Identifier
Identifier
Values
[1] generating graphics... => 0
[2] generating graphics... => 0
[1,1] generating graphics... => 0
[3] generating graphics... => 1
[2,1] generating graphics... => 1
[1,1,1] generating graphics... => 0
[4] generating graphics... => 1
[3,1] generating graphics... => 0
[2,2] generating graphics... => 1
[2,1,1] generating graphics... => 0
[1,1,1,1] generating graphics... => 0
[5] generating graphics... => 1
[4,1] generating graphics... => 4
[3,2] generating graphics... => 1
[3,1,1] generating graphics... => 0
[2,2,1] generating graphics... => 4
[2,1,1,1] generating graphics... => 0
[1,1,1,1,1] generating graphics... => 0
[6] generating graphics... => 2
[5,1] generating graphics... => 9
[4,2] generating graphics... => 0
[4,1,1] generating graphics... => 16
[3,3] generating graphics... => 6
[3,2,1] generating graphics... => 16
[3,1,1,1] generating graphics... => 4
[2,2,2] generating graphics... => 4
[2,2,1,1] generating graphics... => 0
[2,1,1,1,1] generating graphics... => 1
[1,1,1,1,1,1] generating graphics... => 0
[7] generating graphics... => 2
[6,1] generating graphics... => 6
[5,2] generating graphics... => 27
[5,1,1] generating graphics... => 15
[4,3] generating graphics... => 15
[4,2,1] generating graphics... => 42
[4,1,1,1] generating graphics... => 20
[3,3,1] generating graphics... => 6
[3,2,2] generating graphics... => 15
[3,2,1,1] generating graphics... => 28
[3,1,1,1,1] generating graphics... => 0
[2,2,2,1] generating graphics... => 13
[2,2,1,1,1] generating graphics... => 1
[2,1,1,1,1,1] generating graphics... => 0
[1,1,1,1,1,1,1] generating graphics... => 0
[8] generating graphics... => 2
[7,1] generating graphics... => 14
[6,2] generating graphics... => 33
[6,1,1] generating graphics... => 21
[5,3] generating graphics... => 56
[5,2,1] generating graphics... => 99
[5,1,1,1] generating graphics... => 35
[4,4] generating graphics... => 15
[4,3,1] generating graphics... => 49
[4,2,2] generating graphics... => 78
[4,2,1,1] generating graphics... => 0
[4,1,1,1,1] generating graphics... => 35
[3,3,2] generating graphics... => 21
[3,3,1,1] generating graphics... => 34
[3,2,2,1] generating graphics... => 91
[3,2,1,1,1] generating graphics... => 29
[3,1,1,1,1,1] generating graphics... => 0
[2,2,2,2] generating graphics... => 13
[2,2,2,1,1] generating graphics... => 0
[2,2,1,1,1,1] generating graphics... => 7
[2,1,1,1,1,1,1] generating graphics... => 0
[1,1,1,1,1,1,1,1] generating graphics... => 0
[9] generating graphics... => 3
[8,1] generating graphics... => 23
[7,2] generating graphics... => 27
[7,1,1] generating graphics... => 77
[6,3] generating graphics... => 137
[6,2,1] generating graphics... => 238
[6,1,1,1] generating graphics... => 91
[5,4] generating graphics... => 85
[5,3,1] generating graphics... => 0
[5,2,2] generating graphics... => 233
[5,2,1,1] generating graphics... => 189
[5,1,1,1,1] generating graphics... => 105
[4,4,1] generating graphics... => 134
[4,3,2] generating graphics... => 232
[4,3,1,1] generating graphics... => 27
[4,2,2,1] generating graphics... => 189
[4,2,1,1,1] generating graphics... => 0
[4,1,1,1,1,1] generating graphics... => 77
[3,3,3] generating graphics... => 63
[3,3,2,1] generating graphics... => 272
[3,3,1,1,1] generating graphics... => 127
[3,2,2,2] generating graphics... => 118
[3,2,2,1,1] generating graphics... => 0
[3,2,1,1,1,1] generating graphics... => 77
[3,1,1,1,1,1,1] generating graphics... => 7
[2,2,2,2,1] generating graphics... => 41
[2,2,2,1,1,1] generating graphics... => 7
[2,2,1,1,1,1,1] generating graphics... => 0
[2,1,1,1,1,1,1,1] generating graphics... => 1
[1,1,1,1,1,1,1,1,1] generating graphics... => 0
[10] generating graphics... => 4
[9,1] generating graphics... => 18
[8,2] generating graphics... => 138
[8,1,1] generating graphics... => 72
[7,3] generating graphics... => 191
[7,2,1] generating graphics... => 496
[7,1,1,1] generating graphics... => 168
[6,4] generating graphics... => 180
[6,3,1] generating graphics... => 594
[6,2,2] generating graphics... => 351
[6,2,1,1] generating graphics... => 1064
[6,1,1,1,1] generating graphics... => 126
[5,5] generating graphics... => 85
[5,4,1] generating graphics... => 297
[5,3,2] generating graphics... => 297
[5,3,1,1] generating graphics... => 0
[5,2,2,1] generating graphics... => 1232
[5,2,1,1,1] generating graphics... => 896
[5,1,1,1,1,1] generating graphics... => 126
[4,4,2] generating graphics... => 198
[4,4,1,1] generating graphics... => 593
[4,3,3] generating graphics... => 463
[4,3,2,1] generating graphics... => 1152
[4,3,1,1,1] generating graphics... => 343
[4,2,2,2] generating graphics... => 307
[4,2,2,1,1] generating graphics... => 0
[4,2,1,1,1,1] generating graphics... => 336
[4,1,1,1,1,1,1] generating graphics... => 84
[3,3,3,1] generating graphics... => 167
[3,3,2,2] generating graphics... => 306
[3,3,2,1,1] generating graphics... => 603
[3,3,1,1,1,1] generating graphics... => 99
[3,2,2,2,1] generating graphics... => 279
[3,2,2,1,1,1] generating graphics... => 36
[3,2,1,1,1,1,1] generating graphics... => 144
[3,1,1,1,1,1,1,1] generating graphics... => 0
[2,2,2,2,2] generating graphics... => 41
[2,2,2,2,1,1] generating graphics... => 0
[2,2,2,1,1,1,1] generating graphics... => 34
[2,2,1,1,1,1,1,1] generating graphics... => 2
[2,1,1,1,1,1,1,1,1] generating graphics... => 0
[1,1,1,1,1,1,1,1,1,1] generating graphics... => 0
click to show generating function       
Description
The 3-degree of an integer partition.
For an integer partition $\lambda$, this is given by the exponent of 3 in the Gram determinant of the integal Specht module of the symmetric group indexed by $\lambda$.
Code
def statistic(L):
    return L.prime_degree(3)
Created
Aug 22, 2017 at 01:24 by Martin Rubey
Updated
Aug 22, 2017 at 01:24 by Martin Rubey