Identifier
Identifier
Values
['A',1] generating graphics... => 2
['A',2] generating graphics... => 3
['B',2] generating graphics... => 5
['G',2] generating graphics... => 6
['A',3] generating graphics... => 5
['B',3] generating graphics... => 10
['C',3] generating graphics... => 10
['A',4] generating graphics... => 7
['B',4] generating graphics... => 20
['C',4] generating graphics... => 20
['D',4] generating graphics... => 13
['F',4] generating graphics... => 25
['A',5] generating graphics... => 11
['B',5] generating graphics... => 36
['C',5] generating graphics... => 36
['D',5] generating graphics... => 18
['A',6] generating graphics... => 15
['B',6] generating graphics... => 65
['C',6] generating graphics... => 65
['D',6] generating graphics... => 37
['E',6] generating graphics... => 25
['A',7] generating graphics... => 22
['B',7] generating graphics... => 110
['C',7] generating graphics... => 110
['D',7] generating graphics... => 55
['E',7] generating graphics... => 60
['A',8] generating graphics... => 30
['B',8] generating graphics... => 185
['C',8] generating graphics... => 185
['D',8] generating graphics... => 100
['E',8] generating graphics... => 112
click to show generating function       
Description
The number of conjugacy classes in the Weyl group of a finite Cartan type.
Code
def statistic(cartan_type):
    W = ReflectionGroup(cartan_type)
    return len(W.conjugacy_classes_representatives())

Created
Jun 25, 2017 at 10:23 by Christian Stump
Updated
Jun 25, 2017 at 10:23 by Christian Stump