Identifier
Identifier
Values
[(1,2)] generating graphics... => 0
[(1,2),(3,4)] generating graphics... => 0
[(1,3),(2,4)] generating graphics... => 1
[(1,4),(2,3)] generating graphics... => 0
[(1,2),(3,4),(5,6)] generating graphics... => 0
[(1,2),(3,5),(4,6)] generating graphics... => 1
[(1,2),(3,6),(4,5)] generating graphics... => 0
[(1,3),(2,4),(5,6)] generating graphics... => 1
[(1,3),(2,5),(4,6)] generating graphics... => 2
[(1,3),(2,6),(4,5)] generating graphics... => 1
[(1,4),(2,3),(5,6)] generating graphics... => 0
[(1,4),(2,5),(3,6)] generating graphics... => 1
[(1,4),(2,6),(3,5)] generating graphics... => 2
[(1,5),(2,3),(4,6)] generating graphics... => 1
[(1,5),(2,4),(3,6)] generating graphics... => 2
[(1,5),(2,6),(3,4)] generating graphics... => 1
[(1,6),(2,3),(4,5)] generating graphics... => 0
[(1,6),(2,4),(3,5)] generating graphics... => 1
[(1,6),(2,5),(3,4)] generating graphics... => 0
[(1,2),(3,4),(5,8),(6,7)] generating graphics... => 0
[(1,2),(3,4),(5,7),(6,8)] generating graphics... => 1
[(1,2),(3,4),(5,6),(7,8)] generating graphics... => 0
[(1,2),(3,5),(4,8),(6,7)] generating graphics... => 1
[(1,2),(3,5),(4,7),(6,8)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,8)] generating graphics... => 1
[(1,2),(3,6),(4,8),(5,7)] generating graphics... => 2
[(1,2),(3,6),(4,7),(5,8)] generating graphics... => 1
[(1,2),(3,6),(4,5),(7,8)] generating graphics... => 0
[(1,2),(3,7),(4,8),(5,6)] generating graphics... => 1
[(1,2),(3,7),(4,6),(5,8)] generating graphics... => 2
[(1,2),(3,7),(4,5),(6,8)] generating graphics... => 1
[(1,2),(3,8),(4,5),(6,7)] generating graphics... => 0
[(1,2),(3,8),(4,6),(5,7)] generating graphics... => 1
[(1,2),(3,8),(4,7),(5,6)] generating graphics... => 0
[(1,3),(2,4),(5,8),(6,7)] generating graphics... => 1
[(1,3),(2,4),(5,7),(6,8)] generating graphics... => 2
[(1,3),(2,4),(5,6),(7,8)] generating graphics... => 1
[(1,3),(2,5),(4,8),(6,7)] generating graphics... => 2
[(1,3),(2,5),(4,7),(6,8)] generating graphics... => 3
[(1,3),(2,5),(4,6),(7,8)] generating graphics... => 2
[(1,3),(2,6),(4,8),(5,7)] generating graphics... => 3
[(1,3),(2,6),(4,7),(5,8)] generating graphics... => 2
[(1,3),(2,6),(4,5),(7,8)] generating graphics... => 1
[(1,3),(2,7),(4,8),(5,6)] generating graphics... => 2
[(1,3),(2,7),(4,6),(5,8)] generating graphics... => 3
[(1,3),(2,7),(4,5),(6,8)] generating graphics... => 2
[(1,3),(2,8),(4,5),(6,7)] generating graphics... => 1
[(1,3),(2,8),(4,6),(5,7)] generating graphics... => 2
[(1,3),(2,8),(4,7),(5,6)] generating graphics... => 1
[(1,4),(2,3),(5,8),(6,7)] generating graphics... => 0
[(1,4),(2,3),(5,7),(6,8)] generating graphics... => 1
[(1,4),(2,3),(5,6),(7,8)] generating graphics... => 0
[(1,4),(2,5),(3,8),(6,7)] generating graphics... => 1
[(1,4),(2,5),(3,7),(6,8)] generating graphics... => 2
[(1,4),(2,5),(3,6),(7,8)] generating graphics... => 1
[(1,4),(2,6),(3,8),(5,7)] generating graphics... => 2
[(1,4),(2,6),(3,7),(5,8)] generating graphics... => 1
[(1,4),(2,6),(3,5),(7,8)] generating graphics... => 2
[(1,4),(2,7),(3,8),(5,6)] generating graphics... => 1
[(1,4),(2,7),(3,6),(5,8)] generating graphics... => 2
[(1,4),(2,7),(3,5),(6,8)] generating graphics... => 3
[(1,4),(2,8),(3,5),(6,7)] generating graphics... => 2
[(1,4),(2,8),(3,6),(5,7)] generating graphics... => 3
[(1,4),(2,8),(3,7),(5,6)] generating graphics... => 2
[(1,5),(2,3),(4,8),(6,7)] generating graphics... => 1
[(1,5),(2,3),(4,7),(6,8)] generating graphics... => 2
[(1,5),(2,3),(4,6),(7,8)] generating graphics... => 1
[(1,5),(2,4),(3,8),(6,7)] generating graphics... => 2
[(1,5),(2,4),(3,7),(6,8)] generating graphics... => 3
[(1,5),(2,4),(3,6),(7,8)] generating graphics... => 2
[(1,5),(2,6),(3,8),(4,7)] generating graphics... => 1
[(1,5),(2,6),(3,7),(4,8)] generating graphics... => 2
[(1,5),(2,6),(3,4),(7,8)] generating graphics... => 1
[(1,5),(2,7),(3,8),(4,6)] generating graphics... => 2
[(1,5),(2,7),(3,6),(4,8)] generating graphics... => 1
[(1,5),(2,7),(3,4),(6,8)] generating graphics... => 2
[(1,5),(2,8),(3,4),(6,7)] generating graphics... => 1
[(1,5),(2,8),(3,6),(4,7)] generating graphics... => 2
[(1,5),(2,8),(3,7),(4,6)] generating graphics... => 3
[(1,6),(2,3),(4,8),(5,7)] generating graphics... => 2
[(1,6),(2,3),(4,7),(5,8)] generating graphics... => 1
[(1,6),(2,3),(4,5),(7,8)] generating graphics... => 0
[(1,6),(2,4),(3,8),(5,7)] generating graphics... => 3
[(1,6),(2,4),(3,7),(5,8)] generating graphics... => 2
[(1,6),(2,4),(3,5),(7,8)] generating graphics... => 1
[(1,6),(2,5),(3,8),(4,7)] generating graphics... => 2
[(1,6),(2,5),(3,7),(4,8)] generating graphics... => 1
[(1,6),(2,5),(3,4),(7,8)] generating graphics... => 0
[(1,6),(2,7),(3,8),(4,5)] generating graphics... => 1
[(1,6),(2,7),(3,5),(4,8)] generating graphics... => 2
[(1,6),(2,7),(3,4),(5,8)] generating graphics... => 1
[(1,6),(2,8),(3,4),(5,7)] generating graphics... => 2
[(1,6),(2,8),(3,5),(4,7)] generating graphics... => 3
[(1,6),(2,8),(3,7),(4,5)] generating graphics... => 2
[(1,7),(2,3),(4,8),(5,6)] generating graphics... => 1
[(1,7),(2,3),(4,6),(5,8)] generating graphics... => 2
[(1,7),(2,3),(4,5),(6,8)] generating graphics... => 1
[(1,7),(2,4),(3,8),(5,6)] generating graphics... => 2
[(1,7),(2,4),(3,6),(5,8)] generating graphics... => 3
[(1,7),(2,4),(3,5),(6,8)] generating graphics... => 2
[(1,7),(2,5),(3,8),(4,6)] generating graphics... => 3
[(1,7),(2,5),(3,6),(4,8)] generating graphics... => 2
[(1,7),(2,5),(3,4),(6,8)] generating graphics... => 1
[(1,7),(2,6),(3,8),(4,5)] generating graphics... => 2
[(1,7),(2,6),(3,5),(4,8)] generating graphics... => 3
[(1,7),(2,6),(3,4),(5,8)] generating graphics... => 2
[(1,7),(2,8),(3,4),(5,6)] generating graphics... => 1
[(1,7),(2,8),(3,5),(4,6)] generating graphics... => 2
[(1,7),(2,8),(3,6),(4,5)] generating graphics... => 1
[(1,8),(2,3),(4,5),(6,7)] generating graphics... => 0
[(1,8),(2,3),(4,6),(5,7)] generating graphics... => 1
[(1,8),(2,3),(4,7),(5,6)] generating graphics... => 0
[(1,8),(2,4),(3,5),(6,7)] generating graphics... => 1
[(1,8),(2,4),(3,6),(5,7)] generating graphics... => 2
[(1,8),(2,4),(3,7),(5,6)] generating graphics... => 1
[(1,8),(2,5),(3,4),(6,7)] generating graphics... => 0
[(1,8),(2,5),(3,6),(4,7)] generating graphics... => 1
[(1,8),(2,5),(3,7),(4,6)] generating graphics... => 2
[(1,8),(2,6),(3,4),(5,7)] generating graphics... => 1
[(1,8),(2,6),(3,5),(4,7)] generating graphics... => 2
[(1,8),(2,6),(3,7),(4,5)] generating graphics... => 1
[(1,8),(2,7),(3,4),(5,6)] generating graphics... => 0
[(1,8),(2,7),(3,5),(4,6)] generating graphics... => 1
[(1,8),(2,7),(3,6),(4,5)] generating graphics... => 0
[(1,2),(3,4),(5,6),(7,10),(8,9)] generating graphics... => 0
[(1,2),(3,4),(5,6),(7,9),(8,10)] generating graphics... => 1
[(1,2),(3,4),(5,6),(7,8),(9,10)] generating graphics... => 0
[(1,2),(3,4),(5,7),(6,10),(8,9)] generating graphics... => 1
[(1,2),(3,4),(5,7),(6,9),(8,10)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,8),(9,10)] generating graphics... => 1
[(1,2),(3,4),(5,8),(6,7),(9,10)] generating graphics... => 0
[(1,2),(3,4),(5,8),(6,9),(7,10)] generating graphics... => 1
[(1,2),(3,4),(5,8),(6,10),(7,9)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,7),(8,10)] generating graphics... => 1
[(1,2),(3,4),(5,9),(6,8),(7,10)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,10),(7,8)] generating graphics... => 1
[(1,2),(3,4),(5,10),(6,7),(8,9)] generating graphics... => 0
[(1,2),(3,4),(5,10),(6,8),(7,9)] generating graphics... => 1
[(1,2),(3,4),(5,10),(6,9),(7,8)] generating graphics... => 0
[(1,2),(3,5),(4,6),(7,10),(8,9)] generating graphics... => 1
[(1,2),(3,5),(4,6),(7,9),(8,10)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,8),(9,10)] generating graphics... => 1
[(1,2),(3,5),(4,7),(6,10),(8,9)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,9),(8,10)] generating graphics... => 3
[(1,2),(3,5),(4,7),(6,8),(9,10)] generating graphics... => 2
[(1,2),(3,5),(4,8),(6,7),(9,10)] generating graphics... => 1
[(1,2),(3,5),(4,8),(6,9),(7,10)] generating graphics... => 2
[(1,2),(3,5),(4,8),(6,10),(7,9)] generating graphics... => 3
[(1,2),(3,5),(4,9),(6,7),(8,10)] generating graphics... => 2
[(1,2),(3,5),(4,9),(6,8),(7,10)] generating graphics... => 3
[(1,2),(3,5),(4,9),(6,10),(7,8)] generating graphics... => 2
[(1,2),(3,5),(4,10),(6,7),(8,9)] generating graphics... => 1
[(1,2),(3,5),(4,10),(6,8),(7,9)] generating graphics... => 2
[(1,2),(3,5),(4,10),(6,9),(7,8)] generating graphics... => 1
[(1,2),(3,6),(4,5),(7,10),(8,9)] generating graphics... => 0
[(1,2),(3,6),(4,5),(7,9),(8,10)] generating graphics... => 1
[(1,2),(3,6),(4,5),(7,8),(9,10)] generating graphics... => 0
[(1,2),(3,6),(4,7),(5,10),(8,9)] generating graphics... => 1
[(1,2),(3,6),(4,7),(5,9),(8,10)] generating graphics... => 2
[(1,2),(3,6),(4,7),(5,8),(9,10)] generating graphics... => 1
[(1,2),(3,6),(4,8),(5,7),(9,10)] generating graphics... => 2
[(1,2),(3,6),(4,8),(5,9),(7,10)] generating graphics... => 1
[(1,2),(3,6),(4,8),(5,10),(7,9)] generating graphics... => 2
[(1,2),(3,6),(4,9),(5,7),(8,10)] generating graphics... => 3
[(1,2),(3,6),(4,9),(5,8),(7,10)] generating graphics... => 2
[(1,2),(3,6),(4,9),(5,10),(7,8)] generating graphics... => 1
[(1,2),(3,6),(4,10),(5,7),(8,9)] generating graphics... => 2
[(1,2),(3,6),(4,10),(5,8),(7,9)] generating graphics... => 3
[(1,2),(3,6),(4,10),(5,9),(7,8)] generating graphics... => 2
[(1,2),(3,7),(4,5),(6,10),(8,9)] generating graphics... => 1
[(1,2),(3,7),(4,5),(6,9),(8,10)] generating graphics... => 2
[(1,2),(3,7),(4,5),(6,8),(9,10)] generating graphics... => 1
[(1,2),(3,7),(4,6),(5,10),(8,9)] generating graphics... => 2
[(1,2),(3,7),(4,6),(5,9),(8,10)] generating graphics... => 3
[(1,2),(3,7),(4,6),(5,8),(9,10)] generating graphics... => 2
[(1,2),(3,7),(4,8),(5,6),(9,10)] generating graphics... => 1
[(1,2),(3,7),(4,8),(5,9),(6,10)] generating graphics... => 2
[(1,2),(3,7),(4,8),(5,10),(6,9)] generating graphics... => 1
[(1,2),(3,7),(4,9),(5,6),(8,10)] generating graphics... => 2
[(1,2),(3,7),(4,9),(5,8),(6,10)] generating graphics... => 1
[(1,2),(3,7),(4,9),(5,10),(6,8)] generating graphics... => 2
[(1,2),(3,7),(4,10),(5,6),(8,9)] generating graphics... => 1
[(1,2),(3,7),(4,10),(5,8),(6,9)] generating graphics... => 2
[(1,2),(3,7),(4,10),(5,9),(6,8)] generating graphics... => 3
[(1,2),(3,8),(4,5),(6,7),(9,10)] generating graphics... => 0
[(1,2),(3,8),(4,5),(6,9),(7,10)] generating graphics... => 1
[(1,2),(3,8),(4,5),(6,10),(7,9)] generating graphics... => 2
[(1,2),(3,8),(4,6),(5,7),(9,10)] generating graphics... => 1
[(1,2),(3,8),(4,6),(5,9),(7,10)] generating graphics... => 2
[(1,2),(3,8),(4,6),(5,10),(7,9)] generating graphics... => 3
[(1,2),(3,8),(4,7),(5,6),(9,10)] generating graphics... => 0
[(1,2),(3,8),(4,7),(5,9),(6,10)] generating graphics... => 1
[(1,2),(3,8),(4,7),(5,10),(6,9)] generating graphics... => 2
[(1,2),(3,8),(4,9),(5,10),(6,7)] generating graphics... => 1
[(1,2),(3,8),(4,9),(5,7),(6,10)] generating graphics... => 2
[(1,2),(3,8),(4,9),(5,6),(7,10)] generating graphics... => 1
[(1,2),(3,8),(4,10),(5,9),(6,7)] generating graphics... => 2
[(1,2),(3,8),(4,10),(5,7),(6,9)] generating graphics... => 3
[(1,2),(3,8),(4,10),(5,6),(7,9)] generating graphics... => 2
[(1,2),(3,9),(4,5),(6,7),(8,10)] generating graphics... => 1
[(1,2),(3,9),(4,5),(6,8),(7,10)] generating graphics... => 2
[(1,2),(3,9),(4,5),(6,10),(7,8)] generating graphics... => 1
[(1,2),(3,9),(4,6),(5,7),(8,10)] generating graphics... => 2
[(1,2),(3,9),(4,6),(5,8),(7,10)] generating graphics... => 3
[(1,2),(3,9),(4,6),(5,10),(7,8)] generating graphics... => 2
[(1,2),(3,9),(4,7),(5,6),(8,10)] generating graphics... => 1
[(1,2),(3,9),(4,7),(5,8),(6,10)] generating graphics... => 2
[(1,2),(3,9),(4,7),(5,10),(6,8)] generating graphics... => 3
[(1,2),(3,9),(4,8),(5,10),(6,7)] generating graphics... => 2
[(1,2),(3,9),(4,8),(5,7),(6,10)] generating graphics... => 3
[(1,2),(3,9),(4,8),(5,6),(7,10)] generating graphics... => 2
[(1,2),(3,9),(4,10),(5,8),(6,7)] generating graphics... => 1
[(1,2),(3,9),(4,10),(5,7),(6,8)] generating graphics... => 2
[(1,2),(3,9),(4,10),(5,6),(7,8)] generating graphics... => 1
[(1,2),(3,10),(4,5),(6,7),(8,9)] generating graphics... => 0
[(1,2),(3,10),(4,5),(6,8),(7,9)] generating graphics... => 1
[(1,2),(3,10),(4,5),(6,9),(7,8)] generating graphics... => 0
[(1,2),(3,10),(4,6),(5,7),(8,9)] generating graphics... => 1
[(1,2),(3,10),(4,6),(5,8),(7,9)] generating graphics... => 2
[(1,2),(3,10),(4,6),(5,9),(7,8)] generating graphics... => 1
[(1,2),(3,10),(4,7),(5,6),(8,9)] generating graphics... => 0
[(1,2),(3,10),(4,7),(5,8),(6,9)] generating graphics... => 1
[(1,2),(3,10),(4,7),(5,9),(6,8)] generating graphics... => 2
[(1,2),(3,10),(4,8),(5,9),(6,7)] generating graphics... => 1
[(1,2),(3,10),(4,8),(5,7),(6,9)] generating graphics... => 2
[(1,2),(3,10),(4,8),(5,6),(7,9)] generating graphics... => 1
[(1,2),(3,10),(4,9),(5,8),(6,7)] generating graphics... => 0
[(1,2),(3,10),(4,9),(5,7),(6,8)] generating graphics... => 1
[(1,2),(3,10),(4,9),(5,6),(7,8)] generating graphics... => 0
[(1,3),(2,4),(5,6),(7,10),(8,9)] generating graphics... => 1
[(1,3),(2,4),(5,6),(7,9),(8,10)] generating graphics... => 2
[(1,3),(2,4),(5,6),(7,8),(9,10)] generating graphics... => 1
[(1,3),(2,4),(5,7),(6,10),(8,9)] generating graphics... => 2
[(1,3),(2,4),(5,7),(6,9),(8,10)] generating graphics... => 3
[(1,3),(2,4),(5,7),(6,8),(9,10)] generating graphics... => 2
[(1,3),(2,4),(5,8),(6,7),(9,10)] generating graphics... => 1
[(1,3),(2,4),(5,8),(6,9),(7,10)] generating graphics... => 2
[(1,3),(2,4),(5,8),(6,10),(7,9)] generating graphics... => 3
[(1,3),(2,4),(5,9),(6,7),(8,10)] generating graphics... => 2
[(1,3),(2,4),(5,9),(6,8),(7,10)] generating graphics... => 3
[(1,3),(2,4),(5,9),(6,10),(7,8)] generating graphics... => 2
[(1,3),(2,4),(5,10),(6,7),(8,9)] generating graphics... => 1
[(1,3),(2,4),(5,10),(6,8),(7,9)] generating graphics... => 2
[(1,3),(2,4),(5,10),(6,9),(7,8)] generating graphics... => 1
[(1,3),(2,5),(4,6),(7,10),(8,9)] generating graphics... => 2
[(1,3),(2,5),(4,6),(7,9),(8,10)] generating graphics... => 3
[(1,3),(2,5),(4,6),(7,8),(9,10)] generating graphics... => 2
[(1,3),(2,5),(4,7),(6,10),(8,9)] generating graphics... => 3
[(1,3),(2,5),(4,7),(6,9),(8,10)] generating graphics... => 4
[(1,3),(2,5),(4,7),(6,8),(9,10)] generating graphics... => 3
[(1,3),(2,5),(4,8),(6,7),(9,10)] generating graphics... => 2
[(1,3),(2,5),(4,8),(6,9),(7,10)] generating graphics... => 3
[(1,3),(2,5),(4,8),(6,10),(7,9)] generating graphics... => 4
[(1,3),(2,5),(4,9),(6,7),(8,10)] generating graphics... => 3
[(1,3),(2,5),(4,9),(6,8),(7,10)] generating graphics... => 4
[(1,3),(2,5),(4,9),(6,10),(7,8)] generating graphics... => 3
[(1,3),(2,5),(4,10),(6,7),(8,9)] generating graphics... => 2
[(1,3),(2,5),(4,10),(6,8),(7,9)] generating graphics... => 3
[(1,3),(2,5),(4,10),(6,9),(7,8)] generating graphics... => 2
[(1,3),(2,6),(4,5),(7,10),(8,9)] generating graphics... => 1
[(1,3),(2,6),(4,5),(7,9),(8,10)] generating graphics... => 2
[(1,3),(2,6),(4,5),(7,8),(9,10)] generating graphics... => 1
[(1,3),(2,6),(4,7),(5,10),(8,9)] generating graphics... => 2
[(1,3),(2,6),(4,7),(5,9),(8,10)] generating graphics... => 3
[(1,3),(2,6),(4,7),(5,8),(9,10)] generating graphics... => 2
[(1,3),(2,6),(4,8),(5,7),(9,10)] generating graphics... => 3
[(1,3),(2,6),(4,8),(5,9),(7,10)] generating graphics... => 2
[(1,3),(2,6),(4,8),(5,10),(7,9)] generating graphics... => 3
[(1,3),(2,6),(4,9),(5,7),(8,10)] generating graphics... => 4
[(1,3),(2,6),(4,9),(5,8),(7,10)] generating graphics... => 3
[(1,3),(2,6),(4,9),(5,10),(7,8)] generating graphics... => 2
[(1,3),(2,6),(4,10),(5,7),(8,9)] generating graphics... => 3
[(1,3),(2,6),(4,10),(5,8),(7,9)] generating graphics... => 4
[(1,3),(2,6),(4,10),(5,9),(7,8)] generating graphics... => 3
[(1,3),(2,7),(4,5),(6,10),(8,9)] generating graphics... => 2
[(1,3),(2,7),(4,5),(6,9),(8,10)] generating graphics... => 3
[(1,3),(2,7),(4,5),(6,8),(9,10)] generating graphics... => 2
[(1,3),(2,7),(4,6),(5,10),(8,9)] generating graphics... => 3
[(1,3),(2,7),(4,6),(5,9),(8,10)] generating graphics... => 4
[(1,3),(2,7),(4,6),(5,8),(9,10)] generating graphics... => 3
[(1,3),(2,7),(4,8),(5,6),(9,10)] generating graphics... => 2
[(1,3),(2,7),(4,8),(5,9),(6,10)] generating graphics... => 3
[(1,3),(2,7),(4,8),(5,10),(6,9)] generating graphics... => 2
[(1,3),(2,7),(4,9),(5,6),(8,10)] generating graphics... => 3
[(1,3),(2,7),(4,9),(5,8),(6,10)] generating graphics... => 2
[(1,3),(2,7),(4,9),(5,10),(6,8)] generating graphics... => 3
[(1,3),(2,7),(4,10),(5,6),(8,9)] generating graphics... => 2
[(1,3),(2,7),(4,10),(5,8),(6,9)] generating graphics... => 3
[(1,3),(2,7),(4,10),(5,9),(6,8)] generating graphics... => 4
[(1,3),(2,8),(4,5),(6,7),(9,10)] generating graphics... => 1
[(1,3),(2,8),(4,5),(6,9),(7,10)] generating graphics... => 2
[(1,3),(2,8),(4,5),(6,10),(7,9)] generating graphics... => 3
[(1,3),(2,8),(4,6),(5,7),(9,10)] generating graphics... => 2
[(1,3),(2,8),(4,6),(5,9),(7,10)] generating graphics... => 3
[(1,3),(2,8),(4,6),(5,10),(7,9)] generating graphics... => 4
[(1,3),(2,8),(4,7),(5,6),(9,10)] generating graphics... => 1
[(1,3),(2,8),(4,7),(5,9),(6,10)] generating graphics... => 2
[(1,3),(2,8),(4,7),(5,10),(6,9)] generating graphics... => 3
[(1,3),(2,8),(4,9),(5,10),(6,7)] generating graphics... => 2
[(1,3),(2,8),(4,9),(5,7),(6,10)] generating graphics... => 3
[(1,3),(2,8),(4,9),(5,6),(7,10)] generating graphics... => 2
[(1,3),(2,8),(4,10),(5,9),(6,7)] generating graphics... => 3
[(1,3),(2,8),(4,10),(5,7),(6,9)] generating graphics... => 4
[(1,3),(2,8),(4,10),(5,6),(7,9)] generating graphics... => 3
[(1,3),(2,9),(4,5),(6,7),(8,10)] generating graphics... => 2
[(1,3),(2,9),(4,5),(6,8),(7,10)] generating graphics... => 3
[(1,3),(2,9),(4,5),(6,10),(7,8)] generating graphics... => 2
[(1,3),(2,9),(4,6),(5,7),(8,10)] generating graphics... => 3
[(1,3),(2,9),(4,6),(5,8),(7,10)] generating graphics... => 4
[(1,3),(2,9),(4,6),(5,10),(7,8)] generating graphics... => 3
[(1,3),(2,9),(4,7),(5,6),(8,10)] generating graphics... => 2
[(1,3),(2,9),(4,7),(5,8),(6,10)] generating graphics... => 3
[(1,3),(2,9),(4,7),(5,10),(6,8)] generating graphics... => 4
[(1,3),(2,9),(4,8),(5,10),(6,7)] generating graphics... => 3
[(1,3),(2,9),(4,8),(5,7),(6,10)] generating graphics... => 4
[(1,3),(2,9),(4,8),(5,6),(7,10)] generating graphics... => 3
[(1,3),(2,9),(4,10),(5,8),(6,7)] generating graphics... => 2
[(1,3),(2,9),(4,10),(5,7),(6,8)] generating graphics... => 3
[(1,3),(2,9),(4,10),(5,6),(7,8)] generating graphics... => 2
[(1,3),(2,10),(4,5),(6,7),(8,9)] generating graphics... => 1
[(1,3),(2,10),(4,5),(6,8),(7,9)] generating graphics... => 2
[(1,3),(2,10),(4,5),(6,9),(7,8)] generating graphics... => 1
[(1,3),(2,10),(4,6),(5,7),(8,9)] generating graphics... => 2
[(1,3),(2,10),(4,6),(5,8),(7,9)] generating graphics... => 3
[(1,3),(2,10),(4,6),(5,9),(7,8)] generating graphics... => 2
[(1,3),(2,10),(4,7),(5,6),(8,9)] generating graphics... => 1
[(1,3),(2,10),(4,7),(5,8),(6,9)] generating graphics... => 2
[(1,3),(2,10),(4,7),(5,9),(6,8)] generating graphics... => 3
[(1,3),(2,10),(4,8),(5,9),(6,7)] generating graphics... => 2
[(1,3),(2,10),(4,8),(5,7),(6,9)] generating graphics... => 3
[(1,3),(2,10),(4,8),(5,6),(7,9)] generating graphics... => 2
[(1,3),(2,10),(4,9),(5,8),(6,7)] generating graphics... => 1
[(1,3),(2,10),(4,9),(5,7),(6,8)] generating graphics... => 2
[(1,3),(2,10),(4,9),(5,6),(7,8)] generating graphics... => 1
[(1,4),(2,3),(5,6),(7,10),(8,9)] generating graphics... => 0
[(1,4),(2,3),(5,6),(7,9),(8,10)] generating graphics... => 1
[(1,4),(2,3),(5,6),(7,8),(9,10)] generating graphics... => 0
[(1,4),(2,3),(5,7),(6,10),(8,9)] generating graphics... => 1
[(1,4),(2,3),(5,7),(6,9),(8,10)] generating graphics... => 2
[(1,4),(2,3),(5,7),(6,8),(9,10)] generating graphics... => 1
[(1,4),(2,3),(5,8),(6,7),(9,10)] generating graphics... => 0
[(1,4),(2,3),(5,8),(6,9),(7,10)] generating graphics... => 1
[(1,4),(2,3),(5,8),(6,10),(7,9)] generating graphics... => 2
[(1,4),(2,3),(5,9),(6,7),(8,10)] generating graphics... => 1
[(1,4),(2,3),(5,9),(6,8),(7,10)] generating graphics... => 2
[(1,4),(2,3),(5,9),(6,10),(7,8)] generating graphics... => 1
[(1,4),(2,3),(5,10),(6,7),(8,9)] generating graphics... => 0
[(1,4),(2,3),(5,10),(6,8),(7,9)] generating graphics... => 1
[(1,4),(2,3),(5,10),(6,9),(7,8)] generating graphics... => 0
[(1,4),(2,5),(3,6),(7,10),(8,9)] generating graphics... => 1
[(1,4),(2,5),(3,6),(7,9),(8,10)] generating graphics... => 2
[(1,4),(2,5),(3,6),(7,8),(9,10)] generating graphics... => 1
[(1,4),(2,5),(3,7),(6,10),(8,9)] generating graphics... => 2
[(1,4),(2,5),(3,7),(6,9),(8,10)] generating graphics... => 3
[(1,4),(2,5),(3,7),(6,8),(9,10)] generating graphics... => 2
[(1,4),(2,5),(3,8),(6,7),(9,10)] generating graphics... => 1
[(1,4),(2,5),(3,8),(6,9),(7,10)] generating graphics... => 2
[(1,4),(2,5),(3,8),(6,10),(7,9)] generating graphics... => 3
[(1,4),(2,5),(3,9),(6,7),(8,10)] generating graphics... => 2
[(1,4),(2,5),(3,9),(6,8),(7,10)] generating graphics... => 3
[(1,4),(2,5),(3,9),(6,10),(7,8)] generating graphics... => 2
[(1,4),(2,5),(3,10),(6,7),(8,9)] generating graphics... => 1
[(1,4),(2,5),(3,10),(6,8),(7,9)] generating graphics... => 2
[(1,4),(2,5),(3,10),(6,9),(7,8)] generating graphics... => 1
[(1,4),(2,6),(3,5),(7,10),(8,9)] generating graphics... => 2
[(1,4),(2,6),(3,5),(7,9),(8,10)] generating graphics... => 3
[(1,4),(2,6),(3,5),(7,8),(9,10)] generating graphics... => 2
[(1,4),(2,6),(3,7),(5,10),(8,9)] generating graphics... => 1
[(1,4),(2,6),(3,7),(5,9),(8,10)] generating graphics... => 2
[(1,4),(2,6),(3,7),(5,8),(9,10)] generating graphics... => 1
[(1,4),(2,6),(3,8),(5,7),(9,10)] generating graphics... => 2
[(1,4),(2,6),(3,8),(5,9),(7,10)] generating graphics... => 3
[(1,4),(2,6),(3,8),(5,10),(7,9)] generating graphics... => 2
[(1,4),(2,6),(3,9),(5,7),(8,10)] generating graphics... => 3
[(1,4),(2,6),(3,9),(5,8),(7,10)] generating graphics... => 2
[(1,4),(2,6),(3,9),(5,10),(7,8)] generating graphics... => 1
[(1,4),(2,6),(3,10),(5,7),(8,9)] generating graphics... => 2
[(1,4),(2,6),(3,10),(5,8),(7,9)] generating graphics... => 3
[(1,4),(2,6),(3,10),(5,9),(7,8)] generating graphics... => 2
[(1,4),(2,7),(3,5),(6,10),(8,9)] generating graphics... => 3
[(1,4),(2,7),(3,5),(6,9),(8,10)] generating graphics... => 4
[(1,4),(2,7),(3,5),(6,8),(9,10)] generating graphics... => 3
[(1,4),(2,7),(3,6),(5,10),(8,9)] generating graphics... => 2
[(1,4),(2,7),(3,6),(5,9),(8,10)] generating graphics... => 3
[(1,4),(2,7),(3,6),(5,8),(9,10)] generating graphics... => 2
[(1,4),(2,7),(3,8),(5,6),(9,10)] generating graphics... => 1
[(1,4),(2,7),(3,8),(5,9),(6,10)] generating graphics... => 2
[(1,4),(2,7),(3,8),(5,10),(6,9)] generating graphics... => 1
[(1,4),(2,7),(3,9),(5,6),(8,10)] generating graphics... => 2
[(1,4),(2,7),(3,9),(5,8),(6,10)] generating graphics... => 3
[(1,4),(2,7),(3,9),(5,10),(6,8)] generating graphics... => 2
[(1,4),(2,7),(3,10),(5,6),(8,9)] generating graphics... => 1
[(1,4),(2,7),(3,10),(5,8),(6,9)] generating graphics... => 2
[(1,4),(2,7),(3,10),(5,9),(6,8)] generating graphics... => 3
[(1,4),(2,8),(3,5),(6,7),(9,10)] generating graphics... => 2
[(1,4),(2,8),(3,5),(6,9),(7,10)] generating graphics... => 3
[(1,4),(2,8),(3,5),(6,10),(7,9)] generating graphics... => 4
[(1,4),(2,8),(3,6),(5,7),(9,10)] generating graphics... => 3
[(1,4),(2,8),(3,6),(5,9),(7,10)] generating graphics... => 2
[(1,4),(2,8),(3,6),(5,10),(7,9)] generating graphics... => 3
[(1,4),(2,8),(3,7),(5,6),(9,10)] generating graphics... => 2
[(1,4),(2,8),(3,7),(5,9),(6,10)] generating graphics... => 3
[(1,4),(2,8),(3,7),(5,10),(6,9)] generating graphics... => 2
[(1,4),(2,8),(3,9),(5,10),(6,7)] generating graphics... => 1
[(1,4),(2,8),(3,9),(5,7),(6,10)] generating graphics... => 2
[(1,4),(2,8),(3,9),(5,6),(7,10)] generating graphics... => 1
[(1,4),(2,8),(3,10),(5,9),(6,7)] generating graphics... => 2
[(1,4),(2,8),(3,10),(5,7),(6,9)] generating graphics... => 3
[(1,4),(2,8),(3,10),(5,6),(7,9)] generating graphics... => 2
[(1,4),(2,9),(3,5),(6,7),(8,10)] generating graphics... => 3
[(1,4),(2,9),(3,5),(6,8),(7,10)] generating graphics... => 4
[(1,4),(2,9),(3,5),(6,10),(7,8)] generating graphics... => 3
[(1,4),(2,9),(3,6),(5,7),(8,10)] generating graphics... => 4
[(1,4),(2,9),(3,6),(5,8),(7,10)] generating graphics... => 3
[(1,4),(2,9),(3,6),(5,10),(7,8)] generating graphics... => 2
[(1,4),(2,9),(3,7),(5,6),(8,10)] generating graphics... => 3
[(1,4),(2,9),(3,7),(5,8),(6,10)] generating graphics... => 2
[(1,4),(2,9),(3,7),(5,10),(6,8)] generating graphics... => 3
[(1,4),(2,9),(3,8),(5,10),(6,7)] generating graphics... => 2
[(1,4),(2,9),(3,8),(5,7),(6,10)] generating graphics... => 3
[(1,4),(2,9),(3,8),(5,6),(7,10)] generating graphics... => 2
[(1,4),(2,9),(3,10),(5,8),(6,7)] generating graphics... => 1
[(1,4),(2,9),(3,10),(5,7),(6,8)] generating graphics... => 2
[(1,4),(2,9),(3,10),(5,6),(7,8)] generating graphics... => 1
[(1,4),(2,10),(3,5),(6,7),(8,9)] generating graphics... => 2
[(1,4),(2,10),(3,5),(6,8),(7,9)] generating graphics... => 3
[(1,4),(2,10),(3,5),(6,9),(7,8)] generating graphics... => 2
[(1,4),(2,10),(3,6),(5,7),(8,9)] generating graphics... => 3
[(1,4),(2,10),(3,6),(5,8),(7,9)] generating graphics... => 4
[(1,4),(2,10),(3,6),(5,9),(7,8)] generating graphics... => 3
[(1,4),(2,10),(3,7),(5,6),(8,9)] generating graphics... => 2
[(1,4),(2,10),(3,7),(5,8),(6,9)] generating graphics... => 3
[(1,4),(2,10),(3,7),(5,9),(6,8)] generating graphics... => 4
[(1,4),(2,10),(3,8),(5,9),(6,7)] generating graphics... => 3
[(1,4),(2,10),(3,8),(5,7),(6,9)] generating graphics... => 4
[(1,4),(2,10),(3,8),(5,6),(7,9)] generating graphics... => 3
[(1,4),(2,10),(3,9),(5,8),(6,7)] generating graphics... => 2
[(1,4),(2,10),(3,9),(5,7),(6,8)] generating graphics... => 3
[(1,4),(2,10),(3,9),(5,6),(7,8)] generating graphics... => 2
[(1,5),(2,3),(4,6),(7,10),(8,9)] generating graphics... => 1
[(1,5),(2,3),(4,6),(7,9),(8,10)] generating graphics... => 2
[(1,5),(2,3),(4,6),(7,8),(9,10)] generating graphics... => 1
[(1,5),(2,3),(4,7),(6,10),(8,9)] generating graphics... => 2
[(1,5),(2,3),(4,7),(6,9),(8,10)] generating graphics... => 3
[(1,5),(2,3),(4,7),(6,8),(9,10)] generating graphics... => 2
[(1,5),(2,3),(4,8),(6,7),(9,10)] generating graphics... => 1
[(1,5),(2,3),(4,8),(6,9),(7,10)] generating graphics... => 2
[(1,5),(2,3),(4,8),(6,10),(7,9)] generating graphics... => 3
[(1,5),(2,3),(4,9),(6,7),(8,10)] generating graphics... => 2
[(1,5),(2,3),(4,9),(6,8),(7,10)] generating graphics... => 3
[(1,5),(2,3),(4,9),(6,10),(7,8)] generating graphics... => 2
[(1,5),(2,3),(4,10),(6,7),(8,9)] generating graphics... => 1
[(1,5),(2,3),(4,10),(6,8),(7,9)] generating graphics... => 2
[(1,5),(2,3),(4,10),(6,9),(7,8)] generating graphics... => 1
[(1,5),(2,4),(3,6),(7,10),(8,9)] generating graphics... => 2
[(1,5),(2,4),(3,6),(7,9),(8,10)] generating graphics... => 3
[(1,5),(2,4),(3,6),(7,8),(9,10)] generating graphics... => 2
[(1,5),(2,4),(3,7),(6,10),(8,9)] generating graphics... => 3
[(1,5),(2,4),(3,7),(6,9),(8,10)] generating graphics... => 4
[(1,5),(2,4),(3,7),(6,8),(9,10)] generating graphics... => 3
[(1,5),(2,4),(3,8),(6,7),(9,10)] generating graphics... => 2
[(1,5),(2,4),(3,8),(6,9),(7,10)] generating graphics... => 3
[(1,5),(2,4),(3,8),(6,10),(7,9)] generating graphics... => 4
[(1,5),(2,4),(3,9),(6,7),(8,10)] generating graphics... => 3
[(1,5),(2,4),(3,9),(6,8),(7,10)] generating graphics... => 4
[(1,5),(2,4),(3,9),(6,10),(7,8)] generating graphics... => 3
[(1,5),(2,4),(3,10),(6,7),(8,9)] generating graphics... => 2
[(1,5),(2,4),(3,10),(6,8),(7,9)] generating graphics... => 3
[(1,5),(2,4),(3,10),(6,9),(7,8)] generating graphics... => 2
[(1,5),(2,6),(3,4),(7,10),(8,9)] generating graphics... => 1
[(1,5),(2,6),(3,4),(7,9),(8,10)] generating graphics... => 2
[(1,5),(2,6),(3,4),(7,8),(9,10)] generating graphics... => 1
[(1,5),(2,6),(3,7),(4,10),(8,9)] generating graphics... => 2
[(1,5),(2,6),(3,7),(4,9),(8,10)] generating graphics... => 3
[(1,5),(2,6),(3,7),(4,8),(9,10)] generating graphics... => 2
[(1,5),(2,6),(3,8),(4,7),(9,10)] generating graphics... => 1
[(1,5),(2,6),(3,8),(4,9),(7,10)] generating graphics... => 2
[(1,5),(2,6),(3,8),(4,10),(7,9)] generating graphics... => 3
[(1,5),(2,6),(3,9),(4,7),(8,10)] generating graphics... => 2
[(1,5),(2,6),(3,9),(4,8),(7,10)] generating graphics... => 3
[(1,5),(2,6),(3,9),(4,10),(7,8)] generating graphics... => 2
[(1,5),(2,6),(3,10),(4,7),(8,9)] generating graphics... => 1
[(1,5),(2,6),(3,10),(4,8),(7,9)] generating graphics... => 2
[(1,5),(2,6),(3,10),(4,9),(7,8)] generating graphics... => 1
[(1,5),(2,7),(3,4),(6,10),(8,9)] generating graphics... => 2
[(1,5),(2,7),(3,4),(6,9),(8,10)] generating graphics... => 3
[(1,5),(2,7),(3,4),(6,8),(9,10)] generating graphics... => 2
[(1,5),(2,7),(3,6),(4,10),(8,9)] generating graphics... => 1
[(1,5),(2,7),(3,6),(4,9),(8,10)] generating graphics... => 2
[(1,5),(2,7),(3,6),(4,8),(9,10)] generating graphics... => 1
[(1,5),(2,7),(3,8),(4,6),(9,10)] generating graphics... => 2
[(1,5),(2,7),(3,8),(4,9),(6,10)] generating graphics... => 3
[(1,5),(2,7),(3,8),(4,10),(6,9)] generating graphics... => 2
[(1,5),(2,7),(3,9),(4,6),(8,10)] generating graphics... => 3
[(1,5),(2,7),(3,9),(4,8),(6,10)] generating graphics... => 2
[(1,5),(2,7),(3,9),(4,10),(6,8)] generating graphics... => 3
[(1,5),(2,7),(3,10),(4,6),(8,9)] generating graphics... => 2
[(1,5),(2,7),(3,10),(4,8),(6,9)] generating graphics... => 3
[(1,5),(2,7),(3,10),(4,9),(6,8)] generating graphics... => 2
[(1,5),(2,8),(3,4),(6,7),(9,10)] generating graphics... => 1
[(1,5),(2,8),(3,4),(6,9),(7,10)] generating graphics... => 2
[(1,5),(2,8),(3,4),(6,10),(7,9)] generating graphics... => 3
[(1,5),(2,8),(3,6),(4,7),(9,10)] generating graphics... => 2
[(1,5),(2,8),(3,6),(4,9),(7,10)] generating graphics... => 3
[(1,5),(2,8),(3,6),(4,10),(7,9)] generating graphics... => 2
[(1,5),(2,8),(3,7),(4,6),(9,10)] generating graphics... => 3
[(1,5),(2,8),(3,7),(4,9),(6,10)] generating graphics... => 2
[(1,5),(2,8),(3,7),(4,10),(6,9)] generating graphics... => 3
[(1,5),(2,8),(3,9),(4,10),(6,7)] generating graphics... => 2
[(1,5),(2,8),(3,9),(4,7),(6,10)] generating graphics... => 3
[(1,5),(2,8),(3,9),(4,6),(7,10)] generating graphics... => 2
[(1,5),(2,8),(3,10),(4,9),(6,7)] generating graphics... => 1
[(1,5),(2,8),(3,10),(4,7),(6,9)] generating graphics... => 2
[(1,5),(2,8),(3,10),(4,6),(7,9)] generating graphics... => 3
[(1,5),(2,9),(3,4),(6,7),(8,10)] generating graphics... => 2
[(1,5),(2,9),(3,4),(6,8),(7,10)] generating graphics... => 3
[(1,5),(2,9),(3,4),(6,10),(7,8)] generating graphics... => 2
[(1,5),(2,9),(3,6),(4,7),(8,10)] generating graphics... => 3
[(1,5),(2,9),(3,6),(4,8),(7,10)] generating graphics... => 2
[(1,5),(2,9),(3,6),(4,10),(7,8)] generating graphics... => 1
[(1,5),(2,9),(3,7),(4,6),(8,10)] generating graphics... => 4
[(1,5),(2,9),(3,7),(4,8),(6,10)] generating graphics... => 3
[(1,5),(2,9),(3,7),(4,10),(6,8)] generating graphics... => 2
[(1,5),(2,9),(3,8),(4,10),(6,7)] generating graphics... => 1
[(1,5),(2,9),(3,8),(4,7),(6,10)] generating graphics... => 2
[(1,5),(2,9),(3,8),(4,6),(7,10)] generating graphics... => 3
[(1,5),(2,9),(3,10),(4,8),(6,7)] generating graphics... => 2
[(1,5),(2,9),(3,10),(4,7),(6,8)] generating graphics... => 3
[(1,5),(2,9),(3,10),(4,6),(7,8)] generating graphics... => 2
[(1,5),(2,10),(3,4),(6,7),(8,9)] generating graphics... => 1
[(1,5),(2,10),(3,4),(6,8),(7,9)] generating graphics... => 2
[(1,5),(2,10),(3,4),(6,9),(7,8)] generating graphics... => 1
[(1,5),(2,10),(3,6),(4,7),(8,9)] generating graphics... => 2
[(1,5),(2,10),(3,6),(4,8),(7,9)] generating graphics... => 3
[(1,5),(2,10),(3,6),(4,9),(7,8)] generating graphics... => 2
[(1,5),(2,10),(3,7),(4,6),(8,9)] generating graphics... => 3
[(1,5),(2,10),(3,7),(4,8),(6,9)] generating graphics... => 2
[(1,5),(2,10),(3,7),(4,9),(6,8)] generating graphics... => 3
[(1,5),(2,10),(3,8),(4,9),(6,7)] generating graphics... => 2
[(1,5),(2,10),(3,8),(4,7),(6,9)] generating graphics... => 3
[(1,5),(2,10),(3,8),(4,6),(7,9)] generating graphics... => 4
[(1,5),(2,10),(3,9),(4,8),(6,7)] generating graphics... => 3
[(1,5),(2,10),(3,9),(4,7),(6,8)] generating graphics... => 4
[(1,5),(2,10),(3,9),(4,6),(7,8)] generating graphics... => 3
[(1,6),(2,3),(4,5),(7,10),(8,9)] generating graphics... => 0
[(1,6),(2,3),(4,5),(7,9),(8,10)] generating graphics... => 1
[(1,6),(2,3),(4,5),(7,8),(9,10)] generating graphics... => 0
[(1,6),(2,3),(4,7),(5,10),(8,9)] generating graphics... => 1
[(1,6),(2,3),(4,7),(5,9),(8,10)] generating graphics... => 2
[(1,6),(2,3),(4,7),(5,8),(9,10)] generating graphics... => 1
[(1,6),(2,3),(4,8),(5,7),(9,10)] generating graphics... => 2
[(1,6),(2,3),(4,8),(5,9),(7,10)] generating graphics... => 1
[(1,6),(2,3),(4,8),(5,10),(7,9)] generating graphics... => 2
[(1,6),(2,3),(4,9),(5,7),(8,10)] generating graphics... => 3
[(1,6),(2,3),(4,9),(5,8),(7,10)] generating graphics... => 2
[(1,6),(2,3),(4,9),(5,10),(7,8)] generating graphics... => 1
[(1,6),(2,3),(4,10),(5,7),(8,9)] generating graphics... => 2
[(1,6),(2,3),(4,10),(5,8),(7,9)] generating graphics... => 3
[(1,6),(2,3),(4,10),(5,9),(7,8)] generating graphics... => 2
[(1,6),(2,4),(3,5),(7,10),(8,9)] generating graphics... => 1
[(1,6),(2,4),(3,5),(7,9),(8,10)] generating graphics... => 2
[(1,6),(2,4),(3,5),(7,8),(9,10)] generating graphics... => 1
[(1,6),(2,4),(3,7),(5,10),(8,9)] generating graphics... => 2
[(1,6),(2,4),(3,7),(5,9),(8,10)] generating graphics... => 3
[(1,6),(2,4),(3,7),(5,8),(9,10)] generating graphics... => 2
[(1,6),(2,4),(3,8),(5,7),(9,10)] generating graphics... => 3
[(1,6),(2,4),(3,8),(5,9),(7,10)] generating graphics... => 2
[(1,6),(2,4),(3,8),(5,10),(7,9)] generating graphics... => 3
[(1,6),(2,4),(3,9),(5,7),(8,10)] generating graphics... => 4
[(1,6),(2,4),(3,9),(5,8),(7,10)] generating graphics... => 3
[(1,6),(2,4),(3,9),(5,10),(7,8)] generating graphics... => 2
[(1,6),(2,4),(3,10),(5,7),(8,9)] generating graphics... => 3
[(1,6),(2,4),(3,10),(5,8),(7,9)] generating graphics... => 4
[(1,6),(2,4),(3,10),(5,9),(7,8)] generating graphics... => 3
[(1,6),(2,5),(3,4),(7,10),(8,9)] generating graphics... => 0
[(1,6),(2,5),(3,4),(7,9),(8,10)] generating graphics... => 1
[(1,6),(2,5),(3,4),(7,8),(9,10)] generating graphics... => 0
[(1,6),(2,5),(3,7),(4,10),(8,9)] generating graphics... => 1
[(1,6),(2,5),(3,7),(4,9),(8,10)] generating graphics... => 2
[(1,6),(2,5),(3,7),(4,8),(9,10)] generating graphics... => 1
[(1,6),(2,5),(3,8),(4,7),(9,10)] generating graphics... => 2
[(1,6),(2,5),(3,8),(4,9),(7,10)] generating graphics... => 1
[(1,6),(2,5),(3,8),(4,10),(7,9)] generating graphics... => 2
[(1,6),(2,5),(3,9),(4,7),(8,10)] generating graphics... => 3
[(1,6),(2,5),(3,9),(4,8),(7,10)] generating graphics... => 2
[(1,6),(2,5),(3,9),(4,10),(7,8)] generating graphics... => 1
[(1,6),(2,5),(3,10),(4,7),(8,9)] generating graphics... => 2
[(1,6),(2,5),(3,10),(4,8),(7,9)] generating graphics... => 3
[(1,6),(2,5),(3,10),(4,9),(7,8)] generating graphics... => 2
[(1,6),(2,7),(3,4),(5,10),(8,9)] generating graphics... => 1
[(1,6),(2,7),(3,4),(5,9),(8,10)] generating graphics... => 2
[(1,6),(2,7),(3,4),(5,8),(9,10)] generating graphics... => 1
[(1,6),(2,7),(3,5),(4,10),(8,9)] generating graphics... => 2
[(1,6),(2,7),(3,5),(4,9),(8,10)] generating graphics... => 3
[(1,6),(2,7),(3,5),(4,8),(9,10)] generating graphics... => 2
[(1,6),(2,7),(3,8),(4,5),(9,10)] generating graphics... => 1
[(1,6),(2,7),(3,8),(4,9),(5,10)] generating graphics... => 2
[(1,6),(2,7),(3,8),(4,10),(5,9)] generating graphics... => 3
[(1,6),(2,7),(3,9),(4,5),(8,10)] generating graphics... => 2
[(1,6),(2,7),(3,9),(4,8),(5,10)] generating graphics... => 3
[(1,6),(2,7),(3,9),(4,10),(5,8)] generating graphics... => 2
[(1,6),(2,7),(3,10),(4,5),(8,9)] generating graphics... => 1
[(1,6),(2,7),(3,10),(4,8),(5,9)] generating graphics... => 2
[(1,6),(2,7),(3,10),(4,9),(5,8)] generating graphics... => 1
[(1,6),(2,8),(3,4),(5,7),(9,10)] generating graphics... => 2
[(1,6),(2,8),(3,4),(5,9),(7,10)] generating graphics... => 1
[(1,6),(2,8),(3,4),(5,10),(7,9)] generating graphics... => 2
[(1,6),(2,8),(3,5),(4,7),(9,10)] generating graphics... => 3
[(1,6),(2,8),(3,5),(4,9),(7,10)] generating graphics... => 2
[(1,6),(2,8),(3,5),(4,10),(7,9)] generating graphics... => 3
[(1,6),(2,8),(3,7),(4,5),(9,10)] generating graphics... => 2
[(1,6),(2,8),(3,7),(4,9),(5,10)] generating graphics... => 3
[(1,6),(2,8),(3,7),(4,10),(5,9)] generating graphics... => 2
[(1,6),(2,8),(3,9),(4,10),(5,7)] generating graphics... => 3
[(1,6),(2,8),(3,9),(4,7),(5,10)] generating graphics... => 2
[(1,6),(2,8),(3,9),(4,5),(7,10)] generating graphics... => 1
[(1,6),(2,8),(3,10),(4,9),(5,7)] generating graphics... => 2
[(1,6),(2,8),(3,10),(4,7),(5,9)] generating graphics... => 3
[(1,6),(2,8),(3,10),(4,5),(7,9)] generating graphics... => 2
[(1,6),(2,9),(3,4),(5,7),(8,10)] generating graphics... => 3
[(1,6),(2,9),(3,4),(5,8),(7,10)] generating graphics... => 2
[(1,6),(2,9),(3,4),(5,10),(7,8)] generating graphics... => 1
[(1,6),(2,9),(3,5),(4,7),(8,10)] generating graphics... => 4
[(1,6),(2,9),(3,5),(4,8),(7,10)] generating graphics... => 3
[(1,6),(2,9),(3,5),(4,10),(7,8)] generating graphics... => 2
[(1,6),(2,9),(3,7),(4,5),(8,10)] generating graphics... => 3
[(1,6),(2,9),(3,7),(4,8),(5,10)] generating graphics... => 2
[(1,6),(2,9),(3,7),(4,10),(5,8)] generating graphics... => 3
[(1,6),(2,9),(3,8),(4,10),(5,7)] generating graphics... => 2
[(1,6),(2,9),(3,8),(4,7),(5,10)] generating graphics... => 1
[(1,6),(2,9),(3,8),(4,5),(7,10)] generating graphics... => 2
[(1,6),(2,9),(3,10),(4,8),(5,7)] generating graphics... => 3
[(1,6),(2,9),(3,10),(4,7),(5,8)] generating graphics... => 2
[(1,6),(2,9),(3,10),(4,5),(7,8)] generating graphics... => 1
[(1,6),(2,10),(3,4),(5,7),(8,9)] generating graphics... => 2
[(1,6),(2,10),(3,4),(5,8),(7,9)] generating graphics... => 3
[(1,6),(2,10),(3,4),(5,9),(7,8)] generating graphics... => 2
[(1,6),(2,10),(3,5),(4,7),(8,9)] generating graphics... => 3
[(1,6),(2,10),(3,5),(4,8),(7,9)] generating graphics... => 4
[(1,6),(2,10),(3,5),(4,9),(7,8)] generating graphics... => 3
[(1,6),(2,10),(3,7),(4,5),(8,9)] generating graphics... => 2
[(1,6),(2,10),(3,7),(4,8),(5,9)] generating graphics... => 3
[(1,6),(2,10),(3,7),(4,9),(5,8)] generating graphics... => 2
[(1,6),(2,10),(3,8),(4,9),(5,7)] generating graphics... => 3
[(1,6),(2,10),(3,8),(4,7),(5,9)] generating graphics... => 2
[(1,6),(2,10),(3,8),(4,5),(7,9)] generating graphics... => 3
[(1,6),(2,10),(3,9),(4,8),(5,7)] generating graphics... => 4
[(1,6),(2,10),(3,9),(4,7),(5,8)] generating graphics... => 3
[(1,6),(2,10),(3,9),(4,5),(7,8)] generating graphics... => 2
[(1,7),(2,3),(4,5),(6,10),(8,9)] generating graphics... => 1
[(1,7),(2,3),(4,5),(6,9),(8,10)] generating graphics... => 2
[(1,7),(2,3),(4,5),(6,8),(9,10)] generating graphics... => 1
[(1,7),(2,3),(4,6),(5,10),(8,9)] generating graphics... => 2
[(1,7),(2,3),(4,6),(5,9),(8,10)] generating graphics... => 3
[(1,7),(2,3),(4,6),(5,8),(9,10)] generating graphics... => 2
[(1,7),(2,3),(4,8),(5,6),(9,10)] generating graphics... => 1
[(1,7),(2,3),(4,8),(5,9),(6,10)] generating graphics... => 2
[(1,7),(2,3),(4,8),(5,10),(6,9)] generating graphics... => 1
[(1,7),(2,3),(4,9),(5,6),(8,10)] generating graphics... => 2
[(1,7),(2,3),(4,9),(5,8),(6,10)] generating graphics... => 1
[(1,7),(2,3),(4,9),(5,10),(6,8)] generating graphics... => 2
[(1,7),(2,3),(4,10),(5,6),(8,9)] generating graphics... => 1
[(1,7),(2,3),(4,10),(5,8),(6,9)] generating graphics... => 2
[(1,7),(2,3),(4,10),(5,9),(6,8)] generating graphics... => 3
[(1,7),(2,4),(3,5),(6,10),(8,9)] generating graphics... => 2
[(1,7),(2,4),(3,5),(6,9),(8,10)] generating graphics... => 3
[(1,7),(2,4),(3,5),(6,8),(9,10)] generating graphics... => 2
[(1,7),(2,4),(3,6),(5,10),(8,9)] generating graphics... => 3
[(1,7),(2,4),(3,6),(5,9),(8,10)] generating graphics... => 4
[(1,7),(2,4),(3,6),(5,8),(9,10)] generating graphics... => 3
[(1,7),(2,4),(3,8),(5,6),(9,10)] generating graphics... => 2
[(1,7),(2,4),(3,8),(5,9),(6,10)] generating graphics... => 3
[(1,7),(2,4),(3,8),(5,10),(6,9)] generating graphics... => 2
[(1,7),(2,4),(3,9),(5,6),(8,10)] generating graphics... => 3
[(1,7),(2,4),(3,9),(5,8),(6,10)] generating graphics... => 2
[(1,7),(2,4),(3,9),(5,10),(6,8)] generating graphics... => 3
[(1,7),(2,4),(3,10),(5,6),(8,9)] generating graphics... => 2
[(1,7),(2,4),(3,10),(5,8),(6,9)] generating graphics... => 3
[(1,7),(2,4),(3,10),(5,9),(6,8)] generating graphics... => 4
[(1,7),(2,5),(3,4),(6,10),(8,9)] generating graphics... => 1
[(1,7),(2,5),(3,4),(6,9),(8,10)] generating graphics... => 2
[(1,7),(2,5),(3,4),(6,8),(9,10)] generating graphics... => 1
[(1,7),(2,5),(3,6),(4,10),(8,9)] generating graphics... => 2
[(1,7),(2,5),(3,6),(4,9),(8,10)] generating graphics... => 3
[(1,7),(2,5),(3,6),(4,8),(9,10)] generating graphics... => 2
[(1,7),(2,5),(3,8),(4,6),(9,10)] generating graphics... => 3
[(1,7),(2,5),(3,8),(4,9),(6,10)] generating graphics... => 2
[(1,7),(2,5),(3,8),(4,10),(6,9)] generating graphics... => 3
[(1,7),(2,5),(3,9),(4,6),(8,10)] generating graphics... => 4
[(1,7),(2,5),(3,9),(4,8),(6,10)] generating graphics... => 3
[(1,7),(2,5),(3,9),(4,10),(6,8)] generating graphics... => 2
[(1,7),(2,5),(3,10),(4,6),(8,9)] generating graphics... => 3
[(1,7),(2,5),(3,10),(4,8),(6,9)] generating graphics... => 2
[(1,7),(2,5),(3,10),(4,9),(6,8)] generating graphics... => 3
[(1,7),(2,6),(3,4),(5,10),(8,9)] generating graphics... => 2
[(1,7),(2,6),(3,4),(5,9),(8,10)] generating graphics... => 3
[(1,7),(2,6),(3,4),(5,8),(9,10)] generating graphics... => 2
[(1,7),(2,6),(3,5),(4,10),(8,9)] generating graphics... => 3
[(1,7),(2,6),(3,5),(4,9),(8,10)] generating graphics... => 4
[(1,7),(2,6),(3,5),(4,8),(9,10)] generating graphics... => 3
[(1,7),(2,6),(3,8),(4,5),(9,10)] generating graphics... => 2
[(1,7),(2,6),(3,8),(4,9),(5,10)] generating graphics... => 3
[(1,7),(2,6),(3,8),(4,10),(5,9)] generating graphics... => 2
[(1,7),(2,6),(3,9),(4,5),(8,10)] generating graphics... => 3
[(1,7),(2,6),(3,9),(4,8),(5,10)] generating graphics... => 2
[(1,7),(2,6),(3,9),(4,10),(5,8)] generating graphics... => 3
[(1,7),(2,6),(3,10),(4,5),(8,9)] generating graphics... => 2
[(1,7),(2,6),(3,10),(4,8),(5,9)] generating graphics... => 3
[(1,7),(2,6),(3,10),(4,9),(5,8)] generating graphics... => 2
[(1,7),(2,8),(3,4),(5,6),(9,10)] generating graphics... => 1
[(1,7),(2,8),(3,4),(5,9),(6,10)] generating graphics... => 2
[(1,7),(2,8),(3,4),(5,10),(6,9)] generating graphics... => 1
[(1,7),(2,8),(3,5),(4,6),(9,10)] generating graphics... => 2
[(1,7),(2,8),(3,5),(4,9),(6,10)] generating graphics... => 3
[(1,7),(2,8),(3,5),(4,10),(6,9)] generating graphics... => 2
[(1,7),(2,8),(3,6),(4,5),(9,10)] generating graphics... => 1
[(1,7),(2,8),(3,6),(4,9),(5,10)] generating graphics... => 2
[(1,7),(2,8),(3,6),(4,10),(5,9)] generating graphics... => 3
[(1,7),(2,8),(3,9),(4,10),(5,6)] generating graphics... => 2
[(1,7),(2,8),(3,9),(4,6),(5,10)] generating graphics... => 3
[(1,7),(2,8),(3,9),(4,5),(6,10)] generating graphics... => 2
[(1,7),(2,8),(3,10),(4,9),(5,6)] generating graphics... => 1
[(1,7),(2,8),(3,10),(4,6),(5,9)] generating graphics... => 2
[(1,7),(2,8),(3,10),(4,5),(6,9)] generating graphics... => 1
[(1,7),(2,9),(3,4),(5,6),(8,10)] generating graphics... => 2
[(1,7),(2,9),(3,4),(5,8),(6,10)] generating graphics... => 1
[(1,7),(2,9),(3,4),(5,10),(6,8)] generating graphics... => 2
[(1,7),(2,9),(3,5),(4,6),(8,10)] generating graphics... => 3
[(1,7),(2,9),(3,5),(4,8),(6,10)] generating graphics... => 2
[(1,7),(2,9),(3,5),(4,10),(6,8)] generating graphics... => 3
[(1,7),(2,9),(3,6),(4,5),(8,10)] generating graphics... => 2
[(1,7),(2,9),(3,6),(4,8),(5,10)] generating graphics... => 3
[(1,7),(2,9),(3,6),(4,10),(5,8)] generating graphics... => 2
[(1,7),(2,9),(3,8),(4,10),(5,6)] generating graphics... => 1
[(1,7),(2,9),(3,8),(4,6),(5,10)] generating graphics... => 2
[(1,7),(2,9),(3,8),(4,5),(6,10)] generating graphics... => 1
[(1,7),(2,9),(3,10),(4,8),(5,6)] generating graphics... => 2
[(1,7),(2,9),(3,10),(4,6),(5,8)] generating graphics... => 3
[(1,7),(2,9),(3,10),(4,5),(6,8)] generating graphics... => 2
[(1,7),(2,10),(3,4),(5,6),(8,9)] generating graphics... => 1
[(1,7),(2,10),(3,4),(5,8),(6,9)] generating graphics... => 2
[(1,7),(2,10),(3,4),(5,9),(6,8)] generating graphics... => 3
[(1,7),(2,10),(3,5),(4,6),(8,9)] generating graphics... => 2
[(1,7),(2,10),(3,5),(4,8),(6,9)] generating graphics... => 3
[(1,7),(2,10),(3,5),(4,9),(6,8)] generating graphics... => 4
[(1,7),(2,10),(3,6),(4,5),(8,9)] generating graphics... => 1
[(1,7),(2,10),(3,6),(4,8),(5,9)] generating graphics... => 2
[(1,7),(2,10),(3,6),(4,9),(5,8)] generating graphics... => 3
[(1,7),(2,10),(3,8),(4,9),(5,6)] generating graphics... => 2
[(1,7),(2,10),(3,8),(4,6),(5,9)] generating graphics... => 3
[(1,7),(2,10),(3,8),(4,5),(6,9)] generating graphics... => 2
[(1,7),(2,10),(3,9),(4,8),(5,6)] generating graphics... => 3
[(1,7),(2,10),(3,9),(4,6),(5,8)] generating graphics... => 4
[(1,7),(2,10),(3,9),(4,5),(6,8)] generating graphics... => 3
[(1,8),(2,3),(4,5),(6,7),(9,10)] generating graphics... => 0
[(1,8),(2,3),(4,5),(6,9),(7,10)] generating graphics... => 1
[(1,8),(2,3),(4,5),(6,10),(7,9)] generating graphics... => 2
[(1,8),(2,3),(4,6),(5,7),(9,10)] generating graphics... => 1
[(1,8),(2,3),(4,6),(5,9),(7,10)] generating graphics... => 2
[(1,8),(2,3),(4,6),(5,10),(7,9)] generating graphics... => 3
[(1,8),(2,3),(4,7),(5,6),(9,10)] generating graphics... => 0
[(1,8),(2,3),(4,7),(5,9),(6,10)] generating graphics... => 1
[(1,8),(2,3),(4,7),(5,10),(6,9)] generating graphics... => 2
[(1,8),(2,3),(4,9),(5,10),(6,7)] generating graphics... => 1
[(1,8),(2,3),(4,9),(5,7),(6,10)] generating graphics... => 2
[(1,8),(2,3),(4,9),(5,6),(7,10)] generating graphics... => 1
[(1,8),(2,3),(4,10),(5,9),(6,7)] generating graphics... => 2
[(1,8),(2,3),(4,10),(5,7),(6,9)] generating graphics... => 3
[(1,8),(2,3),(4,10),(5,6),(7,9)] generating graphics... => 2
[(1,8),(2,4),(3,5),(6,7),(9,10)] generating graphics... => 1
[(1,8),(2,4),(3,5),(6,9),(7,10)] generating graphics... => 2
[(1,8),(2,4),(3,5),(6,10),(7,9)] generating graphics... => 3
[(1,8),(2,4),(3,6),(5,7),(9,10)] generating graphics... => 2
[(1,8),(2,4),(3,6),(5,9),(7,10)] generating graphics... => 3
[(1,8),(2,4),(3,6),(5,10),(7,9)] generating graphics... => 4
[(1,8),(2,4),(3,7),(5,6),(9,10)] generating graphics... => 1
[(1,8),(2,4),(3,7),(5,9),(6,10)] generating graphics... => 2
[(1,8),(2,4),(3,7),(5,10),(6,9)] generating graphics... => 3
[(1,8),(2,4),(3,9),(5,10),(6,7)] generating graphics... => 2
[(1,8),(2,4),(3,9),(5,7),(6,10)] generating graphics... => 3
[(1,8),(2,4),(3,9),(5,6),(7,10)] generating graphics... => 2
[(1,8),(2,4),(3,10),(5,9),(6,7)] generating graphics... => 3
[(1,8),(2,4),(3,10),(5,7),(6,9)] generating graphics... => 4
[(1,8),(2,4),(3,10),(5,6),(7,9)] generating graphics... => 3
[(1,8),(2,5),(3,4),(6,7),(9,10)] generating graphics... => 0
[(1,8),(2,5),(3,4),(6,9),(7,10)] generating graphics... => 1
[(1,8),(2,5),(3,4),(6,10),(7,9)] generating graphics... => 2
[(1,8),(2,5),(3,6),(4,7),(9,10)] generating graphics... => 1
[(1,8),(2,5),(3,6),(4,9),(7,10)] generating graphics... => 2
[(1,8),(2,5),(3,6),(4,10),(7,9)] generating graphics... => 3
[(1,8),(2,5),(3,7),(4,6),(9,10)] generating graphics... => 2
[(1,8),(2,5),(3,7),(4,9),(6,10)] generating graphics... => 3
[(1,8),(2,5),(3,7),(4,10),(6,9)] generating graphics... => 2
[(1,8),(2,5),(3,9),(4,10),(6,7)] generating graphics... => 1
[(1,8),(2,5),(3,9),(4,7),(6,10)] generating graphics... => 2
[(1,8),(2,5),(3,9),(4,6),(7,10)] generating graphics... => 3
[(1,8),(2,5),(3,10),(4,9),(6,7)] generating graphics... => 2
[(1,8),(2,5),(3,10),(4,7),(6,9)] generating graphics... => 3
[(1,8),(2,5),(3,10),(4,6),(7,9)] generating graphics... => 4
[(1,8),(2,6),(3,4),(5,7),(9,10)] generating graphics... => 1
[(1,8),(2,6),(3,4),(5,9),(7,10)] generating graphics... => 2
[(1,8),(2,6),(3,4),(5,10),(7,9)] generating graphics... => 3
[(1,8),(2,6),(3,5),(4,7),(9,10)] generating graphics... => 2
[(1,8),(2,6),(3,5),(4,9),(7,10)] generating graphics... => 3
[(1,8),(2,6),(3,5),(4,10),(7,9)] generating graphics... => 4
[(1,8),(2,6),(3,7),(4,5),(9,10)] generating graphics... => 1
[(1,8),(2,6),(3,7),(4,9),(5,10)] generating graphics... => 2
[(1,8),(2,6),(3,7),(4,10),(5,9)] generating graphics... => 3
[(1,8),(2,6),(3,9),(4,10),(5,7)] generating graphics... => 2
[(1,8),(2,6),(3,9),(4,7),(5,10)] generating graphics... => 3
[(1,8),(2,6),(3,9),(4,5),(7,10)] generating graphics... => 2
[(1,8),(2,6),(3,10),(4,9),(5,7)] generating graphics... => 3
[(1,8),(2,6),(3,10),(4,7),(5,9)] generating graphics... => 2
[(1,8),(2,6),(3,10),(4,5),(7,9)] generating graphics... => 3
[(1,8),(2,7),(3,4),(5,6),(9,10)] generating graphics... => 0
[(1,8),(2,7),(3,4),(5,9),(6,10)] generating graphics... => 1
[(1,8),(2,7),(3,4),(5,10),(6,9)] generating graphics... => 2
[(1,8),(2,7),(3,5),(4,6),(9,10)] generating graphics... => 1
[(1,8),(2,7),(3,5),(4,9),(6,10)] generating graphics... => 2
[(1,8),(2,7),(3,5),(4,10),(6,9)] generating graphics... => 3
[(1,8),(2,7),(3,6),(4,5),(9,10)] generating graphics... => 0
[(1,8),(2,7),(3,6),(4,9),(5,10)] generating graphics... => 1
[(1,8),(2,7),(3,6),(4,10),(5,9)] generating graphics... => 2
[(1,8),(2,7),(3,9),(4,10),(5,6)] generating graphics... => 1
[(1,8),(2,7),(3,9),(4,6),(5,10)] generating graphics... => 2
[(1,8),(2,7),(3,9),(4,5),(6,10)] generating graphics... => 1
[(1,8),(2,7),(3,10),(4,9),(5,6)] generating graphics... => 2
[(1,8),(2,7),(3,10),(4,6),(5,9)] generating graphics... => 3
[(1,8),(2,7),(3,10),(4,5),(6,9)] generating graphics... => 2
[(1,8),(2,9),(3,4),(5,10),(6,7)] generating graphics... => 1
[(1,8),(2,9),(3,4),(5,7),(6,10)] generating graphics... => 2
[(1,8),(2,9),(3,4),(5,6),(7,10)] generating graphics... => 1
[(1,8),(2,9),(3,5),(4,10),(6,7)] generating graphics... => 2
[(1,8),(2,9),(3,5),(4,7),(6,10)] generating graphics... => 3
[(1,8),(2,9),(3,5),(4,6),(7,10)] generating graphics... => 2
[(1,8),(2,9),(3,6),(4,10),(5,7)] generating graphics... => 3
[(1,8),(2,9),(3,6),(4,7),(5,10)] generating graphics... => 2
[(1,8),(2,9),(3,6),(4,5),(7,10)] generating graphics... => 1
[(1,8),(2,9),(3,7),(4,10),(5,6)] generating graphics... => 2
[(1,8),(2,9),(3,7),(4,6),(5,10)] generating graphics... => 3
[(1,8),(2,9),(3,7),(4,5),(6,10)] generating graphics... => 2
[(1,8),(2,9),(3,10),(4,5),(6,7)] generating graphics... => 1
[(1,8),(2,9),(3,10),(4,6),(5,7)] generating graphics... => 2
[(1,8),(2,9),(3,10),(4,7),(5,6)] generating graphics... => 1
[(1,8),(2,10),(3,4),(5,9),(6,7)] generating graphics... => 2
[(1,8),(2,10),(3,4),(5,7),(6,9)] generating graphics... => 3
[(1,8),(2,10),(3,4),(5,6),(7,9)] generating graphics... => 2
[(1,8),(2,10),(3,5),(4,9),(6,7)] generating graphics... => 3
[(1,8),(2,10),(3,5),(4,7),(6,9)] generating graphics... => 4
[(1,8),(2,10),(3,5),(4,6),(7,9)] generating graphics... => 3
[(1,8),(2,10),(3,6),(4,9),(5,7)] generating graphics... => 4
[(1,8),(2,10),(3,6),(4,7),(5,9)] generating graphics... => 3
[(1,8),(2,10),(3,6),(4,5),(7,9)] generating graphics... => 2
[(1,8),(2,10),(3,7),(4,9),(5,6)] generating graphics... => 3
[(1,8),(2,10),(3,7),(4,6),(5,9)] generating graphics... => 4
[(1,8),(2,10),(3,7),(4,5),(6,9)] generating graphics... => 3
[(1,8),(2,10),(3,9),(4,5),(6,7)] generating graphics... => 2
[(1,8),(2,10),(3,9),(4,6),(5,7)] generating graphics... => 3
[(1,8),(2,10),(3,9),(4,7),(5,6)] generating graphics... => 2
[(1,9),(2,3),(4,5),(6,7),(8,10)] generating graphics... => 1
[(1,9),(2,3),(4,5),(6,8),(7,10)] generating graphics... => 2
[(1,9),(2,3),(4,5),(6,10),(7,8)] generating graphics... => 1
[(1,9),(2,3),(4,6),(5,7),(8,10)] generating graphics... => 2
[(1,9),(2,3),(4,6),(5,8),(7,10)] generating graphics... => 3
[(1,9),(2,3),(4,6),(5,10),(7,8)] generating graphics... => 2
[(1,9),(2,3),(4,7),(5,6),(8,10)] generating graphics... => 1
[(1,9),(2,3),(4,7),(5,8),(6,10)] generating graphics... => 2
[(1,9),(2,3),(4,7),(5,10),(6,8)] generating graphics... => 3
[(1,9),(2,3),(4,8),(5,10),(6,7)] generating graphics... => 2
[(1,9),(2,3),(4,8),(5,7),(6,10)] generating graphics... => 3
[(1,9),(2,3),(4,8),(5,6),(7,10)] generating graphics... => 2
[(1,9),(2,3),(4,10),(5,8),(6,7)] generating graphics... => 1
[(1,9),(2,3),(4,10),(5,7),(6,8)] generating graphics... => 2
[(1,9),(2,3),(4,10),(5,6),(7,8)] generating graphics... => 1
[(1,9),(2,4),(3,5),(6,7),(8,10)] generating graphics... => 2
[(1,9),(2,4),(3,5),(6,8),(7,10)] generating graphics... => 3
[(1,9),(2,4),(3,5),(6,10),(7,8)] generating graphics... => 2
[(1,9),(2,4),(3,6),(5,7),(8,10)] generating graphics... => 3
[(1,9),(2,4),(3,6),(5,8),(7,10)] generating graphics... => 4
[(1,9),(2,4),(3,6),(5,10),(7,8)] generating graphics... => 3
[(1,9),(2,4),(3,7),(5,6),(8,10)] generating graphics... => 2
[(1,9),(2,4),(3,7),(5,8),(6,10)] generating graphics... => 3
[(1,9),(2,4),(3,7),(5,10),(6,8)] generating graphics... => 4
[(1,9),(2,4),(3,8),(5,10),(6,7)] generating graphics... => 3
[(1,9),(2,4),(3,8),(5,7),(6,10)] generating graphics... => 4
[(1,9),(2,4),(3,8),(5,6),(7,10)] generating graphics... => 3
[(1,9),(2,4),(3,10),(5,8),(6,7)] generating graphics... => 2
[(1,9),(2,4),(3,10),(5,7),(6,8)] generating graphics... => 3
[(1,9),(2,4),(3,10),(5,6),(7,8)] generating graphics... => 2
[(1,9),(2,5),(3,4),(6,7),(8,10)] generating graphics... => 1
[(1,9),(2,5),(3,4),(6,8),(7,10)] generating graphics... => 2
[(1,9),(2,5),(3,4),(6,10),(7,8)] generating graphics... => 1
[(1,9),(2,5),(3,6),(4,7),(8,10)] generating graphics... => 2
[(1,9),(2,5),(3,6),(4,8),(7,10)] generating graphics... => 3
[(1,9),(2,5),(3,6),(4,10),(7,8)] generating graphics... => 2
[(1,9),(2,5),(3,7),(4,6),(8,10)] generating graphics... => 3
[(1,9),(2,5),(3,7),(4,8),(6,10)] generating graphics... => 2
[(1,9),(2,5),(3,7),(4,10),(6,8)] generating graphics... => 3
[(1,9),(2,5),(3,8),(4,10),(6,7)] generating graphics... => 2
[(1,9),(2,5),(3,8),(4,7),(6,10)] generating graphics... => 3
[(1,9),(2,5),(3,8),(4,6),(7,10)] generating graphics... => 4
[(1,9),(2,5),(3,10),(4,8),(6,7)] generating graphics... => 3
[(1,9),(2,5),(3,10),(4,7),(6,8)] generating graphics... => 4
[(1,9),(2,5),(3,10),(4,6),(7,8)] generating graphics... => 3
[(1,9),(2,6),(3,4),(5,7),(8,10)] generating graphics... => 2
[(1,9),(2,6),(3,4),(5,8),(7,10)] generating graphics... => 3
[(1,9),(2,6),(3,4),(5,10),(7,8)] generating graphics... => 2
[(1,9),(2,6),(3,5),(4,7),(8,10)] generating graphics... => 3
[(1,9),(2,6),(3,5),(4,8),(7,10)] generating graphics... => 4
[(1,9),(2,6),(3,5),(4,10),(7,8)] generating graphics... => 3
[(1,9),(2,6),(3,7),(4,5),(8,10)] generating graphics... => 2
[(1,9),(2,6),(3,7),(4,8),(5,10)] generating graphics... => 3
[(1,9),(2,6),(3,7),(4,10),(5,8)] generating graphics... => 2
[(1,9),(2,6),(3,8),(4,10),(5,7)] generating graphics... => 3
[(1,9),(2,6),(3,8),(4,7),(5,10)] generating graphics... => 2
[(1,9),(2,6),(3,8),(4,5),(7,10)] generating graphics... => 3
[(1,9),(2,6),(3,10),(4,8),(5,7)] generating graphics... => 4
[(1,9),(2,6),(3,10),(4,7),(5,8)] generating graphics... => 3
[(1,9),(2,6),(3,10),(4,5),(7,8)] generating graphics... => 2
[(1,9),(2,7),(3,4),(5,6),(8,10)] generating graphics... => 1
[(1,9),(2,7),(3,4),(5,8),(6,10)] generating graphics... => 2
[(1,9),(2,7),(3,4),(5,10),(6,8)] generating graphics... => 3
[(1,9),(2,7),(3,5),(4,6),(8,10)] generating graphics... => 2
[(1,9),(2,7),(3,5),(4,8),(6,10)] generating graphics... => 3
[(1,9),(2,7),(3,5),(4,10),(6,8)] generating graphics... => 4
[(1,9),(2,7),(3,6),(4,5),(8,10)] generating graphics... => 1
[(1,9),(2,7),(3,6),(4,8),(5,10)] generating graphics... => 2
[(1,9),(2,7),(3,6),(4,10),(5,8)] generating graphics... => 3
[(1,9),(2,7),(3,8),(4,10),(5,6)] generating graphics... => 2
[(1,9),(2,7),(3,8),(4,6),(5,10)] generating graphics... => 3
[(1,9),(2,7),(3,8),(4,5),(6,10)] generating graphics... => 2
[(1,9),(2,7),(3,10),(4,8),(5,6)] generating graphics... => 3
[(1,9),(2,7),(3,10),(4,6),(5,8)] generating graphics... => 4
[(1,9),(2,7),(3,10),(4,5),(6,8)] generating graphics... => 3
[(1,9),(2,8),(3,4),(5,10),(6,7)] generating graphics... => 2
[(1,9),(2,8),(3,4),(5,7),(6,10)] generating graphics... => 3
[(1,9),(2,8),(3,4),(5,6),(7,10)] generating graphics... => 2
[(1,9),(2,8),(3,5),(4,10),(6,7)] generating graphics... => 3
[(1,9),(2,8),(3,5),(4,7),(6,10)] generating graphics... => 4
[(1,9),(2,8),(3,5),(4,6),(7,10)] generating graphics... => 3
[(1,9),(2,8),(3,6),(4,10),(5,7)] generating graphics... => 4
[(1,9),(2,8),(3,6),(4,7),(5,10)] generating graphics... => 3
[(1,9),(2,8),(3,6),(4,5),(7,10)] generating graphics... => 2
[(1,9),(2,8),(3,7),(4,10),(5,6)] generating graphics... => 3
[(1,9),(2,8),(3,7),(4,6),(5,10)] generating graphics... => 4
[(1,9),(2,8),(3,7),(4,5),(6,10)] generating graphics... => 3
[(1,9),(2,8),(3,10),(4,5),(6,7)] generating graphics... => 2
[(1,9),(2,8),(3,10),(4,6),(5,7)] generating graphics... => 3
[(1,9),(2,8),(3,10),(4,7),(5,6)] generating graphics... => 2
[(1,9),(2,10),(3,4),(5,8),(6,7)] generating graphics... => 1
[(1,9),(2,10),(3,4),(5,7),(6,8)] generating graphics... => 2
[(1,9),(2,10),(3,4),(5,6),(7,8)] generating graphics... => 1
[(1,9),(2,10),(3,5),(4,8),(6,7)] generating graphics... => 2
[(1,9),(2,10),(3,5),(4,7),(6,8)] generating graphics... => 3
[(1,9),(2,10),(3,5),(4,6),(7,8)] generating graphics... => 2
[(1,9),(2,10),(3,6),(4,8),(5,7)] generating graphics... => 3
[(1,9),(2,10),(3,6),(4,7),(5,8)] generating graphics... => 2
[(1,9),(2,10),(3,6),(4,5),(7,8)] generating graphics... => 1
[(1,9),(2,10),(3,7),(4,8),(5,6)] generating graphics... => 2
[(1,9),(2,10),(3,7),(4,6),(5,8)] generating graphics... => 3
[(1,9),(2,10),(3,7),(4,5),(6,8)] generating graphics... => 2
[(1,9),(2,10),(3,8),(4,5),(6,7)] generating graphics... => 1
[(1,9),(2,10),(3,8),(4,6),(5,7)] generating graphics... => 2
[(1,9),(2,10),(3,8),(4,7),(5,6)] generating graphics... => 1
[(1,10),(2,3),(4,5),(6,7),(8,9)] generating graphics... => 0
[(1,10),(2,3),(4,5),(6,8),(7,9)] generating graphics... => 1
[(1,10),(2,3),(4,5),(6,9),(7,8)] generating graphics... => 0
[(1,10),(2,3),(4,6),(5,7),(8,9)] generating graphics... => 1
[(1,10),(2,3),(4,6),(5,8),(7,9)] generating graphics... => 2
[(1,10),(2,3),(4,6),(5,9),(7,8)] generating graphics... => 1
[(1,10),(2,3),(4,7),(5,6),(8,9)] generating graphics... => 0
[(1,10),(2,3),(4,7),(5,8),(6,9)] generating graphics... => 1
[(1,10),(2,3),(4,7),(5,9),(6,8)] generating graphics... => 2
[(1,10),(2,3),(4,8),(5,9),(6,7)] generating graphics... => 1
[(1,10),(2,3),(4,8),(5,7),(6,9)] generating graphics... => 2
[(1,10),(2,3),(4,8),(5,6),(7,9)] generating graphics... => 1
[(1,10),(2,3),(4,9),(5,8),(6,7)] generating graphics... => 0
[(1,10),(2,3),(4,9),(5,7),(6,8)] generating graphics... => 1
[(1,10),(2,3),(4,9),(5,6),(7,8)] generating graphics... => 0
[(1,10),(2,4),(3,5),(6,7),(8,9)] generating graphics... => 1
[(1,10),(2,4),(3,5),(6,8),(7,9)] generating graphics... => 2
[(1,10),(2,4),(3,5),(6,9),(7,8)] generating graphics... => 1
[(1,10),(2,4),(3,6),(5,7),(8,9)] generating graphics... => 2
[(1,10),(2,4),(3,6),(5,8),(7,9)] generating graphics... => 3
[(1,10),(2,4),(3,6),(5,9),(7,8)] generating graphics... => 2
[(1,10),(2,4),(3,7),(5,6),(8,9)] generating graphics... => 1
[(1,10),(2,4),(3,7),(5,8),(6,9)] generating graphics... => 2
[(1,10),(2,4),(3,7),(5,9),(6,8)] generating graphics... => 3
[(1,10),(2,4),(3,8),(5,9),(6,7)] generating graphics... => 2
[(1,10),(2,4),(3,8),(5,7),(6,9)] generating graphics... => 3
[(1,10),(2,4),(3,8),(5,6),(7,9)] generating graphics... => 2
[(1,10),(2,4),(3,9),(5,8),(6,7)] generating graphics... => 1
[(1,10),(2,4),(3,9),(5,7),(6,8)] generating graphics... => 2
[(1,10),(2,4),(3,9),(5,6),(7,8)] generating graphics... => 1
[(1,10),(2,5),(3,4),(6,7),(8,9)] generating graphics... => 0
[(1,10),(2,5),(3,4),(6,8),(7,9)] generating graphics... => 1
[(1,10),(2,5),(3,4),(6,9),(7,8)] generating graphics... => 0
[(1,10),(2,5),(3,6),(4,7),(8,9)] generating graphics... => 1
[(1,10),(2,5),(3,6),(4,8),(7,9)] generating graphics... => 2
[(1,10),(2,5),(3,6),(4,9),(7,8)] generating graphics... => 1
[(1,10),(2,5),(3,7),(4,6),(8,9)] generating graphics... => 2
[(1,10),(2,5),(3,7),(4,8),(6,9)] generating graphics... => 1
[(1,10),(2,5),(3,7),(4,9),(6,8)] generating graphics... => 2
[(1,10),(2,5),(3,8),(4,9),(6,7)] generating graphics... => 1
[(1,10),(2,5),(3,8),(4,7),(6,9)] generating graphics... => 2
[(1,10),(2,5),(3,8),(4,6),(7,9)] generating graphics... => 3
[(1,10),(2,5),(3,9),(4,8),(6,7)] generating graphics... => 2
[(1,10),(2,5),(3,9),(4,7),(6,8)] generating graphics... => 3
[(1,10),(2,5),(3,9),(4,6),(7,8)] generating graphics... => 2
[(1,10),(2,6),(3,4),(5,7),(8,9)] generating graphics... => 1
[(1,10),(2,6),(3,4),(5,8),(7,9)] generating graphics... => 2
[(1,10),(2,6),(3,4),(5,9),(7,8)] generating graphics... => 1
[(1,10),(2,6),(3,5),(4,7),(8,9)] generating graphics... => 2
[(1,10),(2,6),(3,5),(4,8),(7,9)] generating graphics... => 3
[(1,10),(2,6),(3,5),(4,9),(7,8)] generating graphics... => 2
[(1,10),(2,6),(3,7),(4,5),(8,9)] generating graphics... => 1
[(1,10),(2,6),(3,7),(4,8),(5,9)] generating graphics... => 2
[(1,10),(2,6),(3,7),(4,9),(5,8)] generating graphics... => 1
[(1,10),(2,6),(3,8),(4,9),(5,7)] generating graphics... => 2
[(1,10),(2,6),(3,8),(4,7),(5,9)] generating graphics... => 1
[(1,10),(2,6),(3,8),(4,5),(7,9)] generating graphics... => 2
[(1,10),(2,6),(3,9),(4,8),(5,7)] generating graphics... => 3
[(1,10),(2,6),(3,9),(4,7),(5,8)] generating graphics... => 2
[(1,10),(2,6),(3,9),(4,5),(7,8)] generating graphics... => 1
[(1,10),(2,7),(3,4),(5,6),(8,9)] generating graphics... => 0
[(1,10),(2,7),(3,4),(5,8),(6,9)] generating graphics... => 1
[(1,10),(2,7),(3,4),(5,9),(6,8)] generating graphics... => 2
[(1,10),(2,7),(3,5),(4,6),(8,9)] generating graphics... => 1
[(1,10),(2,7),(3,5),(4,8),(6,9)] generating graphics... => 2
[(1,10),(2,7),(3,5),(4,9),(6,8)] generating graphics... => 3
[(1,10),(2,7),(3,6),(4,5),(8,9)] generating graphics... => 0
[(1,10),(2,7),(3,6),(4,8),(5,9)] generating graphics... => 1
[(1,10),(2,7),(3,6),(4,9),(5,8)] generating graphics... => 2
[(1,10),(2,7),(3,8),(4,9),(5,6)] generating graphics... => 1
[(1,10),(2,7),(3,8),(4,6),(5,9)] generating graphics... => 2
[(1,10),(2,7),(3,8),(4,5),(6,9)] generating graphics... => 1
[(1,10),(2,7),(3,9),(4,8),(5,6)] generating graphics... => 2
[(1,10),(2,7),(3,9),(4,6),(5,8)] generating graphics... => 3
[(1,10),(2,7),(3,9),(4,5),(6,8)] generating graphics... => 2
[(1,10),(2,8),(3,4),(5,9),(6,7)] generating graphics... => 1
[(1,10),(2,8),(3,4),(5,7),(6,9)] generating graphics... => 2
[(1,10),(2,8),(3,4),(5,6),(7,9)] generating graphics... => 1
[(1,10),(2,8),(3,5),(4,9),(6,7)] generating graphics... => 2
[(1,10),(2,8),(3,5),(4,7),(6,9)] generating graphics... => 3
[(1,10),(2,8),(3,5),(4,6),(7,9)] generating graphics... => 2
[(1,10),(2,8),(3,6),(4,9),(5,7)] generating graphics... => 3
[(1,10),(2,8),(3,6),(4,7),(5,9)] generating graphics... => 2
[(1,10),(2,8),(3,6),(4,5),(7,9)] generating graphics... => 1
[(1,10),(2,8),(3,7),(4,9),(5,6)] generating graphics... => 2
[(1,10),(2,8),(3,7),(4,6),(5,9)] generating graphics... => 3
[(1,10),(2,8),(3,7),(4,5),(6,9)] generating graphics... => 2
[(1,10),(2,8),(3,9),(4,5),(6,7)] generating graphics... => 1
[(1,10),(2,8),(3,9),(4,6),(5,7)] generating graphics... => 2
[(1,10),(2,8),(3,9),(4,7),(5,6)] generating graphics... => 1
[(1,10),(2,9),(3,4),(5,8),(6,7)] generating graphics... => 0
[(1,10),(2,9),(3,4),(5,7),(6,8)] generating graphics... => 1
[(1,10),(2,9),(3,4),(5,6),(7,8)] generating graphics... => 0
[(1,10),(2,9),(3,5),(4,8),(6,7)] generating graphics... => 1
[(1,10),(2,9),(3,5),(4,7),(6,8)] generating graphics... => 2
[(1,10),(2,9),(3,5),(4,6),(7,8)] generating graphics... => 1
[(1,10),(2,9),(3,6),(4,8),(5,7)] generating graphics... => 2
[(1,10),(2,9),(3,6),(4,7),(5,8)] generating graphics... => 1
[(1,10),(2,9),(3,6),(4,5),(7,8)] generating graphics... => 0
[(1,10),(2,9),(3,7),(4,8),(5,6)] generating graphics... => 1
[(1,10),(2,9),(3,7),(4,6),(5,8)] generating graphics... => 2
[(1,10),(2,9),(3,7),(4,5),(6,8)] generating graphics... => 1
[(1,10),(2,9),(3,8),(4,5),(6,7)] generating graphics... => 0
[(1,10),(2,9),(3,8),(4,6),(5,7)] generating graphics... => 1
[(1,10),(2,9),(3,8),(4,7),(5,6)] generating graphics... => 0
[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] generating graphics... => 0
[(1,2),(3,4),(5,6),(7,8),(9,11),(10,12)] generating graphics... => 1
[(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)] generating graphics... => 0
[(1,2),(3,4),(5,6),(7,9),(8,10),(11,12)] generating graphics... => 1
[(1,2),(3,4),(5,6),(7,9),(8,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,9),(8,12),(10,11)] generating graphics... => 1
[(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)] generating graphics... => 0
[(1,2),(3,4),(5,6),(7,10),(8,11),(9,12)] generating graphics... => 1
[(1,2),(3,4),(5,6),(7,10),(8,12),(9,11)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,11),(8,9),(10,12)] generating graphics... => 1
[(1,2),(3,4),(5,6),(7,11),(8,10),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,11),(8,12),(9,10)] generating graphics... => 1
[(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)] generating graphics... => 0
[(1,2),(3,4),(5,6),(7,12),(8,10),(9,11)] generating graphics... => 1
[(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)] generating graphics... => 0
[(1,2),(3,4),(5,7),(6,8),(9,10),(11,12)] generating graphics... => 1
[(1,2),(3,4),(5,7),(6,8),(9,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,8),(9,12),(10,11)] generating graphics... => 1
[(1,2),(3,4),(5,7),(6,9),(8,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,9),(8,11),(10,12)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,9),(8,12),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,10),(8,9),(11,12)] generating graphics... => 1
[(1,2),(3,4),(5,7),(6,10),(8,11),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,10),(8,12),(9,11)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,11),(8,9),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,11),(8,10),(9,12)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,11),(8,12),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,12),(8,9),(10,11)] generating graphics... => 1
[(1,2),(3,4),(5,7),(6,12),(8,10),(9,11)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,12),(8,11),(9,10)] generating graphics... => 1
[(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)] generating graphics... => 0
[(1,2),(3,4),(5,8),(6,7),(9,11),(10,12)] generating graphics... => 1
[(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)] generating graphics... => 0
[(1,2),(3,4),(5,8),(6,9),(7,12),(10,11)] generating graphics... => 1
[(1,2),(3,4),(5,8),(6,9),(7,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,9),(7,10),(11,12)] generating graphics... => 1
[(1,2),(3,4),(5,8),(6,10),(7,12),(9,11)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,10),(7,11),(9,12)] generating graphics... => 1
[(1,2),(3,4),(5,8),(6,10),(7,9),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,11),(7,12),(9,10)] generating graphics... => 1
[(1,2),(3,4),(5,8),(6,11),(7,10),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,11),(7,9),(10,12)] generating graphics... => 3
[(1,2),(3,4),(5,8),(6,12),(7,11),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,12),(7,10),(9,11)] generating graphics... => 3
[(1,2),(3,4),(5,8),(6,12),(7,9),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,7),(8,10),(11,12)] generating graphics... => 1
[(1,2),(3,4),(5,9),(6,7),(8,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,7),(8,12),(10,11)] generating graphics... => 1
[(1,2),(3,4),(5,9),(6,8),(7,12),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,8),(7,11),(10,12)] generating graphics... => 3
[(1,2),(3,4),(5,9),(6,8),(7,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,10),(7,12),(8,11)] generating graphics... => 1
[(1,2),(3,4),(5,9),(6,10),(7,11),(8,12)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,10),(7,8),(11,12)] generating graphics... => 1
[(1,2),(3,4),(5,9),(6,11),(7,12),(8,10)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,11),(7,10),(8,12)] generating graphics... => 1
[(1,2),(3,4),(5,9),(6,11),(7,8),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,12),(7,11),(8,10)] generating graphics... => 3
[(1,2),(3,4),(5,9),(6,12),(7,10),(8,11)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,12),(7,8),(10,11)] generating graphics... => 1
[(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)] generating graphics... => 0
[(1,2),(3,4),(5,10),(6,7),(8,11),(9,12)] generating graphics... => 1
[(1,2),(3,4),(5,10),(6,7),(8,12),(9,11)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,8),(7,12),(9,11)] generating graphics... => 3
[(1,2),(3,4),(5,10),(6,8),(7,11),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,8),(7,9),(11,12)] generating graphics... => 1
[(1,2),(3,4),(5,10),(6,9),(7,12),(8,11)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,9),(7,11),(8,12)] generating graphics... => 1
[(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)] generating graphics... => 0
[(1,2),(3,4),(5,10),(6,11),(7,12),(8,9)] generating graphics... => 1
[(1,2),(3,4),(5,10),(6,11),(7,9),(8,12)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,11),(7,8),(9,12)] generating graphics... => 1
[(1,2),(3,4),(5,10),(6,12),(7,11),(8,9)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,12),(7,9),(8,11)] generating graphics... => 3
[(1,2),(3,4),(5,10),(6,12),(7,8),(9,11)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,7),(8,9),(10,12)] generating graphics... => 1
[(1,2),(3,4),(5,11),(6,7),(8,10),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,7),(8,12),(9,10)] generating graphics... => 1
[(1,2),(3,4),(5,11),(6,8),(7,12),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,8),(7,10),(9,12)] generating graphics... => 3
[(1,2),(3,4),(5,11),(6,8),(7,9),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,9),(7,12),(8,10)] generating graphics... => 3
[(1,2),(3,4),(5,11),(6,9),(7,10),(8,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,9),(7,8),(10,12)] generating graphics... => 1
[(1,2),(3,4),(5,11),(6,10),(7,12),(8,9)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,10),(7,9),(8,12)] generating graphics... => 3
[(1,2),(3,4),(5,11),(6,10),(7,8),(9,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,12),(7,10),(8,9)] generating graphics... => 1
[(1,2),(3,4),(5,11),(6,12),(7,9),(8,10)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,12),(7,8),(9,10)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)] generating graphics... => 0
[(1,2),(3,4),(5,12),(6,7),(8,10),(9,11)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)] generating graphics... => 0
[(1,2),(3,4),(5,12),(6,8),(7,11),(9,10)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,8),(7,10),(9,11)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,8),(7,9),(10,11)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,9),(7,11),(8,10)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,9),(7,10),(8,11)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)] generating graphics... => 0
[(1,2),(3,4),(5,12),(6,10),(7,11),(8,9)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,10),(7,9),(8,11)] generating graphics... => 2
[(1,2),(3,4),(5,12),(6,10),(7,8),(9,11)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)] generating graphics... => 0
[(1,2),(3,4),(5,12),(6,11),(7,9),(8,10)] generating graphics... => 1
[(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)] generating graphics... => 0
[(1,2),(3,5),(4,6),(7,8),(9,10),(11,12)] generating graphics... => 1
[(1,2),(3,5),(4,6),(7,8),(9,11),(10,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,8),(9,12),(10,11)] generating graphics... => 1
[(1,2),(3,5),(4,6),(7,9),(8,10),(11,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,9),(8,11),(10,12)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,9),(8,12),(10,11)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,10),(8,9),(11,12)] generating graphics... => 1
[(1,2),(3,5),(4,6),(7,10),(8,11),(9,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,10),(8,12),(9,11)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,11),(8,9),(10,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,11),(8,10),(9,12)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,11),(8,12),(9,10)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,12),(8,9),(10,11)] generating graphics... => 1
[(1,2),(3,5),(4,6),(7,12),(8,10),(9,11)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,12),(8,11),(9,10)] generating graphics... => 1
[(1,2),(3,5),(4,7),(6,8),(9,10),(11,12)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,8),(9,11),(10,12)] generating graphics... => 3
[(1,2),(3,5),(4,7),(6,8),(9,12),(10,11)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,9),(8,10),(11,12)] generating graphics... => 3
[(1,2),(3,5),(4,7),(6,9),(8,11),(10,12)] generating graphics... => 4
[(1,2),(3,5),(4,7),(6,9),(8,12),(10,11)] generating graphics... => 3
[(1,2),(3,5),(4,7),(6,10),(8,9),(11,12)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,10),(8,11),(9,12)] generating graphics... => 3
[(1,2),(3,5),(4,7),(6,10),(8,12),(9,11)] generating graphics... => 4
[(1,2),(3,5),(4,7),(6,11),(8,9),(10,12)] generating graphics... => 3
[(1,2),(3,5),(4,7),(6,11),(8,10),(9,12)] generating graphics... => 4
click to show generating function       
Description
The number of flips required to make a perfect matching noncrossing.
A crossing in a perfect matching is a pair of arcs $\{a,b\}$ and $\{c,d\}$ such that $a < c < b < d$. Replacing any such pair by either $\{a,c\}$ and $\{b,d\}$ or by $\{a,d\}$, $\{b,c\}$ produces a perfect matching with fewer crossings.
This statistic is the minimal number of such flips required to turn a given matching into a noncrossing matching.
References
[1] Bonnet, É., Miltzow, T. Flip Distance to a Non-crossing Perfect Matching arXiv:1601.05989
Code
@cached_function
def statistic(w):
    def children(m):
        for (a,b),(c,d) in m.crossings():
            m_new = list(m)
            m_new.remove((a,b))
            m_new.remove((c,d))
            A, B = min(a,b), max(a,b)
            C, D = min(c,d), max(c,d)
            if C < A:
                (A,B),(C,D) = (C,D),(A,B)
            yield PerfectMatching(m_new + [(A,C), (B,D)])
            yield PerfectMatching(m_new + [(A,D), (B,C)])

    w = PerfectMatching(sorted([sorted(a) for a in w]))
    l = [statistic(v) for v in children(w)]
    if len(l) == 0:
        return 0
    else:
        return 1+min(l)

Created
Apr 20, 2017 at 21:16 by Martin Rubey
Updated
Apr 20, 2017 at 21:16 by Martin Rubey