4,5),(7,9)] generating graphics... => 1
[(1,8),(2,10),(3,7),(4,9),(5,6)] generating graphics... => 1
[(1,8),(2,10),(3,7),(4,6),(5,9)] generating graphics... => 1
[(1,8),(2,10),(3,7),(4,5),(6,9)] generating graphics... => 1
[(1,8),(2,10),(3,9),(4,5),(6,7)] generating graphics... => 1
[(1,8),(2,10),(3,9),(4,6),(5,7)] generating graphics... => 1
[(1,8),(2,10),(3,9),(4,7),(5,6)] generating graphics... => 1
[(1,9),(2,3),(4,5),(6,7),(8,10)] generating graphics... => 2
[(1,9),(2,3),(4,5),(6,8),(7,10)] generating graphics... => 2
[(1,9),(2,3),(4,5),(6,10),(7,8)] generating graphics... => 1
[(1,9),(2,3),(4,6),(5,7),(8,10)] generating graphics... => 2
[(1,9),(2,3),(4,6),(5,8),(7,10)] generating graphics... => 2
[(1,9),(2,3),(4,6),(5,10),(7,8)] generating graphics... => 1
[(1,9),(2,3),(4,7),(5,6),(8,10)] generating graphics... => 2
[(1,9),(2,3),(4,7),(5,8),(6,10)] generating graphics... => 1
[(1,9),(2,3),(4,7),(5,10),(6,8)] generating graphics... => 1
[(1,9),(2,3),(4,8),(5,10),(6,7)] generating graphics... => 1
[(1,9),(2,3),(4,8),(5,7),(6,10)] generating graphics... => 1
[(1,9),(2,3),(4,8),(5,6),(7,10)] generating graphics... => 2
[(1,9),(2,3),(4,10),(5,8),(6,7)] generating graphics... => 1
[(1,9),(2,3),(4,10),(5,7),(6,8)] generating graphics... => 1
[(1,9),(2,3),(4,10),(5,6),(7,8)] generating graphics... => 1
[(1,9),(2,4),(3,5),(6,7),(8,10)] generating graphics... => 2
[(1,9),(2,4),(3,5),(6,8),(7,10)] generating graphics... => 2
[(1,9),(2,4),(3,5),(6,10),(7,8)] generating graphics... => 1
[(1,9),(2,4),(3,6),(5,7),(8,10)] generating graphics... => 2
[(1,9),(2,4),(3,6),(5,8),(7,10)] generating graphics... => 2
[(1,9),(2,4),(3,6),(5,10),(7,8)] generating graphics... => 1
[(1,9),(2,4),(3,7),(5,6),(8,10)] generating graphics... => 2
[(1,9),(2,4),(3,7),(5,8),(6,10)] generating graphics... => 1
[(1,9),(2,4),(3,7),(5,10),(6,8)] generating graphics... => 1
[(1,9),(2,4),(3,8),(5,10),(6,7)] generating graphics... => 1
[(1,9),(2,4),(3,8),(5,7),(6,10)] generating graphics... => 1
[(1,9),(2,4),(3,8),(5,6),(7,10)] generating graphics... => 2
[(1,9),(2,4),(3,10),(5,8),(6,7)] generating graphics... => 1
[(1,9),(2,4),(3,10),(5,7),(6,8)] generating graphics... => 1
[(1,9),(2,4),(3,10),(5,6),(7,8)] generating graphics... => 1
[(1,9),(2,5),(3,4),(6,7),(8,10)] generating graphics... => 2
[(1,9),(2,5),(3,4),(6,8),(7,10)] generating graphics... => 2
[(1,9),(2,5),(3,4),(6,10),(7,8)] generating graphics... => 1
[(1,9),(2,5),(3,6),(4,7),(8,10)] generating graphics... => 2
[(1,9),(2,5),(3,6),(4,8),(7,10)] generating graphics... => 2
[(1,9),(2,5),(3,6),(4,10),(7,8)] generating graphics... => 1
[(1,9),(2,5),(3,7),(4,6),(8,10)] generating graphics... => 2
[(1,9),(2,5),(3,7),(4,8),(6,10)] generating graphics... => 1
[(1,9),(2,5),(3,7),(4,10),(6,8)] generating graphics... => 1
[(1,9),(2,5),(3,8),(4,10),(6,7)] generating graphics... => 1
[(1,9),(2,5),(3,8),(4,7),(6,10)] generating graphics... => 1
[(1,9),(2,5),(3,8),(4,6),(7,10)] generating graphics... => 2
[(1,9),(2,5),(3,10),(4,8),(6,7)] generating graphics... => 1
[(1,9),(2,5),(3,10),(4,7),(6,8)] generating graphics... => 1
[(1,9),(2,5),(3,10),(4,6),(7,8)] generating graphics... => 1
[(1,9),(2,6),(3,4),(5,7),(8,10)] generating graphics... => 2
[(1,9),(2,6),(3,4),(5,8),(7,10)] generating graphics... => 2
[(1,9),(2,6),(3,4),(5,10),(7,8)] generating graphics... => 1
[(1,9),(2,6),(3,5),(4,7),(8,10)] generating graphics... => 2
[(1,9),(2,6),(3,5),(4,8),(7,10)] generating graphics... => 2
[(1,9),(2,6),(3,5),(4,10),(7,8)] generating graphics... => 1
[(1,9),(2,6),(3,7),(4,5),(8,10)] generating graphics... => 2
[(1,9),(2,6),(3,7),(4,8),(5,10)] generating graphics... => 1
[(1,9),(2,6),(3,7),(4,10),(5,8)] generating graphics... => 1
[(1,9),(2,6),(3,8),(4,10),(5,7)] generating graphics... => 1
[(1,9),(2,6),(3,8),(4,7),(5,10)] generating graphics... => 1
[(1,9),(2,6),(3,8),(4,5),(7,10)] generating graphics... => 2
[(1,9),(2,6),(3,10),(4,8),(5,7)] generating graphics... => 1
[(1,9),(2,6),(3,10),(4,7),(5,8)] generating graphics... => 1
[(1,9),(2,6),(3,10),(4,5),(7,8)] generating graphics... => 1
[(1,9),(2,7),(3,4),(5,6),(8,10)] generating graphics... => 2
[(1,9),(2,7),(3,4),(5,8),(6,10)] generating graphics... => 1
[(1,9),(2,7),(3,4),(5,10),(6,8)] generating graphics... => 1
[(1,9),(2,7),(3,5),(4,6),(8,10)] generating graphics... => 2
[(1,9),(2,7),(3,5),(4,8),(6,10)] generating graphics... => 1
[(1,9),(2,7),(3,5),(4,10),(6,8)] generating graphics... => 1
[(1,9),(2,7),(3,6),(4,5),(8,10)] generating graphics... => 2
[(1,9),(2,7),(3,6),(4,8),(5,10)] generating graphics... => 1
[(1,9),(2,7),(3,6),(4,10),(5,8)] generating graphics... => 1
[(1,9),(2,7),(3,8),(4,10),(5,6)] generating graphics... => 1
[(1,9),(2,7),(3,8),(4,6),(5,10)] generating graphics... => 1
[(1,9),(2,7),(3,8),(4,5),(6,10)] generating graphics... => 1
[(1,9),(2,7),(3,10),(4,8),(5,6)] generating graphics... => 1
[(1,9),(2,7),(3,10),(4,6),(5,8)] generating graphics... => 1
[(1,9),(2,7),(3,10),(4,5),(6,8)] generating graphics... => 1
[(1,9),(2,8),(3,4),(5,10),(6,7)] generating graphics... => 1
[(1,9),(2,8),(3,4),(5,7),(6,10)] generating graphics... => 1
[(1,9),(2,8),(3,4),(5,6),(7,10)] generating graphics... => 2
[(1,9),(2,8),(3,5),(4,10),(6,7)] generating graphics... => 1
[(1,9),(2,8),(3,5),(4,7),(6,10)] generating graphics... => 1
[(1,9),(2,8),(3,5),(4,6),(7,10)] generating graphics... => 2
[(1,9),(2,8),(3,6),(4,10),(5,7)] generating graphics... => 1
[(1,9),(2,8),(3,6),(4,7),(5,10)] generating graphics... => 1
[(1,9),(2,8),(3,6),(4,5),(7,10)] generating graphics... => 2
[(1,9),(2,8),(3,7),(4,10),(5,6)] generating graphics... => 1
[(1,9),(2,8),(3,7),(4,6),(5,10)] generating graphics... => 1
[(1,9),(2,8),(3,7),(4,5),(6,10)] generating graphics... => 1
[(1,9),(2,8),(3,10),(4,5),(6,7)] generating graphics... => 1
[(1,9),(2,8),(3,10),(4,6),(5,7)] generating graphics... => 1
[(1,9),(2,8),(3,10),(4,7),(5,6)] generating graphics... => 1
[(1,9),(2,10),(3,4),(5,8),(6,7)] generating graphics... => 1
[(1,9),(2,10),(3,4),(5,7),(6,8)] generating graphics... => 1
[(1,9),(2,10),(3,4),(5,6),(7,8)] generating graphics... => 1
[(1,9),(2,10),(3,5),(4,8),(6,7)] generating graphics... => 1
[(1,9),(2,10),(3,5),(4,7),(6,8)] generating graphics... => 1
[(1,9),(2,10),(3,5),(4,6),(7,8)] generating graphics... => 1
[(1,9),(2,10),(3,6),(4,8),(5,7)] generating graphics... => 1
[(1,9),(2,10),(3,6),(4,7),(5,8)] generating graphics... => 1
[(1,9),(2,10),(3,6),(4,5),(7,8)] generating graphics... => 1
[(1,9),(2,10),(3,7),(4,8),(5,6)] generating graphics... => 1
[(1,9),(2,10),(3,7),(4,6),(5,8)] generating graphics... => 1
[(1,9),(2,10),(3,7),(4,5),(6,8)] generating graphics... => 1
[(1,9),(2,10),(3,8),(4,5),(6,7)] generating graphics... => 1
[(1,9),(2,10),(3,8),(4,6),(5,7)] generating graphics... => 1
[(1,9),(2,10),(3,8),(4,7),(5,6)] generating graphics... => 1
[(1,10),(2,3),(4,5),(6,7),(8,9)] generating graphics... => 1
[(1,10),(2,3),(4,5),(6,8),(7,9)] generating graphics... => 1
[(1,10),(2,3),(4,5),(6,9),(7,8)] generating graphics... => 1
[(1,10),(2,3),(4,6),(5,7),(8,9)] generating graphics... => 1
[(1,10),(2,3),(4,6),(5,8),(7,9)] generating graphics... => 1
[(1,10),(2,3),(4,6),(5,9),(7,8)] generating graphics... => 1
[(1,10),(2,3),(4,7),(5,6),(8,9)] generating graphics... => 1
[(1,10),(2,3),(4,7),(5,8),(6,9)] generating graphics... => 1
[(1,10),(2,3),(4,7),(5,9),(6,8)] generating graphics... => 1
[(1,10),(2,3),(4,8),(5,9),(6,7)] generating graphics... => 1
[(1,10),(2,3),(4,8),(5,7),(6,9)] generating graphics... => 1
[(1,10),(2,3),(4,8),(5,6),(7,9)] generating graphics... => 1
[(1,10),(2,3),(4,9),(5,8),(6,7)] generating graphics... => 1
[(1,10),(2,3),(4,9),(5,7),(6,8)] generating graphics... => 1
[(1,10),(2,3),(4,9),(5,6),(7,8)] generating graphics... => 1
[(1,10),(2,4),(3,5),(6,7),(8,9)] generating graphics... => 1
[(1,10),(2,4),(3,5),(6,8),(7,9)] generating graphics... => 1
[(1,10),(2,4),(3,5),(6,9),(7,8)] generating graphics... => 1
[(1,10),(2,4),(3,6),(5,7),(8,9)] generating graphics... => 1
[(1,10),(2,4),(3,6),(5,8),(7,9)] generating graphics... => 1
[(1,10),(2,4),(3,6),(5,9),(7,8)] generating graphics... => 1
[(1,10),(2,4),(3,7),(5,6),(8,9)] generating graphics... => 1
[(1,10),(2,4),(3,7),(5,8),(6,9)] generating graphics... => 1
[(1,10),(2,4),(3,7),(5,9),(6,8)] generating graphics... => 1
[(1,10),(2,4),(3,8),(5,9),(6,7)] generating graphics... => 1
[(1,10),(2,4),(3,8),(5,7),(6,9)] generating graphics... => 1
[(1,10),(2,4),(3,8),(5,6),(7,9)] generating graphics... => 1
[(1,10),(2,4),(3,9),(5,8),(6,7)] generating graphics... => 1
[(1,10),(2,4),(3,9),(5,7),(6,8)] generating graphics... => 1
[(1,10),(2,4),(3,9),(5,6),(7,8)] generating graphics... => 1
[(1,10),(2,5),(3,4),(6,7),(8,9)] generating graphics... => 1
[(1,10),(2,5),(3,4),(6,8),(7,9)] generating graphics... => 1
[(1,10),(2,5),(3,4),(6,9),(7,8)] generating graphics... => 1
[(1,10),(2,5),(3,6),(4,7),(8,9)] generating graphics... => 1
[(1,10),(2,5),(3,6),(4,8),(7,9)] generating graphics... => 1
[(1,10),(2,5),(3,6),(4,9),(7,8)] generating graphics... => 1
[(1,10),(2,5),(3,7),(4,6),(8,9)] generating graphics... => 1
[(1,10),(2,5),(3,7),(4,8),(6,9)] generating graphics... => 1
[(1,10),(2,5),(3,7),(4,9),(6,8)] generating graphics... => 1
[(1,10),(2,5),(3,8),(4,9),(6,7)] generating graphics... => 1
[(1,10),(2,5),(3,8),(4,7),(6,9)] generating graphics... => 1
[(1,10),(2,5),(3,8),(4,6),(7,9)] generating graphics... => 1
[(1,10),(2,5),(3,9),(4,8),(6,7)] generating graphics... => 1
[(1,10),(2,5),(3,9),(4,7),(6,8)] generating graphics... => 1
[(1,10),(2,5),(3,9),(4,6),(7,8)] generating graphics... => 1
[(1,10),(2,6),(3,4),(5,7),(8,9)] generating graphics... => 1
[(1,10),(2,6),(3,4),(5,8),(7,9)] generating graphics... => 1
[(1,10),(2,6),(3,4),(5,9),(7,8)] generating graphics... => 1
[(1,10),(2,6),(3,5),(4,7),(8,9)] generating graphics... => 1
[(1,10),(2,6),(3,5),(4,8),(7,9)] generating graphics... => 1
[(1,10),(2,6),(3,5),(4,9),(7,8)] generating graphics... => 1
[(1,10),(2,6),(3,7),(4,5),(8,9)] generating graphics... => 1
[(1,10),(2,6),(3,7),(4,8),(5,9)] generating graphics... => 1
[(1,10),(2,6),(3,7),(4,9),(5,8)] generating graphics... => 1
[(1,10),(2,6),(3,8),(4,9),(5,7)] generating graphics... => 1
[(1,10),(2,6),(3,8),(4,7),(5,9)] generating graphics... => 1
[(1,10),(2,6),(3,8),(4,5),(7,9)] generating graphics... => 1
[(1,10),(2,6),(3,9),(4,8),(5,7)] generating graphics... => 1
[(1,10),(2,6),(3,9),(4,7),(5,8)] generating graphics... => 1
[(1,10),(2,6),(3,9),(4,5),(7,8)] generating graphics... => 1
[(1,10),(2,7),(3,4),(5,6),(8,9)] generating graphics... => 1
[(1,10),(2,7),(3,4),(5,8),(6,9)] generating graphics... => 1
[(1,10),(2,7),(3,4),(5,9),(6,8)] generating graphics... => 1
[(1,10),(2,7),(3,5),(4,6),(8,9)] generating graphics... => 1
[(1,10),(2,7),(3,5),(4,8),(6,9)] generating graphics... => 1
[(1,10),(2,7),(3,5),(4,9),(6,8)] generating graphics... => 1
[(1,10),(2,7),(3,6),(4,5),(8,9)] generating graphics... => 1
[(1,10),(2,7),(3,6),(4,8),(5,9)] generating graphics... => 1
[(1,10),(2,7),(3,6),(4,9),(5,8)] generating graphics... => 1
[(1,10),(2,7),(3,8),(4,9),(5,6)] generating graphics... => 1
[(1,10),(2,7),(3,8),(4,6),(5,9)] generating graphics... => 1
[(1,10),(2,7),(3,8),(4,5),(6,9)] generating graphics... => 1
[(1,10),(2,7),(3,9),(4,8),(5,6)] generating graphics... => 1
[(1,10),(2,7),(3,9),(4,6),(5,8)] generating graphics... => 1
[(1,10),(2,7),(3,9),(4,5),(6,8)] generating graphics... => 1
[(1,10),(2,8),(3,4),(5,9),(6,7)] generating graphics... => 1
[(1,10),(2,8),(3,4),(5,7),(6,9)] generating graphics... => 1
[(1,10),(2,8),(3,4),(5,6),(7,9)] generating graphics... => 1
[(1,10),(2,8),(3,5),(4,9),(6,7)] generating graphics... => 1
[(1,10),(2,8),(3,5),(4,7),(6,9)] generating graphics... => 1
[(1,10),(2,8),(3,5),(4,6),(7,9)] generating graphics... => 1
[(1,10),(2,8),(3,6),(4,9),(5,7)] generating graphics... => 1
[(1,10),(2,8),(3,6),(4,7),(5,9)] generating graphics... => 1
[(1,10),(2,8),(3,6),(4,5),(7,9)] generating graphics... => 1
[(1,10),(2,8),(3,7),(4,9),(5,6)] generating graphics... => 1
[(1,10),(2,8),(3,7),(4,6),(5,9)] generating graphics... => 1
[(1,10),(2,8),(3,7),(4,5),(6,9)] generating graphics... => 1
[(1,10),(2,8),(3,9),(4,5),(6,7)] generating graphics... => 1
[(1,10),(2,8),(3,9),(4,6),(5,7)] generating graphics... => 1
[(1,10),(2,8),(3,9),(4,7),(5,6)] generating graphics... => 1
[(1,10),(2,9),(3,4),(5,8),(6,7)] generating graphics... => 1
[(1,10),(2,9),(3,4),(5,7),(6,8)] generating graphics... => 1
[(1,10),(2,9),(3,4),(5,6),(7,8)] generating graphics... => 1
[(1,10),(2,9),(3,5),(4,8),(6,7)] generating graphics... => 1
[(1,10),(2,9),(3,5),(4,7),(6,8)] generating graphics... => 1
[(1,10),(2,9),(3,5),(4,6),(7,8)] generating graphics... => 1
[(1,10),(2,9),(3,6),(4,8),(5,7)] generating graphics... => 1
[(1,10),(2,9),(3,6),(4,7),(5,8)] generating graphics... => 1
[(1,10),(2,9),(3,6),(4,5),(7,8)] generating graphics... => 1
[(1,10),(2,9),(3,7),(4,8),(5,6)] generating graphics... => 1
[(1,10),(2,9),(3,7),(4,6),(5,8)] generating graphics... => 1
[(1,10),(2,9),(3,7),(4,5),(6,8)] generating graphics... => 1
[(1,10),(2,9),(3,8),(4,5),(6,7)] generating graphics... => 1
[(1,10),(2,9),(3,8),(4,6),(5,7)] generating graphics... => 1
[(1,10),(2,9),(3,8),(4,7),(5,6)] generating graphics... => 1
[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,8),(9,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,9),(8,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,9),(8,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,9),(8,12),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,10),(8,11),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,10),(8,12),(9,11)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,11),(8,9),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,11),(8,10),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,11),(8,12),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)] generating graphics... => 1
[(1,2),(3,4),(5,6),(7,12),(8,10),(9,11)] generating graphics... => 1
[(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)] generating graphics... => 1
[(1,2),(3,4),(5,7),(6,8),(9,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,8),(9,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,8),(9,12),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,9),(8,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,9),(8,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,9),(8,12),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,10),(8,9),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,10),(8,11),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,10),(8,12),(9,11)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,11),(8,9),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,11),(8,10),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,11),(8,12),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,12),(8,9),(10,11)] generating graphics... => 1
[(1,2),(3,4),(5,7),(6,12),(8,10),(9,11)] generating graphics... => 1
[(1,2),(3,4),(5,7),(6,12),(8,11),(9,10)] generating graphics... => 1
[(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,7),(9,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,9),(7,12),(10,11)] generating graphics... => 1
[(1,2),(3,4),(5,8),(6,9),(7,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,9),(7,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,10),(7,12),(9,11)] generating graphics... => 1
[(1,2),(3,4),(5,8),(6,10),(7,11),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,10),(7,9),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,11),(7,12),(9,10)] generating graphics... => 1
[(1,2),(3,4),(5,8),(6,11),(7,10),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,11),(7,9),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,12),(7,11),(9,10)] generating graphics... => 1
[(1,2),(3,4),(5,8),(6,12),(7,10),(9,11)] generating graphics... => 1
[(1,2),(3,4),(5,8),(6,12),(7,9),(10,11)] generating graphics... => 1
[(1,2),(3,4),(5,9),(6,7),(8,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,7),(8,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,7),(8,12),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,8),(7,12),(10,11)] generating graphics... => 1
[(1,2),(3,4),(5,9),(6,8),(7,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,8),(7,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,10),(7,12),(8,11)] generating graphics... => 1
[(1,2),(3,4),(5,9),(6,10),(7,11),(8,12)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,10),(7,8),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,11),(7,12),(8,10)] generating graphics... => 1
[(1,2),(3,4),(5,9),(6,11),(7,10),(8,12)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,11),(7,8),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,12),(7,11),(8,10)] generating graphics... => 1
[(1,2),(3,4),(5,9),(6,12),(7,10),(8,11)] generating graphics... => 1
[(1,2),(3,4),(5,9),(6,12),(7,8),(10,11)] generating graphics... => 1
[(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,7),(8,11),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,7),(8,12),(9,11)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,8),(7,12),(9,11)] generating graphics... => 1
[(1,2),(3,4),(5,10),(6,8),(7,11),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,8),(7,9),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,9),(7,12),(8,11)] generating graphics... => 1
[(1,2),(3,4),(5,10),(6,9),(7,11),(8,12)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,11),(7,12),(8,9)] generating graphics... => 1
[(1,2),(3,4),(5,10),(6,11),(7,9),(8,12)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,11),(7,8),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,12),(7,11),(8,9)] generating graphics... => 1
[(1,2),(3,4),(5,10),(6,12),(7,9),(8,11)] generating graphics... => 1
[(1,2),(3,4),(5,10),(6,12),(7,8),(9,11)] generating graphics... => 1
[(1,2),(3,4),(5,11),(6,7),(8,9),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,7),(8,10),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,7),(8,12),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,8),(7,12),(9,10)] generating graphics... => 1
[(1,2),(3,4),(5,11),(6,8),(7,10),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,8),(7,9),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,9),(7,12),(8,10)] generating graphics... => 1
[(1,2),(3,4),(5,11),(6,9),(7,10),(8,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,9),(7,8),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,10),(7,12),(8,9)] generating graphics... => 1
[(1,2),(3,4),(5,11),(6,10),(7,9),(8,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,10),(7,8),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,12),(7,10),(8,9)] generating graphics... => 1
[(1,2),(3,4),(5,11),(6,12),(7,9),(8,10)] generating graphics... => 1
[(1,2),(3,4),(5,11),(6,12),(7,8),(9,10)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,7),(8,10),(9,11)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,8),(7,11),(9,10)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,8),(7,10),(9,11)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,8),(7,9),(10,11)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,9),(7,11),(8,10)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,9),(7,10),(8,11)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,10),(7,11),(8,9)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,10),(7,9),(8,11)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,10),(7,8),(9,11)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,11),(7,9),(8,10)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)] generating graphics... => 1
[(1,2),(3,5),(4,6),(7,8),(9,10),(11,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,8),(9,11),(10,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,8),(9,12),(10,11)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,9),(8,10),(11,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,9),(8,11),(10,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,9),(8,12),(10,11)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,10),(8,9),(11,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,10),(8,11),(9,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,10),(8,12),(9,11)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,11),(8,9),(10,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,11),(8,10),(9,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,11),(8,12),(9,10)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,12),(8,9),(10,11)] generating graphics... => 1
[(1,2),(3,5),(4,6),(7,12),(8,10),(9,11)] generating graphics... => 1
[(1,2),(3,5),(4,6),(7,12),(8,11),(9,10)] generating graphics... => 1
[(1,2),(3,5),(4,7),(6,8),(9,10),(11,12)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,8),(9,11),(10,12)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,8),(9,12),(10,11)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,9),(8,10),(11,12)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,9),(8,11),(10,12)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,9),(8,12),(10,11)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,10),(8,9),(11,12)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,10),(8,11),(9,12)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,10),(8,12),(9,11)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,11),(8,9),(10,12)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,11),(8,10),(9,12)] generating graphics... => 2
click to show generating function       
Description
The depth of the leaf closest to the root in the binary unordered tree associated with the perfect matching.
The bijection between perfect matchings of $\{1,\dots,2n\}$ and trees with $n+1$ leaves is described in Example 5.2.6 of [1].
References
[1] Stanley, R. P. Enumerative combinatorics. Vol. 2 MathSciNet:1676282
Code
def statistic(m):
    def aux(T):
        if len(T) == 0:
            return 0
        return 1 + min(aux(T[0]), aux(T[1]))
    return aux(matching_to_tree(m))

def matching_to_tree(m):
    """
    INPUT:

    - m, a PerfectMatching on {1,...,2n}.

    OUTPUT:

    a decreasingly labelled, unordered full binary tree with n+1 leaves.

    EXAMPLES::

        sage: m = PerfectMatching([(1,4),(2,9),(3,10),(5,7),(6,8),(11,12)])
        sage: ascii_art(matching_to_tree(m))
    """
    # the children of the smallest label are the largest remaining
    # element and its partner
    trees = [LabelledRootedTree([LabelledRootedTree([], label=i),
                                 LabelledRootedTree([], label=j)]) for i, j in m]
    max_label = m.size()//2+1 # last labelled node

    while len(trees) > 1:
        max_label += 1
        # find tree with smallest child and both children smaller than max_label
        A = sorted([T for T in trees if max(T[0].label(), T[1].label()) < max_label],
                   key = lambda T: min(T[0].label(), T[1].label()))[0]
        trees.remove(A)
        # give it's root node the new label
        A = LabelledRootedTree(A, label=max_label)
        # find tree with child having label max_label
        B = (T for T in trees
             if T[0].label() == max_label or T[1].label() == max_label).next()
        trees.remove(B)
        # replace B with [B[0], A] or [B[1], A]
        if B[0].label() == max_label:
            C = LabelledRootedTree([A, B[1]])
        else:
            C = LabelledRootedTree([A, B[0]])

        trees.append(C)

    return trees[0]
Created
Nov 08, 2017 at 21:41 by Martin Rubey
Updated
Nov 12, 2017 at 17:25 by Martin Rubey