Identifier
Identifier
Values
[(1,2)] generating graphics... => 1
[(1,2),(3,4)] generating graphics... => 2
[(1,3),(2,4)] generating graphics... => 1
[(1,4),(2,3)] generating graphics... => 2
[(1,2),(3,4),(5,6)] generating graphics... => 2
[(1,2),(3,5),(4,6)] generating graphics... => 6
[(1,2),(3,6),(4,5)] generating graphics... => 3
[(1,3),(2,4),(5,6)] generating graphics... => 6
[(1,3),(2,5),(4,6)] generating graphics... => 3
[(1,3),(2,6),(4,5)] generating graphics... => 6
[(1,4),(2,3),(5,6)] generating graphics... => 3
[(1,4),(2,5),(3,6)] generating graphics... => 1
[(1,4),(2,6),(3,5)] generating graphics... => 3
[(1,5),(2,3),(4,6)] generating graphics... => 6
[(1,5),(2,4),(3,6)] generating graphics... => 3
[(1,5),(2,6),(3,4)] generating graphics... => 6
[(1,6),(2,3),(4,5)] generating graphics... => 2
[(1,6),(2,4),(3,5)] generating graphics... => 6
[(1,6),(2,5),(3,4)] generating graphics... => 3
[(1,2),(3,4),(5,8),(6,7)] generating graphics... => 8
[(1,2),(3,4),(5,7),(6,8)] generating graphics... => 8
[(1,2),(3,4),(5,6),(7,8)] generating graphics... => 2
[(1,2),(3,5),(4,8),(6,7)] generating graphics... => 8
[(1,2),(3,5),(4,7),(6,8)] generating graphics... => 8
[(1,2),(3,5),(4,6),(7,8)] generating graphics... => 8
[(1,2),(3,6),(4,8),(5,7)] generating graphics... => 16
[(1,2),(3,6),(4,7),(5,8)] generating graphics... => 8
[(1,2),(3,6),(4,5),(7,8)] generating graphics... => 8
[(1,2),(3,7),(4,8),(5,6)] generating graphics... => 4
[(1,2),(3,7),(4,6),(5,8)] generating graphics... => 16
[(1,2),(3,7),(4,5),(6,8)] generating graphics... => 8
[(1,2),(3,8),(4,5),(6,7)] generating graphics... => 8
[(1,2),(3,8),(4,6),(5,7)] generating graphics... => 8
[(1,2),(3,8),(4,7),(5,6)] generating graphics... => 4
[(1,3),(2,4),(5,8),(6,7)] generating graphics... => 8
[(1,3),(2,4),(5,7),(6,8)] generating graphics... => 4
[(1,3),(2,4),(5,6),(7,8)] generating graphics... => 8
[(1,3),(2,5),(4,8),(6,7)] generating graphics... => 16
[(1,3),(2,5),(4,7),(6,8)] generating graphics... => 8
[(1,3),(2,5),(4,6),(7,8)] generating graphics... => 8
[(1,3),(2,6),(4,8),(5,7)] generating graphics... => 4
[(1,3),(2,6),(4,7),(5,8)] generating graphics... => 8
[(1,3),(2,6),(4,5),(7,8)] generating graphics... => 8
[(1,3),(2,7),(4,8),(5,6)] generating graphics... => 16
[(1,3),(2,7),(4,6),(5,8)] generating graphics... => 8
[(1,3),(2,7),(4,5),(6,8)] generating graphics... => 8
[(1,3),(2,8),(4,5),(6,7)] generating graphics... => 8
[(1,3),(2,8),(4,6),(5,7)] generating graphics... => 4
[(1,3),(2,8),(4,7),(5,6)] generating graphics... => 8
[(1,4),(2,3),(5,8),(6,7)] generating graphics... => 4
[(1,4),(2,3),(5,7),(6,8)] generating graphics... => 8
[(1,4),(2,3),(5,6),(7,8)] generating graphics... => 8
[(1,4),(2,5),(3,8),(6,7)] generating graphics... => 8
[(1,4),(2,5),(3,7),(6,8)] generating graphics... => 8
[(1,4),(2,5),(3,6),(7,8)] generating graphics... => 8
[(1,4),(2,6),(3,8),(5,7)] generating graphics... => 8
[(1,4),(2,6),(3,7),(5,8)] generating graphics... => 4
[(1,4),(2,6),(3,5),(7,8)] generating graphics... => 16
[(1,4),(2,7),(3,8),(5,6)] generating graphics... => 8
[(1,4),(2,7),(3,6),(5,8)] generating graphics... => 2
[(1,4),(2,7),(3,5),(6,8)] generating graphics... => 8
[(1,4),(2,8),(3,5),(6,7)] generating graphics... => 8
[(1,4),(2,8),(3,6),(5,7)] generating graphics... => 8
[(1,4),(2,8),(3,7),(5,6)] generating graphics... => 16
[(1,5),(2,3),(4,8),(6,7)] generating graphics... => 4
[(1,5),(2,3),(4,7),(6,8)] generating graphics... => 16
[(1,5),(2,3),(4,6),(7,8)] generating graphics... => 8
[(1,5),(2,4),(3,8),(6,7)] generating graphics... => 16
[(1,5),(2,4),(3,7),(6,8)] generating graphics... => 4
[(1,5),(2,4),(3,6),(7,8)] generating graphics... => 16
[(1,5),(2,6),(3,8),(4,7)] generating graphics... => 4
[(1,5),(2,6),(3,7),(4,8)] generating graphics... => 1
[(1,5),(2,6),(3,4),(7,8)] generating graphics... => 4
[(1,5),(2,7),(3,8),(4,6)] generating graphics... => 8
[(1,5),(2,7),(3,6),(4,8)] generating graphics... => 4
[(1,5),(2,7),(3,4),(6,8)] generating graphics... => 16
[(1,5),(2,8),(3,4),(6,7)] generating graphics... => 8
[(1,5),(2,8),(3,6),(4,7)] generating graphics... => 8
[(1,5),(2,8),(3,7),(4,6)] generating graphics... => 4
[(1,6),(2,3),(4,8),(5,7)] generating graphics... => 16
[(1,6),(2,3),(4,7),(5,8)] generating graphics... => 8
[(1,6),(2,3),(4,5),(7,8)] generating graphics... => 8
[(1,6),(2,4),(3,8),(5,7)] generating graphics... => 8
[(1,6),(2,4),(3,7),(5,8)] generating graphics... => 8
[(1,6),(2,4),(3,5),(7,8)] generating graphics... => 8
[(1,6),(2,5),(3,8),(4,7)] generating graphics... => 2
[(1,6),(2,5),(3,7),(4,8)] generating graphics... => 4
[(1,6),(2,5),(3,4),(7,8)] generating graphics... => 4
[(1,6),(2,7),(3,8),(4,5)] generating graphics... => 8
[(1,6),(2,7),(3,5),(4,8)] generating graphics... => 8
[(1,6),(2,7),(3,4),(5,8)] generating graphics... => 8
[(1,6),(2,8),(3,4),(5,7)] generating graphics... => 8
[(1,6),(2,8),(3,5),(4,7)] generating graphics... => 8
[(1,6),(2,8),(3,7),(4,5)] generating graphics... => 16
[(1,7),(2,3),(4,8),(5,6)] generating graphics... => 8
[(1,7),(2,3),(4,6),(5,8)] generating graphics... => 8
[(1,7),(2,3),(4,5),(6,8)] generating graphics... => 8
[(1,7),(2,4),(3,8),(5,6)] generating graphics... => 8
[(1,7),(2,4),(3,6),(5,8)] generating graphics... => 8
[(1,7),(2,4),(3,5),(6,8)] generating graphics... => 4
[(1,7),(2,5),(3,8),(4,6)] generating graphics... => 8
[(1,7),(2,5),(3,6),(4,8)] generating graphics... => 8
[(1,7),(2,5),(3,4),(6,8)] generating graphics... => 8
[(1,7),(2,6),(3,8),(4,5)] generating graphics... => 16
[(1,7),(2,6),(3,5),(4,8)] generating graphics... => 4
[(1,7),(2,6),(3,4),(5,8)] generating graphics... => 16
[(1,7),(2,8),(3,4),(5,6)] generating graphics... => 8
[(1,7),(2,8),(3,5),(4,6)] generating graphics... => 4
[(1,7),(2,8),(3,6),(4,5)] generating graphics... => 8
[(1,8),(2,3),(4,5),(6,7)] generating graphics... => 2
[(1,8),(2,3),(4,6),(5,7)] generating graphics... => 8
[(1,8),(2,3),(4,7),(5,6)] generating graphics... => 8
[(1,8),(2,4),(3,5),(6,7)] generating graphics... => 8
[(1,8),(2,4),(3,6),(5,7)] generating graphics... => 8
[(1,8),(2,4),(3,7),(5,6)] generating graphics... => 8
[(1,8),(2,5),(3,4),(6,7)] generating graphics... => 8
[(1,8),(2,5),(3,6),(4,7)] generating graphics... => 8
[(1,8),(2,5),(3,7),(4,6)] generating graphics... => 16
[(1,8),(2,6),(3,4),(5,7)] generating graphics... => 8
[(1,8),(2,6),(3,5),(4,7)] generating graphics... => 16
[(1,8),(2,6),(3,7),(4,5)] generating graphics... => 4
[(1,8),(2,7),(3,4),(5,6)] generating graphics... => 8
[(1,8),(2,7),(3,5),(4,6)] generating graphics... => 8
[(1,8),(2,7),(3,6),(4,5)] generating graphics... => 4
[(1,2),(3,4),(5,6),(7,10),(8,9)] generating graphics... => 10
[(1,2),(3,4),(5,6),(7,9),(8,10)] generating graphics... => 10
[(1,2),(3,4),(5,6),(7,8),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,10),(8,9)] generating graphics... => 20
[(1,2),(3,4),(5,7),(6,9),(8,10)] generating graphics... => 10
[(1,2),(3,4),(5,7),(6,8),(9,10)] generating graphics... => 10
[(1,2),(3,4),(5,8),(6,7),(9,10)] generating graphics... => 10
[(1,2),(3,4),(5,8),(6,9),(7,10)] generating graphics... => 10
[(1,2),(3,4),(5,8),(6,10),(7,9)] generating graphics... => 20
[(1,2),(3,4),(5,9),(6,7),(8,10)] generating graphics... => 20
[(1,2),(3,4),(5,9),(6,8),(7,10)] generating graphics... => 20
[(1,2),(3,4),(5,9),(6,10),(7,8)] generating graphics... => 10
[(1,2),(3,4),(5,10),(6,7),(8,9)] generating graphics... => 5
[(1,2),(3,4),(5,10),(6,8),(7,9)] generating graphics... => 10
[(1,2),(3,4),(5,10),(6,9),(7,8)] generating graphics... => 10
[(1,2),(3,5),(4,6),(7,10),(8,9)] generating graphics... => 20
[(1,2),(3,5),(4,6),(7,9),(8,10)] generating graphics... => 10
[(1,2),(3,5),(4,6),(7,8),(9,10)] generating graphics... => 10
[(1,2),(3,5),(4,7),(6,10),(8,9)] generating graphics... => 20
[(1,2),(3,5),(4,7),(6,9),(8,10)] generating graphics... => 10
[(1,2),(3,5),(4,7),(6,8),(9,10)] generating graphics... => 10
[(1,2),(3,5),(4,8),(6,7),(9,10)] generating graphics... => 20
[(1,2),(3,5),(4,8),(6,9),(7,10)] generating graphics... => 20
[(1,2),(3,5),(4,8),(6,10),(7,9)] generating graphics... => 20
[(1,2),(3,5),(4,9),(6,7),(8,10)] generating graphics... => 5
[(1,2),(3,5),(4,9),(6,8),(7,10)] generating graphics... => 20
[(1,2),(3,5),(4,9),(6,10),(7,8)] generating graphics... => 20
[(1,2),(3,5),(4,10),(6,7),(8,9)] generating graphics... => 20
[(1,2),(3,5),(4,10),(6,8),(7,9)] generating graphics... => 20
[(1,2),(3,5),(4,10),(6,9),(7,8)] generating graphics... => 20
[(1,2),(3,6),(4,5),(7,10),(8,9)] generating graphics... => 10
[(1,2),(3,6),(4,5),(7,9),(8,10)] generating graphics... => 20
[(1,2),(3,6),(4,5),(7,8),(9,10)] generating graphics... => 10
[(1,2),(3,6),(4,7),(5,10),(8,9)] generating graphics... => 10
[(1,2),(3,6),(4,7),(5,9),(8,10)] generating graphics... => 20
[(1,2),(3,6),(4,7),(5,8),(9,10)] generating graphics... => 10
[(1,2),(3,6),(4,8),(5,7),(9,10)] generating graphics... => 20
[(1,2),(3,6),(4,8),(5,9),(7,10)] generating graphics... => 10
[(1,2),(3,6),(4,8),(5,10),(7,9)] generating graphics... => 20
[(1,2),(3,6),(4,9),(5,7),(8,10)] generating graphics... => 20
[(1,2),(3,6),(4,9),(5,8),(7,10)] generating graphics... => 10
[(1,2),(3,6),(4,9),(5,10),(7,8)] generating graphics... => 10
[(1,2),(3,6),(4,10),(5,7),(8,9)] generating graphics... => 20
[(1,2),(3,6),(4,10),(5,8),(7,9)] generating graphics... => 20
[(1,2),(3,6),(4,10),(5,9),(7,8)] generating graphics... => 10
[(1,2),(3,7),(4,5),(6,10),(8,9)] generating graphics... => 10
[(1,2),(3,7),(4,5),(6,9),(8,10)] generating graphics... => 20
[(1,2),(3,7),(4,5),(6,8),(9,10)] generating graphics... => 20
[(1,2),(3,7),(4,6),(5,10),(8,9)] generating graphics... => 10
[(1,2),(3,7),(4,6),(5,9),(8,10)] generating graphics... => 20
[(1,2),(3,7),(4,6),(5,8),(9,10)] generating graphics... => 20
[(1,2),(3,7),(4,8),(5,6),(9,10)] generating graphics... => 10
[(1,2),(3,7),(4,8),(5,9),(6,10)] generating graphics... => 10
[(1,2),(3,7),(4,8),(5,10),(6,9)] generating graphics... => 20
[(1,2),(3,7),(4,9),(5,6),(8,10)] generating graphics... => 20
[(1,2),(3,7),(4,9),(5,8),(6,10)] generating graphics... => 10
[(1,2),(3,7),(4,9),(5,10),(6,8)] generating graphics... => 20
[(1,2),(3,7),(4,10),(5,6),(8,9)] generating graphics... => 10
[(1,2),(3,7),(4,10),(5,8),(6,9)] generating graphics... => 20
[(1,2),(3,7),(4,10),(5,9),(6,8)] generating graphics... => 20
[(1,2),(3,8),(4,5),(6,7),(9,10)] generating graphics... => 5
[(1,2),(3,8),(4,5),(6,9),(7,10)] generating graphics... => 10
[(1,2),(3,8),(4,5),(6,10),(7,9)] generating graphics... => 10
[(1,2),(3,8),(4,6),(5,7),(9,10)] generating graphics... => 10
[(1,2),(3,8),(4,6),(5,9),(7,10)] generating graphics... => 20
[(1,2),(3,8),(4,6),(5,10),(7,9)] generating graphics... => 10
[(1,2),(3,8),(4,7),(5,6),(9,10)] generating graphics... => 10
[(1,2),(3,8),(4,7),(5,9),(6,10)] generating graphics... => 20
[(1,2),(3,8),(4,7),(5,10),(6,9)] generating graphics... => 10
[(1,2),(3,8),(4,9),(5,10),(6,7)] generating graphics... => 5
[(1,2),(3,8),(4,9),(5,7),(6,10)] generating graphics... => 20
[(1,2),(3,8),(4,9),(5,6),(7,10)] generating graphics... => 10
[(1,2),(3,8),(4,10),(5,9),(6,7)] generating graphics... => 10
[(1,2),(3,8),(4,10),(5,7),(6,9)] generating graphics... => 20
[(1,2),(3,8),(4,10),(5,6),(7,9)] generating graphics... => 20
[(1,2),(3,9),(4,5),(6,7),(8,10)] generating graphics... => 20
[(1,2),(3,9),(4,5),(6,8),(7,10)] generating graphics... => 20
[(1,2),(3,9),(4,5),(6,10),(7,8)] generating graphics... => 10
[(1,2),(3,9),(4,6),(5,7),(8,10)] generating graphics... => 20
[(1,2),(3,9),(4,6),(5,8),(7,10)] generating graphics... => 20
[(1,2),(3,9),(4,6),(5,10),(7,8)] generating graphics... => 20
[(1,2),(3,9),(4,7),(5,6),(8,10)] generating graphics... => 20
[(1,2),(3,9),(4,7),(5,8),(6,10)] generating graphics... => 20
[(1,2),(3,9),(4,7),(5,10),(6,8)] generating graphics... => 20
[(1,2),(3,9),(4,8),(5,10),(6,7)] generating graphics... => 10
[(1,2),(3,9),(4,8),(5,7),(6,10)] generating graphics... => 20
[(1,2),(3,9),(4,8),(5,6),(7,10)] generating graphics... => 10
[(1,2),(3,9),(4,10),(5,8),(6,7)] generating graphics... => 10
[(1,2),(3,9),(4,10),(5,7),(6,8)] generating graphics... => 10
[(1,2),(3,9),(4,10),(5,6),(7,8)] generating graphics... => 10
[(1,2),(3,10),(4,5),(6,7),(8,9)] generating graphics... => 10
[(1,2),(3,10),(4,5),(6,8),(7,9)] generating graphics... => 20
[(1,2),(3,10),(4,5),(6,9),(7,8)] generating graphics... => 10
[(1,2),(3,10),(4,6),(5,7),(8,9)] generating graphics... => 20
[(1,2),(3,10),(4,6),(5,8),(7,9)] generating graphics... => 10
[(1,2),(3,10),(4,6),(5,9),(7,8)] generating graphics... => 20
[(1,2),(3,10),(4,7),(5,6),(8,9)] generating graphics... => 10
[(1,2),(3,10),(4,7),(5,8),(6,9)] generating graphics... => 10
[(1,2),(3,10),(4,7),(5,9),(6,8)] generating graphics... => 20
[(1,2),(3,10),(4,8),(5,9),(6,7)] generating graphics... => 10
[(1,2),(3,10),(4,8),(5,7),(6,9)] generating graphics... => 20
[(1,2),(3,10),(4,8),(5,6),(7,9)] generating graphics... => 20
[(1,2),(3,10),(4,9),(5,8),(6,7)] generating graphics... => 5
[(1,2),(3,10),(4,9),(5,7),(6,8)] generating graphics... => 10
[(1,2),(3,10),(4,9),(5,6),(7,8)] generating graphics... => 10
[(1,3),(2,4),(5,6),(7,10),(8,9)] generating graphics... => 20
[(1,3),(2,4),(5,6),(7,9),(8,10)] generating graphics... => 10
[(1,3),(2,4),(5,6),(7,8),(9,10)] generating graphics... => 10
[(1,3),(2,4),(5,7),(6,10),(8,9)] generating graphics... => 20
[(1,3),(2,4),(5,7),(6,9),(8,10)] generating graphics... => 10
[(1,3),(2,4),(5,7),(6,8),(9,10)] generating graphics... => 10
[(1,3),(2,4),(5,8),(6,7),(9,10)] generating graphics... => 20
[(1,3),(2,4),(5,8),(6,9),(7,10)] generating graphics... => 10
[(1,3),(2,4),(5,8),(6,10),(7,9)] generating graphics... => 20
[(1,3),(2,4),(5,9),(6,7),(8,10)] generating graphics... => 20
[(1,3),(2,4),(5,9),(6,8),(7,10)] generating graphics... => 20
[(1,3),(2,4),(5,9),(6,10),(7,8)] generating graphics... => 10
[(1,3),(2,4),(5,10),(6,7),(8,9)] generating graphics... => 10
[(1,3),(2,4),(5,10),(6,8),(7,9)] generating graphics... => 5
[(1,3),(2,4),(5,10),(6,9),(7,8)] generating graphics... => 10
[(1,3),(2,5),(4,6),(7,10),(8,9)] generating graphics... => 10
[(1,3),(2,5),(4,6),(7,9),(8,10)] generating graphics... => 10
[(1,3),(2,5),(4,6),(7,8),(9,10)] generating graphics... => 10
[(1,3),(2,5),(4,7),(6,10),(8,9)] generating graphics... => 20
[(1,3),(2,5),(4,7),(6,9),(8,10)] generating graphics... => 10
[(1,3),(2,5),(4,7),(6,8),(9,10)] generating graphics... => 10
[(1,3),(2,5),(4,8),(6,7),(9,10)] generating graphics... => 20
[(1,3),(2,5),(4,8),(6,9),(7,10)] generating graphics... => 20
[(1,3),(2,5),(4,8),(6,10),(7,9)] generating graphics... => 20
[(1,3),(2,5),(4,9),(6,7),(8,10)] generating graphics... => 20
[(1,3),(2,5),(4,9),(6,8),(7,10)] generating graphics... => 10
[(1,3),(2,5),(4,9),(6,10),(7,8)] generating graphics... => 20
[(1,3),(2,5),(4,10),(6,7),(8,9)] generating graphics... => 20
[(1,3),(2,5),(4,10),(6,8),(7,9)] generating graphics... => 20
[(1,3),(2,5),(4,10),(6,9),(7,8)] generating graphics... => 20
[(1,3),(2,6),(4,5),(7,10),(8,9)] generating graphics... => 20
[(1,3),(2,6),(4,5),(7,9),(8,10)] generating graphics... => 20
[(1,3),(2,6),(4,5),(7,8),(9,10)] generating graphics... => 20
[(1,3),(2,6),(4,7),(5,10),(8,9)] generating graphics... => 20
[(1,3),(2,6),(4,7),(5,9),(8,10)] generating graphics... => 10
[(1,3),(2,6),(4,7),(5,8),(9,10)] generating graphics... => 20
[(1,3),(2,6),(4,8),(5,7),(9,10)] generating graphics... => 20
[(1,3),(2,6),(4,8),(5,9),(7,10)] generating graphics... => 20
[(1,3),(2,6),(4,8),(5,10),(7,9)] generating graphics... => 10
[(1,3),(2,6),(4,9),(5,7),(8,10)] generating graphics... => 10
[(1,3),(2,6),(4,9),(5,8),(7,10)] generating graphics... => 20
[(1,3),(2,6),(4,9),(5,10),(7,8)] generating graphics... => 20
[(1,3),(2,6),(4,10),(5,7),(8,9)] generating graphics... => 20
[(1,3),(2,6),(4,10),(5,8),(7,9)] generating graphics... => 20
[(1,3),(2,6),(4,10),(5,9),(7,8)] generating graphics... => 20
[(1,3),(2,7),(4,5),(6,10),(8,9)] generating graphics... => 20
[(1,3),(2,7),(4,5),(6,9),(8,10)] generating graphics... => 20
[(1,3),(2,7),(4,5),(6,8),(9,10)] generating graphics... => 5
[(1,3),(2,7),(4,6),(5,10),(8,9)] generating graphics... => 10
[(1,3),(2,7),(4,6),(5,9),(8,10)] generating graphics... => 10
[(1,3),(2,7),(4,6),(5,8),(9,10)] generating graphics... => 20
[(1,3),(2,7),(4,8),(5,6),(9,10)] generating graphics... => 20
[(1,3),(2,7),(4,8),(5,9),(6,10)] generating graphics... => 10
[(1,3),(2,7),(4,8),(5,10),(6,9)] generating graphics... => 20
[(1,3),(2,7),(4,9),(5,6),(8,10)] generating graphics... => 10
[(1,3),(2,7),(4,9),(5,8),(6,10)] generating graphics... => 20
[(1,3),(2,7),(4,9),(5,10),(6,8)] generating graphics... => 5
[(1,3),(2,7),(4,10),(5,6),(8,9)] generating graphics... => 10
[(1,3),(2,7),(4,10),(5,8),(6,9)] generating graphics... => 10
[(1,3),(2,7),(4,10),(5,9),(6,8)] generating graphics... => 5
[(1,3),(2,8),(4,5),(6,7),(9,10)] generating graphics... => 20
[(1,3),(2,8),(4,5),(6,9),(7,10)] generating graphics... => 20
[(1,3),(2,8),(4,5),(6,10),(7,9)] generating graphics... => 20
[(1,3),(2,8),(4,6),(5,7),(9,10)] generating graphics... => 20
[(1,3),(2,8),(4,6),(5,9),(7,10)] generating graphics... => 10
[(1,3),(2,8),(4,6),(5,10),(7,9)] generating graphics... => 10
[(1,3),(2,8),(4,7),(5,6),(9,10)] generating graphics... => 20
[(1,3),(2,8),(4,7),(5,9),(6,10)] generating graphics... => 20
[(1,3),(2,8),(4,7),(5,10),(6,9)] generating graphics... => 20
[(1,3),(2,8),(4,9),(5,10),(6,7)] generating graphics... => 20
[(1,3),(2,8),(4,9),(5,7),(6,10)] generating graphics... => 10
[(1,3),(2,8),(4,9),(5,6),(7,10)] generating graphics... => 20
[(1,3),(2,8),(4,10),(5,9),(6,7)] generating graphics... => 20
[(1,3),(2,8),(4,10),(5,7),(6,9)] generating graphics... => 20
[(1,3),(2,8),(4,10),(5,6),(7,9)] generating graphics... => 20
[(1,3),(2,9),(4,5),(6,7),(8,10)] generating graphics... => 10
[(1,3),(2,9),(4,5),(6,8),(7,10)] generating graphics... => 10
[(1,3),(2,9),(4,5),(6,10),(7,8)] generating graphics... => 20
[(1,3),(2,9),(4,6),(5,7),(8,10)] generating graphics... => 10
[(1,3),(2,9),(4,6),(5,8),(7,10)] generating graphics... => 10
[(1,3),(2,9),(4,6),(5,10),(7,8)] generating graphics... => 20
[(1,3),(2,9),(4,7),(5,6),(8,10)] generating graphics... => 10
[(1,3),(2,9),(4,7),(5,8),(6,10)] generating graphics... => 20
[(1,3),(2,9),(4,7),(5,10),(6,8)] generating graphics... => 10
[(1,3),(2,9),(4,8),(5,10),(6,7)] generating graphics... => 20
[(1,3),(2,9),(4,8),(5,7),(6,10)] generating graphics... => 20
[(1,3),(2,9),(4,8),(5,6),(7,10)] generating graphics... => 20
[(1,3),(2,9),(4,10),(5,8),(6,7)] generating graphics... => 20
[(1,3),(2,9),(4,10),(5,7),(6,8)] generating graphics... => 20
[(1,3),(2,9),(4,10),(5,6),(7,8)] generating graphics... => 20
[(1,3),(2,10),(4,5),(6,7),(8,9)] generating graphics... => 10
[(1,3),(2,10),(4,5),(6,8),(7,9)] generating graphics... => 10
[(1,3),(2,10),(4,5),(6,9),(7,8)] generating graphics... => 20
[(1,3),(2,10),(4,6),(5,7),(8,9)] generating graphics... => 10
[(1,3),(2,10),(4,6),(5,8),(7,9)] generating graphics... => 10
[(1,3),(2,10),(4,6),(5,9),(7,8)] generating graphics... => 20
[(1,3),(2,10),(4,7),(5,6),(8,9)] generating graphics... => 20
[(1,3),(2,10),(4,7),(5,8),(6,9)] generating graphics... => 10
[(1,3),(2,10),(4,7),(5,9),(6,8)] generating graphics... => 20
[(1,3),(2,10),(4,8),(5,9),(6,7)] generating graphics... => 10
[(1,3),(2,10),(4,8),(5,7),(6,9)] generating graphics... => 20
[(1,3),(2,10),(4,8),(5,6),(7,9)] generating graphics... => 20
[(1,3),(2,10),(4,9),(5,8),(6,7)] generating graphics... => 10
[(1,3),(2,10),(4,9),(5,7),(6,8)] generating graphics... => 5
[(1,3),(2,10),(4,9),(5,6),(7,8)] generating graphics... => 10
[(1,4),(2,3),(5,6),(7,10),(8,9)] generating graphics... => 10
[(1,4),(2,3),(5,6),(7,9),(8,10)] generating graphics... => 20
[(1,4),(2,3),(5,6),(7,8),(9,10)] generating graphics... => 10
[(1,4),(2,3),(5,7),(6,10),(8,9)] generating graphics... => 20
[(1,4),(2,3),(5,7),(6,9),(8,10)] generating graphics... => 10
[(1,4),(2,3),(5,7),(6,8),(9,10)] generating graphics... => 20
[(1,4),(2,3),(5,8),(6,7),(9,10)] generating graphics... => 10
[(1,4),(2,3),(5,8),(6,9),(7,10)] generating graphics... => 10
[(1,4),(2,3),(5,8),(6,10),(7,9)] generating graphics... => 20
[(1,4),(2,3),(5,9),(6,7),(8,10)] generating graphics... => 20
[(1,4),(2,3),(5,9),(6,8),(7,10)] generating graphics... => 20
[(1,4),(2,3),(5,9),(6,10),(7,8)] generating graphics... => 10
[(1,4),(2,3),(5,10),(6,7),(8,9)] generating graphics... => 10
[(1,4),(2,3),(5,10),(6,8),(7,9)] generating graphics... => 10
[(1,4),(2,3),(5,10),(6,9),(7,8)] generating graphics... => 5
[(1,4),(2,5),(3,6),(7,10),(8,9)] generating graphics... => 10
[(1,4),(2,5),(3,6),(7,9),(8,10)] generating graphics... => 10
[(1,4),(2,5),(3,6),(7,8),(9,10)] generating graphics... => 10
[(1,4),(2,5),(3,7),(6,10),(8,9)] generating graphics... => 20
[(1,4),(2,5),(3,7),(6,9),(8,10)] generating graphics... => 20
[(1,4),(2,5),(3,7),(6,8),(9,10)] generating graphics... => 20
[(1,4),(2,5),(3,8),(6,7),(9,10)] generating graphics... => 10
[(1,4),(2,5),(3,8),(6,9),(7,10)] generating graphics... => 5
[(1,4),(2,5),(3,8),(6,10),(7,9)] generating graphics... => 10
[(1,4),(2,5),(3,9),(6,7),(8,10)] generating graphics... => 20
[(1,4),(2,5),(3,9),(6,8),(7,10)] generating graphics... => 20
[(1,4),(2,5),(3,9),(6,10),(7,8)] generating graphics... => 20
[(1,4),(2,5),(3,10),(6,7),(8,9)] generating graphics... => 10
[(1,4),(2,5),(3,10),(6,8),(7,9)] generating graphics... => 10
[(1,4),(2,5),(3,10),(6,9),(7,8)] generating graphics... => 10
[(1,4),(2,6),(3,5),(7,10),(8,9)] generating graphics... => 20
[(1,4),(2,6),(3,5),(7,9),(8,10)] generating graphics... => 20
[(1,4),(2,6),(3,5),(7,8),(9,10)] generating graphics... => 20
[(1,4),(2,6),(3,7),(5,10),(8,9)] generating graphics... => 20
[(1,4),(2,6),(3,7),(5,9),(8,10)] generating graphics... => 20
[(1,4),(2,6),(3,7),(5,8),(9,10)] generating graphics... => 10
[(1,4),(2,6),(3,8),(5,7),(9,10)] generating graphics... => 20
[(1,4),(2,6),(3,8),(5,9),(7,10)] generating graphics... => 10
[(1,4),(2,6),(3,8),(5,10),(7,9)] generating graphics... => 20
[(1,4),(2,6),(3,9),(5,7),(8,10)] generating graphics... => 10
[(1,4),(2,6),(3,9),(5,8),(7,10)] generating graphics... => 10
[(1,4),(2,6),(3,9),(5,10),(7,8)] generating graphics... => 10
[(1,4),(2,6),(3,10),(5,7),(8,9)] generating graphics... => 20
[(1,4),(2,6),(3,10),(5,8),(7,9)] generating graphics... => 20
[(1,4),(2,6),(3,10),(5,9),(7,8)] generating graphics... => 20
[(1,4),(2,7),(3,5),(6,10),(8,9)] generating graphics... => 20
[(1,4),(2,7),(3,5),(6,9),(8,10)] generating graphics... => 10
[(1,4),(2,7),(3,5),(6,8),(9,10)] generating graphics... => 20
[(1,4),(2,7),(3,6),(5,10),(8,9)] generating graphics... => 10
[(1,4),(2,7),(3,6),(5,9),(8,10)] generating graphics... => 20
[(1,4),(2,7),(3,6),(5,8),(9,10)] generating graphics... => 10
[(1,4),(2,7),(3,8),(5,6),(9,10)] generating graphics... => 10
[(1,4),(2,7),(3,8),(5,9),(6,10)] generating graphics... => 10
[(1,4),(2,7),(3,8),(5,10),(6,9)] generating graphics... => 5
[(1,4),(2,7),(3,9),(5,6),(8,10)] generating graphics... => 20
[(1,4),(2,7),(3,9),(5,8),(6,10)] generating graphics... => 10
[(1,4),(2,7),(3,9),(5,10),(6,8)] generating graphics... => 20
[(1,4),(2,7),(3,10),(5,6),(8,9)] generating graphics... => 10
[(1,4),(2,7),(3,10),(5,8),(6,9)] generating graphics... => 5
[(1,4),(2,7),(3,10),(5,9),(6,8)] generating graphics... => 10
[(1,4),(2,8),(3,5),(6,7),(9,10)] generating graphics... => 20
[(1,4),(2,8),(3,5),(6,9),(7,10)] generating graphics... => 20
[(1,4),(2,8),(3,5),(6,10),(7,9)] generating graphics... => 20
[(1,4),(2,8),(3,6),(5,7),(9,10)] generating graphics... => 20
[(1,4),(2,8),(3,6),(5,9),(7,10)] generating graphics... => 10
[(1,4),(2,8),(3,6),(5,10),(7,9)] generating graphics... => 20
[(1,4),(2,8),(3,7),(5,6),(9,10)] generating graphics... => 10
[(1,4),(2,8),(3,7),(5,9),(6,10)] generating graphics... => 10
[(1,4),(2,8),(3,7),(5,10),(6,9)] generating graphics... => 5
[(1,4),(2,8),(3,9),(5,10),(6,7)] generating graphics... => 20
[(1,4),(2,8),(3,9),(5,7),(6,10)] generating graphics... => 20
[(1,4),(2,8),(3,9),(5,6),(7,10)] generating graphics... => 10
[(1,4),(2,8),(3,10),(5,9),(6,7)] generating graphics... => 20
[(1,4),(2,8),(3,10),(5,7),(6,9)] generating graphics... => 20
[(1,4),(2,8),(3,10),(5,6),(7,9)] generating graphics... => 20
[(1,4),(2,9),(3,5),(6,7),(8,10)] generating graphics... => 10
[(1,4),(2,9),(3,5),(6,8),(7,10)] generating graphics... => 10
[(1,4),(2,9),(3,5),(6,10),(7,8)] generating graphics... => 20
[(1,4),(2,9),(3,6),(5,7),(8,10)] generating graphics... => 10
[(1,4),(2,9),(3,6),(5,8),(7,10)] generating graphics... => 2
[(1,4),(2,9),(3,6),(5,10),(7,8)] generating graphics... => 10
[(1,4),(2,9),(3,7),(5,6),(8,10)] generating graphics... => 20
[(1,4),(2,9),(3,7),(5,8),(6,10)] generating graphics... => 10
[(1,4),(2,9),(3,7),(5,10),(6,8)] generating graphics... => 20
[(1,4),(2,9),(3,8),(5,10),(6,7)] generating graphics... => 10
[(1,4),(2,9),(3,8),(5,7),(6,10)] generating graphics... => 20
[(1,4),(2,9),(3,8),(5,6),(7,10)] generating graphics... => 10
[(1,4),(2,9),(3,10),(5,8),(6,7)] generating graphics... => 10
[(1,4),(2,9),(3,10),(5,7),(6,8)] generating graphics... => 10
[(1,4),(2,9),(3,10),(5,6),(7,8)] generating graphics... => 10
[(1,4),(2,10),(3,5),(6,7),(8,9)] generating graphics... => 10
[(1,4),(2,10),(3,5),(6,8),(7,9)] generating graphics... => 10
[(1,4),(2,10),(3,5),(6,9),(7,8)] generating graphics... => 10
[(1,4),(2,10),(3,6),(5,7),(8,9)] generating graphics... => 10
[(1,4),(2,10),(3,6),(5,8),(7,9)] generating graphics... => 10
[(1,4),(2,10),(3,6),(5,9),(7,8)] generating graphics... => 20
[(1,4),(2,10),(3,7),(5,6),(8,9)] generating graphics... => 20
[(1,4),(2,10),(3,7),(5,8),(6,9)] generating graphics... => 20
[(1,4),(2,10),(3,7),(5,9),(6,8)] generating graphics... => 20
[(1,4),(2,10),(3,8),(5,9),(6,7)] generating graphics... => 20
[(1,4),(2,10),(3,8),(5,7),(6,9)] generating graphics... => 10
[(1,4),(2,10),(3,8),(5,6),(7,9)] generating graphics... => 20
[(1,4),(2,10),(3,9),(5,8),(6,7)] generating graphics... => 20
[(1,4),(2,10),(3,9),(5,7),(6,8)] generating graphics... => 20
[(1,4),(2,10),(3,9),(5,6),(7,8)] generating graphics... => 20
[(1,5),(2,3),(4,6),(7,10),(8,9)] generating graphics... => 20
[(1,5),(2,3),(4,6),(7,9),(8,10)] generating graphics... => 20
[(1,5),(2,3),(4,6),(7,8),(9,10)] generating graphics... => 20
[(1,5),(2,3),(4,7),(6,10),(8,9)] generating graphics... => 10
[(1,5),(2,3),(4,7),(6,9),(8,10)] generating graphics... => 20
[(1,5),(2,3),(4,7),(6,8),(9,10)] generating graphics... => 20
[(1,5),(2,3),(4,8),(6,7),(9,10)] generating graphics... => 10
[(1,5),(2,3),(4,8),(6,9),(7,10)] generating graphics... => 20
[(1,5),(2,3),(4,8),(6,10),(7,9)] generating graphics... => 20
[(1,5),(2,3),(4,9),(6,7),(8,10)] generating graphics... => 20
[(1,5),(2,3),(4,9),(6,8),(7,10)] generating graphics... => 20
[(1,5),(2,3),(4,9),(6,10),(7,8)] generating graphics... => 10
[(1,5),(2,3),(4,10),(6,7),(8,9)] generating graphics... => 10
[(1,5),(2,3),(4,10),(6,8),(7,9)] generating graphics... => 10
[(1,5),(2,3),(4,10),(6,9),(7,8)] generating graphics... => 10
[(1,5),(2,4),(3,6),(7,10),(8,9)] generating graphics... => 20
[(1,5),(2,4),(3,6),(7,9),(8,10)] generating graphics... => 20
[(1,5),(2,4),(3,6),(7,8),(9,10)] generating graphics... => 20
[(1,5),(2,4),(3,7),(6,10),(8,9)] generating graphics... => 20
[(1,5),(2,4),(3,7),(6,9),(8,10)] generating graphics... => 20
[(1,5),(2,4),(3,7),(6,8),(9,10)] generating graphics... => 20
[(1,5),(2,4),(3,8),(6,7),(9,10)] generating graphics... => 10
[(1,5),(2,4),(3,8),(6,9),(7,10)] generating graphics... => 10
[(1,5),(2,4),(3,8),(6,10),(7,9)] generating graphics... => 5
[(1,5),(2,4),(3,9),(6,7),(8,10)] generating graphics... => 20
[(1,5),(2,4),(3,9),(6,8),(7,10)] generating graphics... => 20
[(1,5),(2,4),(3,9),(6,10),(7,8)] generating graphics... => 20
[(1,5),(2,4),(3,10),(6,7),(8,9)] generating graphics... => 20
[(1,5),(2,4),(3,10),(6,8),(7,9)] generating graphics... => 20
[(1,5),(2,4),(3,10),(6,9),(7,8)] generating graphics... => 20
[(1,5),(2,6),(3,4),(7,10),(8,9)] generating graphics... => 10
[(1,5),(2,6),(3,4),(7,9),(8,10)] generating graphics... => 10
[(1,5),(2,6),(3,4),(7,8),(9,10)] generating graphics... => 10
[(1,5),(2,6),(3,7),(4,10),(8,9)] generating graphics... => 10
[(1,5),(2,6),(3,7),(4,9),(8,10)] generating graphics... => 10
[(1,5),(2,6),(3,7),(4,8),(9,10)] generating graphics... => 10
[(1,5),(2,6),(3,8),(4,7),(9,10)] generating graphics... => 20
[(1,5),(2,6),(3,8),(4,9),(7,10)] generating graphics... => 10
[(1,5),(2,6),(3,8),(4,10),(7,9)] generating graphics... => 10
[(1,5),(2,6),(3,9),(4,7),(8,10)] generating graphics... => 20
[(1,5),(2,6),(3,9),(4,8),(7,10)] generating graphics... => 10
[(1,5),(2,6),(3,9),(4,10),(7,8)] generating graphics... => 10
[(1,5),(2,6),(3,10),(4,7),(8,9)] generating graphics... => 10
[(1,5),(2,6),(3,10),(4,8),(7,9)] generating graphics... => 20
[(1,5),(2,6),(3,10),(4,9),(7,8)] generating graphics... => 20
[(1,5),(2,7),(3,4),(6,10),(8,9)] generating graphics... => 10
[(1,5),(2,7),(3,4),(6,9),(8,10)] generating graphics... => 20
[(1,5),(2,7),(3,4),(6,8),(9,10)] generating graphics... => 20
[(1,5),(2,7),(3,6),(4,10),(8,9)] generating graphics... => 20
[(1,5),(2,7),(3,6),(4,9),(8,10)] generating graphics... => 20
[(1,5),(2,7),(3,6),(4,8),(9,10)] generating graphics... => 10
[(1,5),(2,7),(3,8),(4,6),(9,10)] generating graphics... => 20
[(1,5),(2,7),(3,8),(4,9),(6,10)] generating graphics... => 5
[(1,5),(2,7),(3,8),(4,10),(6,9)] generating graphics... => 10
[(1,5),(2,7),(3,9),(4,6),(8,10)] generating graphics... => 10
[(1,5),(2,7),(3,9),(4,8),(6,10)] generating graphics... => 5
[(1,5),(2,7),(3,9),(4,10),(6,8)] generating graphics... => 10
[(1,5),(2,7),(3,10),(4,6),(8,9)] generating graphics... => 20
[(1,5),(2,7),(3,10),(4,8),(6,9)] generating graphics... => 10
[(1,5),(2,7),(3,10),(4,9),(6,8)] generating graphics... => 20
[(1,5),(2,8),(3,4),(6,7),(9,10)] generating graphics... => 10
[(1,5),(2,8),(3,4),(6,9),(7,10)] generating graphics... => 20
[(1,5),(2,8),(3,4),(6,10),(7,9)] generating graphics... => 20
[(1,5),(2,8),(3,6),(4,7),(9,10)] generating graphics... => 20
[(1,5),(2,8),(3,6),(4,9),(7,10)] generating graphics... => 10
[(1,5),(2,8),(3,6),(4,10),(7,9)] generating graphics... => 20
[(1,5),(2,8),(3,7),(4,6),(9,10)] generating graphics... => 20
[(1,5),(2,8),(3,7),(4,9),(6,10)] generating graphics... => 5
[(1,5),(2,8),(3,7),(4,10),(6,9)] generating graphics... => 10
[(1,5),(2,8),(3,9),(4,10),(6,7)] generating graphics... => 10
[(1,5),(2,8),(3,9),(4,7),(6,10)] generating graphics... => 10
[(1,5),(2,8),(3,9),(4,6),(7,10)] generating graphics... => 20
[(1,5),(2,8),(3,10),(4,9),(6,7)] generating graphics... => 10
[(1,5),(2,8),(3,10),(4,7),(6,9)] generating graphics... => 10
[(1,5),(2,8),(3,10),(4,6),(7,9)] generating graphics... => 10
[(1,5),(2,9),(3,4),(6,7),(8,10)] generating graphics... => 20
[(1,5),(2,9),(3,4),(6,8),(7,10)] generating graphics... => 20
[(1,5),(2,9),(3,4),(6,10),(7,8)] generating graphics... => 10
[(1,5),(2,9),(3,6),(4,7),(8,10)] generating graphics... => 20
[(1,5),(2,9),(3,6),(4,8),(7,10)] generating graphics... => 10
[(1,5),(2,9),(3,6),(4,10),(7,8)] generating graphics... => 10
[(1,5),(2,9),(3,7),(4,6),(8,10)] generating graphics... => 20
[(1,5),(2,9),(3,7),(4,8),(6,10)] generating graphics... => 10
[(1,5),(2,9),(3,7),(4,10),(6,8)] generating graphics... => 20
[(1,5),(2,9),(3,8),(4,10),(6,7)] generating graphics... => 20
[(1,5),(2,9),(3,8),(4,7),(6,10)] generating graphics... => 5
[(1,5),(2,9),(3,8),(4,6),(7,10)] generating graphics... => 20
[(1,5),(2,9),(3,10),(4,8),(6,7)] generating graphics... => 20
[(1,5),(2,9),(3,10),(4,7),(6,8)] generating graphics... => 20
[(1,5),(2,9),(3,10),(4,6),(7,8)] generating graphics... => 20
[(1,5),(2,10),(3,4),(6,7),(8,9)] generating graphics... => 20
[(1,5),(2,10),(3,4),(6,8),(7,9)] generating graphics... => 20
[(1,5),(2,10),(3,4),(6,9),(7,8)] generating graphics... => 20
[(1,5),(2,10),(3,6),(4,7),(8,9)] generating graphics... => 20
[(1,5),(2,10),(3,6),(4,8),(7,9)] generating graphics... => 10
[(1,5),(2,10),(3,6),(4,9),(7,8)] generating graphics... => 20
[(1,5),(2,10),(3,7),(4,6),(8,9)] generating graphics... => 20
[(1,5),(2,10),(3,7),(4,8),(6,9)] generating graphics... => 20
[(1,5),(2,10),(3,7),(4,9),(6,8)] generating graphics... => 10
[(1,5),(2,10),(3,8),(4,9),(6,7)] generating graphics... => 20
[(1,5),(2,10),(3,8),(4,7),(6,9)] generating graphics... => 20
[(1,5),(2,10),(3,8),(4,6),(7,9)] generating graphics... => 10
[(1,5),(2,10),(3,9),(4,8),(6,7)] generating graphics... => 20
[(1,5),(2,10),(3,9),(4,7),(6,8)] generating graphics... => 20
[(1,5),(2,10),(3,9),(4,6),(7,8)] generating graphics... => 20
[(1,6),(2,3),(4,5),(7,10),(8,9)] generating graphics... => 10
[(1,6),(2,3),(4,5),(7,9),(8,10)] generating graphics... => 10
[(1,6),(2,3),(4,5),(7,8),(9,10)] generating graphics... => 5
[(1,6),(2,3),(4,7),(5,10),(8,9)] generating graphics... => 10
[(1,6),(2,3),(4,7),(5,9),(8,10)] generating graphics... => 20
[(1,6),(2,3),(4,7),(5,8),(9,10)] generating graphics... => 10
[(1,6),(2,3),(4,8),(5,7),(9,10)] generating graphics... => 10
[(1,6),(2,3),(4,8),(5,9),(7,10)] generating graphics... => 20
[(1,6),(2,3),(4,8),(5,10),(7,9)] generating graphics... => 20
[(1,6),(2,3),(4,9),(5,7),(8,10)] generating graphics... => 10
[(1,6),(2,3),(4,9),(5,8),(7,10)] generating graphics... => 10
[(1,6),(2,3),(4,9),(5,10),(7,8)] generating graphics... => 5
[(1,6),(2,3),(4,10),(5,7),(8,9)] generating graphics... => 20
[(1,6),(2,3),(4,10),(5,8),(7,9)] generating graphics... => 20
[(1,6),(2,3),(4,10),(5,9),(7,8)] generating graphics... => 10
[(1,6),(2,4),(3,5),(7,10),(8,9)] generating graphics... => 10
[(1,6),(2,4),(3,5),(7,9),(8,10)] generating graphics... => 5
[(1,6),(2,4),(3,5),(7,8),(9,10)] generating graphics... => 10
[(1,6),(2,4),(3,7),(5,10),(8,9)] generating graphics... => 20
[(1,6),(2,4),(3,7),(5,9),(8,10)] generating graphics... => 10
[(1,6),(2,4),(3,7),(5,8),(9,10)] generating graphics... => 20
[(1,6),(2,4),(3,8),(5,7),(9,10)] generating graphics... => 10
[(1,6),(2,4),(3,8),(5,9),(7,10)] generating graphics... => 20
[(1,6),(2,4),(3,8),(5,10),(7,9)] generating graphics... => 5
[(1,6),(2,4),(3,9),(5,7),(8,10)] generating graphics... => 10
[(1,6),(2,4),(3,9),(5,8),(7,10)] generating graphics... => 20
[(1,6),(2,4),(3,9),(5,10),(7,8)] generating graphics... => 20
[(1,6),(2,4),(3,10),(5,7),(8,9)] generating graphics... => 20
[(1,6),(2,4),(3,10),(5,8),(7,9)] generating graphics... => 10
[(1,6),(2,4),(3,10),(5,9),(7,8)] generating graphics... => 20
[(1,6),(2,5),(3,4),(7,10),(8,9)] generating graphics... => 5
[(1,6),(2,5),(3,4),(7,9),(8,10)] generating graphics... => 10
[(1,6),(2,5),(3,4),(7,8),(9,10)] generating graphics... => 10
[(1,6),(2,5),(3,7),(4,10),(8,9)] generating graphics... => 10
[(1,6),(2,5),(3,7),(4,9),(8,10)] generating graphics... => 20
[(1,6),(2,5),(3,7),(4,8),(9,10)] generating graphics... => 20
[(1,6),(2,5),(3,8),(4,7),(9,10)] generating graphics... => 10
[(1,6),(2,5),(3,8),(4,9),(7,10)] generating graphics... => 5
[(1,6),(2,5),(3,8),(4,10),(7,9)] generating graphics... => 20
[(1,6),(2,5),(3,9),(4,7),(8,10)] generating graphics... => 20
[(1,6),(2,5),(3,9),(4,8),(7,10)] generating graphics... => 5
[(1,6),(2,5),(3,9),(4,10),(7,8)] generating graphics... => 20
[(1,6),(2,5),(3,10),(4,7),(8,9)] generating graphics... => 10
[(1,6),(2,5),(3,10),(4,8),(7,9)] generating graphics... => 20
[(1,6),(2,5),(3,10),(4,9),(7,8)] generating graphics... => 10
[(1,6),(2,7),(3,4),(5,10),(8,9)] generating graphics... => 5
[(1,6),(2,7),(3,4),(5,9),(8,10)] generating graphics... => 20
[(1,6),(2,7),(3,4),(5,8),(9,10)] generating graphics... => 10
[(1,6),(2,7),(3,5),(4,10),(8,9)] generating graphics... => 20
[(1,6),(2,7),(3,5),(4,9),(8,10)] generating graphics... => 5
[(1,6),(2,7),(3,5),(4,8),(9,10)] generating graphics... => 20
[(1,6),(2,7),(3,8),(4,5),(9,10)] generating graphics... => 5
[(1,6),(2,7),(3,8),(4,9),(5,10)] generating graphics... => 1
[(1,6),(2,7),(3,8),(4,10),(5,9)] generating graphics... => 5
[(1,6),(2,7),(3,9),(4,5),(8,10)] generating graphics... => 20
[(1,6),(2,7),(3,9),(4,8),(5,10)] generating graphics... => 5
[(1,6),(2,7),(3,9),(4,10),(5,8)] generating graphics... => 10
[(1,6),(2,7),(3,10),(4,5),(8,9)] generating graphics... => 10
[(1,6),(2,7),(3,10),(4,8),(5,9)] generating graphics... => 10
[(1,6),(2,7),(3,10),(4,9),(5,8)] generating graphics... => 5
[(1,6),(2,8),(3,4),(5,7),(9,10)] generating graphics... => 20
[(1,6),(2,8),(3,4),(5,9),(7,10)] generating graphics... => 10
[(1,6),(2,8),(3,4),(5,10),(7,9)] generating graphics... => 20
[(1,6),(2,8),(3,5),(4,7),(9,10)] generating graphics... => 20
[(1,6),(2,8),(3,5),(4,9),(7,10)] generating graphics... => 20
[(1,6),(2,8),(3,5),(4,10),(7,9)] generating graphics... => 10
[(1,6),(2,8),(3,7),(4,5),(9,10)] generating graphics... => 10
[(1,6),(2,8),(3,7),(4,9),(5,10)] generating graphics... => 5
[(1,6),(2,8),(3,7),(4,10),(5,9)] generating graphics... => 5
[(1,6),(2,8),(3,9),(4,10),(5,7)] generating graphics... => 10
[(1,6),(2,8),(3,9),(4,7),(5,10)] generating graphics... => 10
[(1,6),(2,8),(3,9),(4,5),(7,10)] generating graphics... => 20
[(1,6),(2,8),(3,10),(4,9),(5,7)] generating graphics... => 20
[(1,6),(2,8),(3,10),(4,7),(5,9)] generating graphics... => 10
[(1,6),(2,8),(3,10),(4,5),(7,9)] generating graphics... => 20
[(1,6),(2,9),(3,4),(5,7),(8,10)] generating graphics... => 20
[(1,6),(2,9),(3,4),(5,8),(7,10)] generating graphics... => 10
[(1,6),(2,9),(3,4),(5,10),(7,8)] generating graphics... => 10
[(1,6),(2,9),(3,5),(4,7),(8,10)] generating graphics... => 10
[(1,6),(2,9),(3,5),(4,8),(7,10)] generating graphics... => 20
[(1,6),(2,9),(3,5),(4,10),(7,8)] generating graphics... => 20
[(1,6),(2,9),(3,7),(4,5),(8,10)] generating graphics... => 20
[(1,6),(2,9),(3,7),(4,8),(5,10)] generating graphics... => 10
[(1,6),(2,9),(3,7),(4,10),(5,8)] generating graphics... => 10
[(1,6),(2,9),(3,8),(4,10),(5,7)] generating graphics... => 20
[(1,6),(2,9),(3,8),(4,7),(5,10)] generating graphics... => 5
[(1,6),(2,9),(3,8),(4,5),(7,10)] generating graphics... => 10
[(1,6),(2,9),(3,10),(4,8),(5,7)] generating graphics... => 10
[(1,6),(2,9),(3,10),(4,7),(5,8)] generating graphics... => 5
[(1,6),(2,9),(3,10),(4,5),(7,8)] generating graphics... => 10
[(1,6),(2,10),(3,4),(5,7),(8,9)] generating graphics... => 5
[(1,6),(2,10),(3,4),(5,8),(7,9)] generating graphics... => 20
[(1,6),(2,10),(3,4),(5,9),(7,8)] generating graphics... => 20
[(1,6),(2,10),(3,5),(4,7),(8,9)] generating graphics... => 20
[(1,6),(2,10),(3,5),(4,8),(7,9)] generating graphics... => 10
[(1,6),(2,10),(3,5),(4,9),(7,8)] generating graphics... => 10
[(1,6),(2,10),(3,7),(4,5),(8,9)] generating graphics... => 20
[(1,6),(2,10),(3,7),(4,8),(5,9)] generating graphics... => 10
[(1,6),(2,10),(3,7),(4,9),(5,8)] generating graphics... => 20
[(1,6),(2,10),(3,8),(4,9),(5,7)] generating graphics... => 5
[(1,6),(2,10),(3,8),(4,7),(5,9)] generating graphics... => 20
[(1,6),(2,10),(3,8),(4,5),(7,9)] generating graphics... => 10
[(1,6),(2,10),(3,9),(4,8),(5,7)] generating graphics... => 5
[(1,6),(2,10),(3,9),(4,7),(5,8)] generating graphics... => 10
[(1,6),(2,10),(3,9),(4,5),(7,8)] generating graphics... => 10
[(1,7),(2,3),(4,5),(6,10),(8,9)] generating graphics... => 10
[(1,7),(2,3),(4,5),(6,9),(8,10)] generating graphics... => 20
[(1,7),(2,3),(4,5),(6,8),(9,10)] generating graphics... => 20
[(1,7),(2,3),(4,6),(5,10),(8,9)] generating graphics... => 20
[(1,7),(2,3),(4,6),(5,9),(8,10)] generating graphics... => 20
[(1,7),(2,3),(4,6),(5,8),(9,10)] generating graphics... => 20
[(1,7),(2,3),(4,8),(5,6),(9,10)] generating graphics... => 10
[(1,7),(2,3),(4,8),(5,9),(6,10)] generating graphics... => 10
[(1,7),(2,3),(4,8),(5,10),(6,9)] generating graphics... => 10
[(1,7),(2,3),(4,9),(5,6),(8,10)] generating graphics... => 10
[(1,7),(2,3),(4,9),(5,8),(6,10)] generating graphics... => 20
[(1,7),(2,3),(4,9),(5,10),(6,8)] generating graphics... => 20
[(1,7),(2,3),(4,10),(5,6),(8,9)] generating graphics... => 10
[(1,7),(2,3),(4,10),(5,8),(6,9)] generating graphics... => 20
[(1,7),(2,3),(4,10),(5,9),(6,8)] generating graphics... => 20
[(1,7),(2,4),(3,5),(6,10),(8,9)] generating graphics... => 10
[(1,7),(2,4),(3,5),(6,9),(8,10)] generating graphics... => 20
[(1,7),(2,4),(3,5),(6,8),(9,10)] generating graphics... => 20
[(1,7),(2,4),(3,6),(5,10),(8,9)] generating graphics... => 20
[(1,7),(2,4),(3,6),(5,9),(8,10)] generating graphics... => 20
[(1,7),(2,4),(3,6),(5,8),(9,10)] generating graphics... => 20
[(1,7),(2,4),(3,8),(5,6),(9,10)] generating graphics... => 20
[(1,7),(2,4),(3,8),(5,9),(6,10)] generating graphics... => 10
[(1,7),(2,4),(3,8),(5,10),(6,9)] generating graphics... => 20
[(1,7),(2,4),(3,9),(5,6),(8,10)] generating graphics... => 20
[(1,7),(2,4),(3,9),(5,8),(6,10)] generating graphics... => 20
[(1,7),(2,4),(3,9),(5,10),(6,8)] generating graphics... => 10
[(1,7),(2,4),(3,10),(5,6),(8,9)] generating graphics... => 20
[(1,7),(2,4),(3,10),(5,8),(6,9)] generating graphics... => 20
[(1,7),(2,4),(3,10),(5,9),(6,8)] generating graphics... => 20
[(1,7),(2,5),(3,4),(6,10),(8,9)] generating graphics... => 10
[(1,7),(2,5),(3,4),(6,9),(8,10)] generating graphics... => 20
[(1,7),(2,5),(3,4),(6,8),(9,10)] generating graphics... => 20
[(1,7),(2,5),(3,6),(4,10),(8,9)] generating graphics... => 20
[(1,7),(2,5),(3,6),(4,9),(8,10)] generating graphics... => 10
[(1,7),(2,5),(3,6),(4,8),(9,10)] generating graphics... => 20
[(1,7),(2,5),(3,8),(4,6),(9,10)] generating graphics... => 20
[(1,7),(2,5),(3,8),(4,9),(6,10)] generating graphics... => 10
[(1,7),(2,5),(3,8),(4,10),(6,9)] generating graphics... => 10
[(1,7),(2,5),(3,9),(4,6),(8,10)] generating graphics... => 20
[(1,7),(2,5),(3,9),(4,8),(6,10)] generating graphics... => 10
[(1,7),(2,5),(3,9),(4,10),(6,8)] generating graphics... => 20
[(1,7),(2,5),(3,10),(4,6),(8,9)] generating graphics... => 20
[(1,7),(2,5),(3,10),(4,8),(6,9)] generating graphics... => 10
[(1,7),(2,5),(3,10),(4,9),(6,8)] generating graphics... => 20
[(1,7),(2,6),(3,4),(5,10),(8,9)] generating graphics... => 10
[(1,7),(2,6),(3,4),(5,9),(8,10)] generating graphics... => 20
[(1,7),(2,6),(3,4),(5,8),(9,10)] generating graphics... => 10
[(1,7),(2,6),(3,5),(4,10),(8,9)] generating graphics... => 20
[(1,7),(2,6),(3,5),(4,9),(8,10)] generating graphics... => 5
[(1,7),(2,6),(3,5),(4,8),(9,10)] generating graphics... => 20
[(1,7),(2,6),(3,8),(4,5),(9,10)] generating graphics... => 10
[(1,7),(2,6),(3,8),(4,9),(5,10)] generating graphics... => 5
[(1,7),(2,6),(3,8),(4,10),(5,9)] generating graphics... => 5
[(1,7),(2,6),(3,9),(4,5),(8,10)] generating graphics... => 20
[(1,7),(2,6),(3,9),(4,8),(5,10)] generating graphics... => 5
[(1,7),(2,6),(3,9),(4,10),(5,8)] generating graphics... => 10
[(1,7),(2,6),(3,10),(4,5),(8,9)] generating graphics... => 10
[(1,7),(2,6),(3,10),(4,8),(5,9)] generating graphics... => 10
[(1,7),(2,6),(3,10),(4,9),(5,8)] generating graphics... => 5
[(1,7),(2,8),(3,4),(5,6),(9,10)] generating graphics... => 10
[(1,7),(2,8),(3,4),(5,9),(6,10)] generating graphics... => 10
[(1,7),(2,8),(3,4),(5,10),(6,9)] generating graphics... => 20
[(1,7),(2,8),(3,5),(4,6),(9,10)] generating graphics... => 10
[(1,7),(2,8),(3,5),(4,9),(6,10)] generating graphics... => 10
[(1,7),(2,8),(3,5),(4,10),(6,9)] generating graphics... => 20
[(1,7),(2,8),(3,6),(4,5),(9,10)] generating graphics... => 10
[(1,7),(2,8),(3,6),(4,9),(5,10)] generating graphics... => 10
[(1,7),(2,8),(3,6),(4,10),(5,9)] generating graphics... => 10
[(1,7),(2,8),(3,9),(4,10),(5,6)] generating graphics... => 10
[(1,7),(2,8),(3,9),(4,6),(5,10)] generating graphics... => 10
[(1,7),(2,8),(3,9),(4,5),(6,10)] generating graphics... => 10
[(1,7),(2,8),(3,10),(4,9),(5,6)] generating graphics... => 20
[(1,7),(2,8),(3,10),(4,6),(5,9)] generating graphics... => 20
[(1,7),(2,8),(3,10),(4,5),(6,9)] generating graphics... => 10
[(1,7),(2,9),(3,4),(5,6),(8,10)] generating graphics... => 20
[(1,7),(2,9),(3,4),(5,8),(6,10)] generating graphics... => 10
[(1,7),(2,9),(3,4),(5,10),(6,8)] generating graphics... => 20
[(1,7),(2,9),(3,5),(4,6),(8,10)] generating graphics... => 20
[(1,7),(2,9),(3,5),(4,8),(6,10)] generating graphics... => 20
[(1,7),(2,9),(3,5),(4,10),(6,8)] generating graphics... => 10
[(1,7),(2,9),(3,6),(4,5),(8,10)] generating graphics... => 20
[(1,7),(2,9),(3,6),(4,8),(5,10)] generating graphics... => 10
[(1,7),(2,9),(3,6),(4,10),(5,8)] generating graphics... => 10
[(1,7),(2,9),(3,8),(4,10),(5,6)] generating graphics... => 10
[(1,7),(2,9),(3,8),(4,6),(5,10)] generating graphics... => 20
[(1,7),(2,9),(3,8),(4,5),(6,10)] generating graphics... => 20
[(1,7),(2,9),(3,10),(4,8),(5,6)] generating graphics... => 20
[(1,7),(2,9),(3,10),(4,6),(5,8)] generating graphics... => 20
[(1,7),(2,9),(3,10),(4,5),(6,8)] generating graphics... => 20
[(1,7),(2,10),(3,4),(5,6),(8,9)] generating graphics... => 20
[(1,7),(2,10),(3,4),(5,8),(6,9)] generating graphics... => 20
[(1,7),(2,10),(3,4),(5,9),(6,8)] generating graphics... => 20
[(1,7),(2,10),(3,5),(4,6),(8,9)] generating graphics... => 20
[(1,7),(2,10),(3,5),(4,8),(6,9)] generating graphics... => 10
[(1,7),(2,10),(3,5),(4,9),(6,8)] generating graphics... => 10
[(1,7),(2,10),(3,6),(4,5),(8,9)] generating graphics... => 20
[(1,7),(2,10),(3,6),(4,8),(5,9)] generating graphics... => 20
[(1,7),(2,10),(3,6),(4,9),(5,8)] generating graphics... => 20
[(1,7),(2,10),(3,8),(4,9),(5,6)] generating graphics... => 20
[(1,7),(2,10),(3,8),(4,6),(5,9)] generating graphics... => 10
[(1,7),(2,10),(3,8),(4,5),(6,9)] generating graphics... => 20
[(1,7),(2,10),(3,9),(4,8),(5,6)] generating graphics... => 20
[(1,7),(2,10),(3,9),(4,6),(5,8)] generating graphics... => 20
[(1,7),(2,10),(3,9),(4,5),(6,8)] generating graphics... => 20
[(1,8),(2,3),(4,5),(6,7),(9,10)] generating graphics... => 10
[(1,8),(2,3),(4,5),(6,9),(7,10)] generating graphics... => 10
[(1,8),(2,3),(4,5),(6,10),(7,9)] generating graphics... => 20
[(1,8),(2,3),(4,6),(5,7),(9,10)] generating graphics... => 20
[(1,8),(2,3),(4,6),(5,9),(7,10)] generating graphics... => 20
[(1,8),(2,3),(4,6),(5,10),(7,9)] generating graphics... => 20
[(1,8),(2,3),(4,7),(5,6),(9,10)] generating graphics... => 10
[(1,8),(2,3),(4,7),(5,9),(6,10)] generating graphics... => 10
[(1,8),(2,3),(4,7),(5,10),(6,9)] generating graphics... => 10
[(1,8),(2,3),(4,9),(5,10),(6,7)] generating graphics... => 10
[(1,8),(2,3),(4,9),(5,7),(6,10)] generating graphics... => 20
[(1,8),(2,3),(4,9),(5,6),(7,10)] generating graphics... => 10
[(1,8),(2,3),(4,10),(5,9),(6,7)] generating graphics... => 10
[(1,8),(2,3),(4,10),(5,7),(6,9)] generating graphics... => 20
[(1,8),(2,3),(4,10),(5,6),(7,9)] generating graphics... => 20
[(1,8),(2,4),(3,5),(6,7),(9,10)] generating graphics... => 20
[(1,8),(2,4),(3,5),(6,9),(7,10)] generating graphics... => 10
[(1,8),(2,4),(3,5),(6,10),(7,9)] generating graphics... => 20
[(1,8),(2,4),(3,6),(5,7),(9,10)] generating graphics... => 10
[(1,8),(2,4),(3,6),(5,9),(7,10)] generating graphics... => 20
[(1,8),(2,4),(3,6),(5,10),(7,9)] generating graphics... => 10
[(1,8),(2,4),(3,7),(5,6),(9,10)] generating graphics... => 20
[(1,8),(2,4),(3,7),(5,9),(6,10)] generating graphics... => 20
[(1,8),(2,4),(3,7),(5,10),(6,9)] generating graphics... => 20
[(1,8),(2,4),(3,9),(5,10),(6,7)] generating graphics... => 20
[(1,8),(2,4),(3,9),(5,7),(6,10)] generating graphics... => 10
[(1,8),(2,4),(3,9),(5,6),(7,10)] generating graphics... => 20
[(1,8),(2,4),(3,10),(5,9),(6,7)] generating graphics... => 20
[(1,8),(2,4),(3,10),(5,7),(6,9)] generating graphics... => 10
[(1,8),(2,4),(3,10),(5,6),(7,9)] generating graphics... => 10
[(1,8),(2,5),(3,4),(6,7),(9,10)] generating graphics... => 10
[(1,8),(2,5),(3,4),(6,9),(7,10)] generating graphics... => 10
[(1,8),(2,5),(3,4),(6,10),(7,9)] generating graphics... => 20
[(1,8),(2,5),(3,6),(4,7),(9,10)] generating graphics... => 10
[(1,8),(2,5),(3,6),(4,9),(7,10)] generating graphics... => 5
[(1,8),(2,5),(3,6),(4,10),(7,9)] generating graphics... => 20
[(1,8),(2,5),(3,7),(4,6),(9,10)] generating graphics... => 20
[(1,8),(2,5),(3,7),(4,9),(6,10)] generating graphics... => 10
[(1,8),(2,5),(3,7),(4,10),(6,9)] generating graphics... => 10
[(1,8),(2,5),(3,9),(4,10),(6,7)] generating graphics... => 10
[(1,8),(2,5),(3,9),(4,7),(6,10)] generating graphics... => 10
[(1,8),(2,5),(3,9),(4,6),(7,10)] generating graphics... => 20
[(1,8),(2,5),(3,10),(4,9),(6,7)] generating graphics... => 10
[(1,8),(2,5),(3,10),(4,7),(6,9)] generating graphics... => 2
[(1,8),(2,5),(3,10),(4,6),(7,9)] generating graphics... => 10
[(1,8),(2,6),(3,4),(5,7),(9,10)] generating graphics... => 20
[(1,8),(2,6),(3,4),(5,9),(7,10)] generating graphics... => 20
[(1,8),(2,6),(3,4),(5,10),(7,9)] generating graphics... => 20
[(1,8),(2,6),(3,5),(4,7),(9,10)] generating graphics... => 20
[(1,8),(2,6),(3,5),(4,9),(7,10)] generating graphics... => 10
[(1,8),(2,6),(3,5),(4,10),(7,9)] generating graphics... => 20
[(1,8),(2,6),(3,7),(4,5),(9,10)] generating graphics... => 10
[(1,8),(2,6),(3,7),(4,9),(5,10)] generating graphics... => 10
[(1,8),(2,6),(3,7),(4,10),(5,9)] generating graphics... => 10
[(1,8),(2,6),(3,9),(4,10),(5,7)] generating graphics... => 20
[(1,8),(2,6),(3,9),(4,7),(5,10)] generating graphics... => 10
[(1,8),(2,6),(3,9),(4,5),(7,10)] generating graphics... => 20
[(1,8),(2,6),(3,10),(4,9),(5,7)] generating graphics... => 20
[(1,8),(2,6),(3,10),(4,7),(5,9)] generating graphics... => 10
[(1,8),(2,6),(3,10),(4,5),(7,9)] generating graphics... => 20
[(1,8),(2,7),(3,4),(5,6),(9,10)] generating graphics... => 10
[(1,8),(2,7),(3,4),(5,9),(6,10)] generating graphics... => 20
[(1,8),(2,7),(3,4),(5,10),(6,9)] generating graphics... => 10
[(1,8),(2,7),(3,5),(4,6),(9,10)] generating graphics... => 10
[(1,8),(2,7),(3,5),(4,9),(6,10)] generating graphics... => 20
[(1,8),(2,7),(3,5),(4,10),(6,9)] generating graphics... => 20
[(1,8),(2,7),(3,6),(4,5),(9,10)] generating graphics... => 5
[(1,8),(2,7),(3,6),(4,9),(5,10)] generating graphics... => 5
[(1,8),(2,7),(3,6),(4,10),(5,9)] generating graphics... => 5
[(1,8),(2,7),(3,9),(4,10),(5,6)] generating graphics... => 20
[(1,8),(2,7),(3,9),(4,6),(5,10)] generating graphics... => 20
[(1,8),(2,7),(3,9),(4,5),(6,10)] generating graphics... => 10
[(1,8),(2,7),(3,10),(4,9),(5,6)] generating graphics... => 10
[(1,8),(2,7),(3,10),(4,6),(5,9)] generating graphics... => 20
[(1,8),(2,7),(3,10),(4,5),(6,9)] generating graphics... => 10
[(1,8),(2,9),(3,4),(5,10),(6,7)] generating graphics... => 10
[(1,8),(2,9),(3,4),(5,7),(6,10)] generating graphics... => 20
[(1,8),(2,9),(3,4),(5,6),(7,10)] generating graphics... => 10
[(1,8),(2,9),(3,5),(4,10),(6,7)] generating graphics... => 20
[(1,8),(2,9),(3,5),(4,7),(6,10)] generating graphics... => 20
[(1,8),(2,9),(3,5),(4,6),(7,10)] generating graphics... => 10
[(1,8),(2,9),(3,6),(4,10),(5,7)] generating graphics... => 20
[(1,8),(2,9),(3,6),(4,7),(5,10)] generating graphics... => 5
[(1,8),(2,9),(3,6),(4,5),(7,10)] generating graphics... => 10
[(1,8),(2,9),(3,7),(4,10),(5,6)] generating graphics... => 20
[(1,8),(2,9),(3,7),(4,6),(5,10)] generating graphics... => 10
[(1,8),(2,9),(3,7),(4,5),(6,10)] generating graphics... => 20
[(1,8),(2,9),(3,10),(4,5),(6,7)] generating graphics... => 10
[(1,8),(2,9),(3,10),(4,6),(5,7)] generating graphics... => 10
[(1,8),(2,9),(3,10),(4,7),(5,6)] generating graphics... => 10
[(1,8),(2,10),(3,4),(5,9),(6,7)] generating graphics... => 20
[(1,8),(2,10),(3,4),(5,7),(6,9)] generating graphics... => 10
[(1,8),(2,10),(3,4),(5,6),(7,9)] generating graphics... => 10
[(1,8),(2,10),(3,5),(4,9),(6,7)] generating graphics... => 20
[(1,8),(2,10),(3,5),(4,7),(6,9)] generating graphics... => 10
[(1,8),(2,10),(3,5),(4,6),(7,9)] generating graphics... => 10
[(1,8),(2,10),(3,6),(4,9),(5,7)] generating graphics... => 10
[(1,8),(2,10),(3,6),(4,7),(5,9)] generating graphics... => 20
[(1,8),(2,10),(3,6),(4,5),(7,9)] generating graphics... => 10
[(1,8),(2,10),(3,7),(4,9),(5,6)] generating graphics... => 20
[(1,8),(2,10),(3,7),(4,6),(5,9)] generating graphics... => 20
[(1,8),(2,10),(3,7),(4,5),(6,9)] generating graphics... => 20
[(1,8),(2,10),(3,9),(4,5),(6,7)] generating graphics... => 20
[(1,8),(2,10),(3,9),(4,6),(5,7)] generating graphics... => 20
[(1,8),(2,10),(3,9),(4,7),(5,6)] generating graphics... => 20
[(1,9),(2,3),(4,5),(6,7),(8,10)] generating graphics... => 10
[(1,9),(2,3),(4,5),(6,8),(7,10)] generating graphics... => 10
[(1,9),(2,3),(4,5),(6,10),(7,8)] generating graphics... => 20
[(1,9),(2,3),(4,6),(5,7),(8,10)] generating graphics... => 10
[(1,9),(2,3),(4,6),(5,8),(7,10)] generating graphics... => 10
[(1,9),(2,3),(4,6),(5,10),(7,8)] generating graphics... => 5
[(1,9),(2,3),(4,7),(5,6),(8,10)] generating graphics... => 20
[(1,9),(2,3),(4,7),(5,8),(6,10)] generating graphics... => 20
[(1,9),(2,3),(4,7),(5,10),(6,8)] generating graphics... => 20
[(1,9),(2,3),(4,8),(5,10),(6,7)] generating graphics... => 20
[(1,9),(2,3),(4,8),(5,7),(6,10)] generating graphics... => 20
[(1,9),(2,3),(4,8),(5,6),(7,10)] generating graphics... => 20
[(1,9),(2,3),(4,10),(5,8),(6,7)] generating graphics... => 20
[(1,9),(2,3),(4,10),(5,7),(6,8)] generating graphics... => 20
[(1,9),(2,3),(4,10),(5,6),(7,8)] generating graphics... => 20
[(1,9),(2,4),(3,5),(6,7),(8,10)] generating graphics... => 10
[(1,9),(2,4),(3,5),(6,8),(7,10)] generating graphics... => 10
[(1,9),(2,4),(3,5),(6,10),(7,8)] generating graphics... => 20
[(1,9),(2,4),(3,6),(5,7),(8,10)] generating graphics... => 10
[(1,9),(2,4),(3,6),(5,8),(7,10)] generating graphics... => 10
[(1,9),(2,4),(3,6),(5,10),(7,8)] generating graphics... => 20
[(1,9),(2,4),(3,7),(5,6),(8,10)] generating graphics... => 20
[(1,9),(2,4),(3,7),(5,8),(6,10)] generating graphics... => 10
[(1,9),(2,4),(3,7),(5,10),(6,8)] generating graphics... => 10
[(1,9),(2,4),(3,8),(5,10),(6,7)] generating graphics... => 10
[(1,9),(2,4),(3,8),(5,7),(6,10)] generating graphics... => 10
[(1,9),(2,4),(3,8),(5,6),(7,10)] generating graphics... => 20
[(1,9),(2,4),(3,10),(5,8),(6,7)] generating graphics... => 10
[(1,9),(2,4),(3,10),(5,7),(6,8)] generating graphics... => 10
[(1,9),(2,4),(3,10),(5,6),(7,8)] generating graphics... => 10
[(1,9),(2,5),(3,4),(6,7),(8,10)] generating graphics... => 20
[(1,9),(2,5),(3,4),(6,8),(7,10)] generating graphics... => 10
[(1,9),(2,5),(3,4),(6,10),(7,8)] generating graphics... => 20
[(1,9),(2,5),(3,6),(4,7),(8,10)] generating graphics... => 10
[(1,9),(2,5),(3,6),(4,8),(7,10)] generating graphics... => 20
[(1,9),(2,5),(3,6),(4,10),(7,8)] generating graphics... => 20
[(1,9),(2,5),(3,7),(4,6),(8,10)] generating graphics... => 20
[(1,9),(2,5),(3,7),(4,8),(6,10)] generating graphics... => 20
[(1,9),(2,5),(3,7),(4,10),(6,8)] generating graphics... => 10
[(1,9),(2,5),(3,8),(4,10),(6,7)] generating graphics... => 20
[(1,9),(2,5),(3,8),(4,7),(6,10)] generating graphics... => 20
[(1,9),(2,5),(3,8),(4,6),(7,10)] generating graphics... => 10
[(1,9),(2,5),(3,10),(4,8),(6,7)] generating graphics... => 20
[(1,9),(2,5),(3,10),(4,7),(6,8)] generating graphics... => 10
[(1,9),(2,5),(3,10),(4,6),(7,8)] generating graphics... => 10
[(1,9),(2,6),(3,4),(5,7),(8,10)] generating graphics... => 20
[(1,9),(2,6),(3,4),(5,8),(7,10)] generating graphics... => 20
[(1,9),(2,6),(3,4),(5,10),(7,8)] generating graphics... => 20
[(1,9),(2,6),(3,5),(4,7),(8,10)] generating graphics... => 20
[(1,9),(2,6),(3,5),(4,8),(7,10)] generating graphics... => 20
[(1,9),(2,6),(3,5),(4,10),(7,8)] generating graphics... => 20
[(1,9),(2,6),(3,7),(4,5),(8,10)] generating graphics... => 10
[(1,9),(2,6),(3,7),(4,8),(5,10)] generating graphics... => 10
[(1,9),(2,6),(3,7),(4,10),(5,8)] generating graphics... => 20
[(1,9),(2,6),(3,8),(4,10),(5,7)] generating graphics... => 10
[(1,9),(2,6),(3,8),(4,7),(5,10)] generating graphics... => 20
[(1,9),(2,6),(3,8),(4,5),(7,10)] generating graphics... => 20
[(1,9),(2,6),(3,10),(4,8),(5,7)] generating graphics... => 20
[(1,9),(2,6),(3,10),(4,7),(5,8)] generating graphics... => 20
[(1,9),(2,6),(3,10),(4,5),(7,8)] generating graphics... => 20
[(1,9),(2,7),(3,4),(5,6),(8,10)] generating graphics... => 10
[(1,9),(2,7),(3,4),(5,8),(6,10)] generating graphics... => 20
[(1,9),(2,7),(3,4),(5,10),(6,8)] generating graphics... => 10
[(1,9),(2,7),(3,5),(4,6),(8,10)] generating graphics... => 5
[(1,9),(2,7),(3,5),(4,8),(6,10)] generating graphics... => 10
[(1,9),(2,7),(3,5),(4,10),(6,8)] generating graphics... => 10
[(1,9),(2,7),(3,6),(4,5),(8,10)] generating graphics... => 10
[(1,9),(2,7),(3,6),(4,8),(5,10)] generating graphics... => 20
[(1,9),(2,7),(3,6),(4,10),(5,8)] generating graphics... => 20
[(1,9),(2,7),(3,8),(4,10),(5,6)] generating graphics... => 20
[(1,9),(2,7),(3,8),(4,6),(5,10)] generating graphics... => 5
[(1,9),(2,7),(3,8),(4,5),(6,10)] generating graphics... => 20
[(1,9),(2,7),(3,10),(4,8),(5,6)] generating graphics... => 20
[(1,9),(2,7),(3,10),(4,6),(5,8)] generating graphics... => 10
[(1,9),(2,7),(3,10),(4,5),(6,8)] generating graphics... => 20
[(1,9),(2,8),(3,4),(5,10),(6,7)] generating graphics... => 10
[(1,9),(2,8),(3,4),(5,7),(6,10)] generating graphics... => 20
[(1,9),(2,8),(3,4),(5,6),(7,10)] generating graphics... => 20
[(1,9),(2,8),(3,5),(4,10),(6,7)] generating graphics... => 20
[(1,9),(2,8),(3,5),(4,7),(6,10)] generating graphics... => 20
[(1,9),(2,8),(3,5),(4,6),(7,10)] generating graphics... => 20
[(1,9),(2,8),(3,6),(4,10),(5,7)] generating graphics... => 20
[(1,9),(2,8),(3,6),(4,7),(5,10)] generating graphics... => 10
[(1,9),(2,8),(3,6),(4,5),(7,10)] generating graphics... => 20
[(1,9),(2,8),(3,7),(4,10),(5,6)] generating graphics... => 20
[(1,9),(2,8),(3,7),(4,6),(5,10)] generating graphics... => 5
[(1,9),(2,8),(3,7),(4,5),(6,10)] generating graphics... => 20
[(1,9),(2,8),(3,10),(4,5),(6,7)] generating graphics... => 20
[(1,9),(2,8),(3,10),(4,6),(5,7)] generating graphics... => 20
[(1,9),(2,8),(3,10),(4,7),(5,6)] generating graphics... => 20
[(1,9),(2,10),(3,4),(5,8),(6,7)] generating graphics... => 20
[(1,9),(2,10),(3,4),(5,7),(6,8)] generating graphics... => 10
[(1,9),(2,10),(3,4),(5,6),(7,8)] generating graphics... => 10
[(1,9),(2,10),(3,5),(4,8),(6,7)] generating graphics... => 20
[(1,9),(2,10),(3,5),(4,7),(6,8)] generating graphics... => 10
[(1,9),(2,10),(3,5),(4,6),(7,8)] generating graphics... => 10
[(1,9),(2,10),(3,6),(4,8),(5,7)] generating graphics... => 20
[(1,9),(2,10),(3,6),(4,7),(5,8)] generating graphics... => 10
[(1,9),(2,10),(3,6),(4,5),(7,8)] generating graphics... => 20
[(1,9),(2,10),(3,7),(4,8),(5,6)] generating graphics... => 10
[(1,9),(2,10),(3,7),(4,6),(5,8)] generating graphics... => 20
[(1,9),(2,10),(3,7),(4,5),(6,8)] generating graphics... => 20
[(1,9),(2,10),(3,8),(4,5),(6,7)] generating graphics... => 10
[(1,9),(2,10),(3,8),(4,6),(5,7)] generating graphics... => 5
[(1,9),(2,10),(3,8),(4,7),(5,6)] generating graphics... => 10
[(1,10),(2,3),(4,5),(6,7),(8,9)] generating graphics... => 2
[(1,10),(2,3),(4,5),(6,8),(7,9)] generating graphics... => 10
[(1,10),(2,3),(4,5),(6,9),(7,8)] generating graphics... => 10
[(1,10),(2,3),(4,6),(5,7),(8,9)] generating graphics... => 10
[(1,10),(2,3),(4,6),(5,8),(7,9)] generating graphics... => 10
[(1,10),(2,3),(4,6),(5,9),(7,8)] generating graphics... => 20
[(1,10),(2,3),(4,7),(5,6),(8,9)] generating graphics... => 10
[(1,10),(2,3),(4,7),(5,8),(6,9)] generating graphics... => 10
[(1,10),(2,3),(4,7),(5,9),(6,8)] generating graphics... => 20
[(1,10),(2,3),(4,8),(5,9),(6,7)] generating graphics... => 10
[(1,10),(2,3),(4,8),(5,7),(6,9)] generating graphics... => 20
[(1,10),(2,3),(4,8),(5,6),(7,9)] generating graphics... => 20
[(1,10),(2,3),(4,9),(5,8),(6,7)] generating graphics... => 10
[(1,10),(2,3),(4,9),(5,7),(6,8)] generating graphics... => 10
[(1,10),(2,3),(4,9),(5,6),(7,8)] generating graphics... => 5
[(1,10),(2,4),(3,5),(6,7),(8,9)] generating graphics... => 10
[(1,10),(2,4),(3,5),(6,8),(7,9)] generating graphics... => 10
[(1,10),(2,4),(3,5),(6,9),(7,8)] generating graphics... => 20
[(1,10),(2,4),(3,6),(5,7),(8,9)] generating graphics... => 10
[(1,10),(2,4),(3,6),(5,8),(7,9)] generating graphics... => 10
[(1,10),(2,4),(3,6),(5,9),(7,8)] generating graphics... => 20
[(1,10),(2,4),(3,7),(5,6),(8,9)] generating graphics... => 20
[(1,10),(2,4),(3,7),(5,8),(6,9)] generating graphics... => 20
[(1,10),(2,4),(3,7),(5,9),(6,8)] generating graphics... => 20
[(1,10),(2,4),(3,8),(5,9),(6,7)] generating graphics... => 20
[(1,10),(2,4),(3,8),(5,7),(6,9)] generating graphics... => 20
[(1,10),(2,4),(3,8),(5,6),(7,9)] generating graphics... => 5
[(1,10),(2,4),(3,9),(5,8),(6,7)] generating graphics... => 20
[(1,10),(2,4),(3,9),(5,7),(6,8)] generating graphics... => 20
[(1,10),(2,4),(3,9),(5,6),(7,8)] generating graphics... => 20
[(1,10),(2,5),(3,4),(6,7),(8,9)] generating graphics... => 10
[(1,10),(2,5),(3,4),(6,8),(7,9)] generating graphics... => 20
[(1,10),(2,5),(3,4),(6,9),(7,8)] generating graphics... => 10
[(1,10),(2,5),(3,6),(4,7),(8,9)] generating graphics... => 10
[(1,10),(2,5),(3,6),(4,8),(7,9)] generating graphics... => 20
[(1,10),(2,5),(3,6),(4,9),(7,8)] generating graphics... => 10
click to show generating function       
Description
The number of matchings in the dihedral orbit of a perfect matching.
The dihedral orbit is induced by the dihedral symmetry of the underlying circular arrangement of points. In other words, this is the number of matchings that can be obtained by rotating or reflecting the given perfect matching.
Code
def statistic(m):
    n = m.size()
    l = set()
    m = tuple(sorted(tuple(sorted(p)) for p in m))
    l.add(m)
    l.add(tuple(sorted((n+1-j, n+1-i) for (i,j) in m)))
    for i in range(n):
        m = tuple(sorted(tuple(sorted(((i % n) + 1, (j % n) + 1))) for (i,j) in m))
        l.add(m)
        l.add(tuple(sorted((n+1-j, n+1-i) for (i,j) in m)))
    return len(l)

Created
Aug 22, 2017 at 14:41 by Christian Stump
Updated
Aug 22, 2017 at 21:17 by Martin Rubey