Identifier
Identifier
Values
([],1) generating graphics... => 1
([],2) generating graphics... => 1
([(0,1)],2) generating graphics... => 2
([],3) generating graphics... => 1
([(1,2)],3) generating graphics... => 2
([(0,2),(1,2)],3) generating graphics... => 2
([(0,1),(0,2),(1,2)],3) generating graphics... => 3
([],4) generating graphics... => 1
([(2,3)],4) generating graphics... => 2
([(1,3),(2,3)],4) generating graphics... => 2
([(1,2),(1,3),(2,3)],4) generating graphics... => 3
([(0,3),(1,3),(2,3)],4) generating graphics... => 2
([(0,3),(1,2)],4) generating graphics... => 2
([(0,3),(1,2),(2,3)],4) generating graphics... => 2
([(0,3),(1,2),(1,3),(2,3)],4) generating graphics... => 3
([(0,2),(0,3),(1,2),(1,3)],4) generating graphics... => 3
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) generating graphics... => 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) generating graphics... => 4
([],5) generating graphics... => 1
([(3,4)],5) generating graphics... => 2
([(2,4),(3,4)],5) generating graphics... => 2
([(2,3),(2,4),(3,4)],5) generating graphics... => 3
([(1,4),(2,4),(3,4)],5) generating graphics... => 2
([(0,4),(1,4),(2,4),(3,4)],5) generating graphics... => 2
([(1,4),(2,3)],5) generating graphics... => 2
([(1,4),(2,3),(3,4)],5) generating graphics... => 2
([(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 3
([(1,3),(1,4),(2,3),(2,4)],5) generating graphics... => 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 4
([(0,1),(2,4),(3,4)],5) generating graphics... => 2
([(0,4),(1,4),(2,3),(3,4)],5) generating graphics... => 2
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 3
([(0,4),(1,3),(2,3),(2,4)],5) generating graphics... => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) generating graphics... => 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) generating graphics... => 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) generating graphics... => 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) generating graphics... => 3
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) generating graphics... => 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 3
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) generating graphics... => 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 4
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) generating graphics... => 4
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 4
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 5
([(0,1),(2,3),(2,4),(3,4)],5) generating graphics... => 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) generating graphics... => 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) generating graphics... => 3
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 4
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) generating graphics... => 3
([],6) generating graphics... => 1
([(4,5)],6) generating graphics... => 2
([(3,5),(4,5)],6) generating graphics... => 2
([(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(2,5),(3,5),(4,5)],6) generating graphics... => 2
([(1,5),(2,5),(3,5),(4,5)],6) generating graphics... => 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) generating graphics... => 2
([(2,5),(3,4)],6) generating graphics... => 2
([(2,5),(3,4),(4,5)],6) generating graphics... => 2
([(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(1,2),(3,5),(4,5)],6) generating graphics... => 2
([(1,5),(2,5),(3,4),(4,5)],6) generating graphics... => 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(1,5),(2,4),(3,4),(3,5)],6) generating graphics... => 2
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 3
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) generating graphics... => 3
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 4
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 4
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 5
([(1,2),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 3
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 3
([(0,1),(2,5),(3,5),(4,5)],6) generating graphics... => 2
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) generating graphics... => 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,5),(2,4),(3,4)],6) generating graphics... => 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) generating graphics... => 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) generating graphics... => 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) generating graphics... => 3
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) generating graphics... => 3
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 3
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 4
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) generating graphics... => 3
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) generating graphics... => 3
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) generating graphics... => 3
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,5),(1,4),(2,3)],6) generating graphics... => 2
([(0,1),(2,5),(3,4),(4,5)],6) generating graphics... => 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 3
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) generating graphics... => 3
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 5
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 4
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 4
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) generating graphics... => 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) generating graphics... => 2
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 3
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 3
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 4
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) generating graphics... => 3
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 4
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 4
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 5
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 5
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 4
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 4
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) generating graphics... => 3
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) generating graphics... => 3
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6) generating graphics... => 4
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 4
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 4
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) generating graphics... => 4
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 4
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 5
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 5
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 6
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 4
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) generating graphics... => 4
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 5
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 5
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 5
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 4
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
click to show generating function       
Description
The Hadwiger number of the graph.
Also known as clique contraction number, this is the size of the largest complete minor.
References
Code
def statistic(G):
    min_bound = G.chromatic_number()
    if G.is_planar():
        max_bound = 4
    else:
        max_bound = G.num_verts()
    for k in range(min_bound, max_bound+1):
        try:
            G.minor(graphs.CompleteGraph(k))
        except ValueError:
            return k-1
    return max_bound

Created
May 23, 2017 at 22:08 by Martin Rubey
Updated
May 24, 2017 at 08:46 by Martin Rubey