Identifier
Identifier
Values
[(1,2),(3,4),(5,6),(7,9),(8,12),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,10),(8,12),(9,11)] generating graphics... => 3
[(1,2),(3,4),(5,6),(7,11),(8,9),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,11),(8,10),(9,12)] generating graphics... => 3
[(1,2),(3,4),(5,6),(7,11),(8,12),(9,10)] generating graphics... => 3
[(1,2),(3,4),(5,6),(7,12),(8,10),(9,11)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,8),(9,12),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,9),(8,12),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,10),(8,9),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,10),(8,12),(9,11)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,11),(8,9),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,11),(8,10),(9,12)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,11),(8,12),(9,10)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,12),(8,9),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,12),(8,10),(9,11)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,12),(8,11),(9,10)] generating graphics... => 3
[(1,2),(3,4),(5,8),(6,7),(9,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,9),(7,12),(10,11)] generating graphics... => 3
[(1,2),(3,4),(5,8),(6,10),(7,12),(9,11)] generating graphics... => 3
[(1,2),(3,4),(5,8),(6,10),(7,9),(11,12)] generating graphics... => 3
[(1,2),(3,4),(5,8),(6,11),(7,12),(9,10)] generating graphics... => 3
[(1,2),(3,4),(5,8),(6,11),(7,10),(9,12)] generating graphics... => 3
[(1,2),(3,4),(5,8),(6,11),(7,9),(10,12)] generating graphics... => 3
[(1,2),(3,4),(5,8),(6,12),(7,11),(9,10)] generating graphics... => 3
[(1,2),(3,4),(5,8),(6,12),(7,10),(9,11)] generating graphics... => 3
[(1,2),(3,4),(5,8),(6,12),(7,9),(10,11)] generating graphics... => 3
[(1,2),(3,4),(5,9),(6,7),(8,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,7),(8,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,7),(8,12),(10,11)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,8),(7,12),(10,11)] generating graphics... => 3
[(1,2),(3,4),(5,9),(6,8),(7,11),(10,12)] generating graphics... => 3
[(1,2),(3,4),(5,9),(6,8),(7,10),(11,12)] generating graphics... => 3
[(1,2),(3,4),(5,9),(6,10),(7,12),(8,11)] generating graphics... => 4
[(1,2),(3,4),(5,9),(6,10),(7,8),(11,12)] generating graphics... => 3
[(1,2),(3,4),(5,9),(6,11),(7,12),(8,10)] generating graphics... => 4
[(1,2),(3,4),(5,9),(6,11),(7,10),(8,12)] generating graphics... => 4
[(1,2),(3,4),(5,9),(6,11),(7,8),(10,12)] generating graphics... => 3
[(1,2),(3,4),(5,9),(6,12),(7,11),(8,10)] generating graphics... => 4
[(1,2),(3,4),(5,9),(6,12),(7,10),(8,11)] generating graphics... => 4
[(1,2),(3,4),(5,9),(6,12),(7,8),(10,11)] generating graphics... => 3
[(1,2),(3,4),(5,10),(6,7),(8,11),(9,12)] generating graphics... => 3
[(1,2),(3,4),(5,10),(6,7),(8,12),(9,11)] generating graphics... => 3
[(1,2),(3,4),(5,10),(6,8),(7,12),(9,11)] generating graphics... => 3
[(1,2),(3,4),(5,10),(6,8),(7,11),(9,12)] generating graphics... => 3
[(1,2),(3,4),(5,10),(6,8),(7,9),(11,12)] generating graphics... => 3
[(1,2),(3,4),(5,10),(6,9),(7,12),(8,11)] generating graphics... => 4
[(1,2),(3,4),(5,10),(6,9),(7,11),(8,12)] generating graphics... => 4
[(1,2),(3,4),(5,10),(6,11),(7,12),(8,9)] generating graphics... => 4
[(1,2),(3,4),(5,10),(6,11),(7,9),(8,12)] generating graphics... => 4
[(1,2),(3,4),(5,10),(6,11),(7,8),(9,12)] generating graphics... => 3
[(1,2),(3,4),(5,10),(6,12),(7,11),(8,9)] generating graphics... => 4
[(1,2),(3,4),(5,10),(6,12),(7,9),(8,11)] generating graphics... => 4
[(1,2),(3,4),(5,10),(6,12),(7,8),(9,11)] generating graphics... => 3
[(1,2),(3,4),(5,11),(6,7),(8,9),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,11),(6,7),(8,10),(9,12)] generating graphics... => 3
[(1,2),(3,4),(5,11),(6,7),(8,12),(9,10)] generating graphics... => 3
[(1,2),(3,4),(5,11),(6,8),(7,12),(9,10)] generating graphics... => 3
[(1,2),(3,4),(5,11),(6,8),(7,10),(9,12)] generating graphics... => 3
[(1,2),(3,4),(5,11),(6,8),(7,9),(10,12)] generating graphics... => 3
[(1,2),(3,4),(5,11),(6,9),(7,12),(8,10)] generating graphics... => 4
[(1,2),(3,4),(5,11),(6,9),(7,10),(8,12)] generating graphics... => 4
[(1,2),(3,4),(5,11),(6,9),(7,8),(10,12)] generating graphics... => 3
[(1,2),(3,4),(5,11),(6,10),(7,12),(8,9)] generating graphics... => 4
[(1,2),(3,4),(5,11),(6,10),(7,9),(8,12)] generating graphics... => 4
[(1,2),(3,4),(5,11),(6,10),(7,8),(9,12)] generating graphics... => 3
[(1,2),(3,4),(5,11),(6,12),(7,10),(8,9)] generating graphics... => 4
[(1,2),(3,4),(5,11),(6,12),(7,9),(8,10)] generating graphics... => 4
[(1,2),(3,4),(5,11),(6,12),(7,8),(9,10)] generating graphics... => 3
[(1,2),(3,4),(5,12),(6,7),(8,10),(9,11)] generating graphics... => 3
[(1,2),(3,4),(5,12),(6,8),(7,11),(9,10)] generating graphics... => 3
[(1,2),(3,4),(5,12),(6,8),(7,10),(9,11)] generating graphics... => 3
[(1,2),(3,4),(5,12),(6,8),(7,9),(10,11)] generating graphics... => 3
[(1,2),(3,4),(5,12),(6,9),(7,11),(8,10)] generating graphics... => 4
[(1,2),(3,4),(5,12),(6,9),(7,10),(8,11)] generating graphics... => 4
[(1,2),(3,4),(5,12),(6,10),(7,11),(8,9)] generating graphics... => 4
[(1,2),(3,4),(5,12),(6,10),(7,9),(8,11)] generating graphics... => 4
[(1,2),(3,4),(5,12),(6,10),(7,8),(9,11)] generating graphics... => 3
[(1,2),(3,4),(5,12),(6,11),(7,9),(8,10)] generating graphics... => 4
[(1,2),(3,5),(4,6),(7,8),(9,12),(10,11)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,9),(8,12),(10,11)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,10),(8,9),(11,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,10),(8,12),(9,11)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,11),(8,9),(10,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,11),(8,10),(9,12)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,11),(8,12),(9,10)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,12),(8,9),(10,11)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,12),(8,10),(9,11)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,12),(8,11),(9,10)] generating graphics... => 3
[(1,2),(3,5),(4,7),(6,8),(9,12),(10,11)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,9),(8,12),(10,11)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,10),(8,9),(11,12)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,10),(8,12),(9,11)] generating graphics... => 3
[(1,2),(3,5),(4,7),(6,11),(8,9),(10,12)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,11),(8,10),(9,12)] generating graphics... => 3
[(1,2)] generating graphics... => 1
[(1,2),(3,4)] generating graphics... => 1
[(1,3),(2,4)] generating graphics... => 2
[(1,4),(2,3)] generating graphics... => 2
[(1,2),(3,4),(5,6)] generating graphics... => 1
[(1,2),(3,5),(4,6)] generating graphics... => 2
[(1,2),(3,6),(4,5)] generating graphics... => 2
[(1,3),(2,4),(5,6)] generating graphics... => 2
[(1,3),(2,5),(4,6)] generating graphics... => 2
[(1,3),(2,6),(4,5)] generating graphics... => 2
[(1,4),(2,3),(5,6)] generating graphics... => 2
[(1,4),(2,5),(3,6)] generating graphics... => 3
[(1,4),(2,6),(3,5)] generating graphics... => 3
[(1,5),(2,3),(4,6)] generating graphics... => 2
[(1,5),(2,4),(3,6)] generating graphics... => 3
[(1,5),(2,6),(3,4)] generating graphics... => 3
[(1,6),(2,3),(4,5)] generating graphics... => 2
[(1,6),(2,4),(3,5)] generating graphics... => 3
[(1,6),(2,5),(3,4)] generating graphics... => 3
[(1,2),(3,4),(5,8),(6,7)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,8)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,8)] generating graphics... => 1
[(1,2),(3,5),(4,8),(6,7)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,8)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,8)] generating graphics... => 2
[(1,2),(3,6),(4,8),(5,7)] generating graphics... => 3
[(1,2),(3,6),(4,7),(5,8)] generating graphics... => 3
[(1,2),(3,6),(4,5),(7,8)] generating graphics... => 2
[(1,2),(3,7),(4,8),(5,6)] generating graphics... => 3
[(1,2),(3,7),(4,6),(5,8)] generating graphics... => 3
[(1,2),(3,7),(4,5),(6,8)] generating graphics... => 2
[(1,2),(3,8),(4,5),(6,7)] generating graphics... => 2
[(1,2),(3,8),(4,6),(5,7)] generating graphics... => 3
[(1,2),(3,8),(4,7),(5,6)] generating graphics... => 3
[(1,3),(2,4),(5,8),(6,7)] generating graphics... => 2
[(1,3),(2,4),(5,7),(6,8)] generating graphics... => 2
[(1,3),(2,4),(5,6),(7,8)] generating graphics... => 2
[(1,3),(2,5),(4,8),(6,7)] generating graphics... => 2
[(1,3),(2,5),(4,7),(6,8)] generating graphics... => 2
[(1,3),(2,5),(4,6),(7,8)] generating graphics... => 2
[(1,3),(2,6),(4,8),(5,7)] generating graphics... => 3
[(1,3),(2,6),(4,7),(5,8)] generating graphics... => 3
[(1,3),(2,6),(4,5),(7,8)] generating graphics... => 2
[(1,3),(2,7),(4,8),(5,6)] generating graphics... => 3
[(1,3),(2,7),(4,6),(5,8)] generating graphics... => 3
[(1,3),(2,7),(4,5),(6,8)] generating graphics... => 2
[(1,3),(2,8),(4,5),(6,7)] generating graphics... => 2
[(1,3),(2,8),(4,6),(5,7)] generating graphics... => 3
[(1,3),(2,8),(4,7),(5,6)] generating graphics... => 3
[(1,4),(2,3),(5,8),(6,7)] generating graphics... => 2
[(1,4),(2,3),(5,7),(6,8)] generating graphics... => 2
[(1,4),(2,3),(5,6),(7,8)] generating graphics... => 2
[(1,4),(2,5),(3,8),(6,7)] generating graphics... => 3
[(1,4),(2,5),(3,7),(6,8)] generating graphics... => 3
[(1,4),(2,5),(3,6),(7,8)] generating graphics... => 3
[(1,4),(2,6),(3,8),(5,7)] generating graphics... => 3
[(1,4),(2,6),(3,7),(5,8)] generating graphics... => 3
[(1,4),(2,6),(3,5),(7,8)] generating graphics... => 3
[(1,4),(2,7),(3,8),(5,6)] generating graphics... => 3
[(1,4),(2,7),(3,6),(5,8)] generating graphics... => 3
[(1,4),(2,7),(3,5),(6,8)] generating graphics... => 3
[(1,4),(2,8),(3,5),(6,7)] generating graphics... => 3
[(1,4),(2,8),(3,6),(5,7)] generating graphics... => 3
[(1,4),(2,8),(3,7),(5,6)] generating graphics... => 3
[(1,5),(2,3),(4,8),(6,7)] generating graphics... => 2
[(1,5),(2,3),(4,7),(6,8)] generating graphics... => 2
[(1,5),(2,3),(4,6),(7,8)] generating graphics... => 2
[(1,5),(2,4),(3,8),(6,7)] generating graphics... => 3
[(1,5),(2,4),(3,7),(6,8)] generating graphics... => 3
[(1,5),(2,4),(3,6),(7,8)] generating graphics... => 3
[(1,5),(2,6),(3,8),(4,7)] generating graphics... => 4
[(1,5),(2,6),(3,7),(4,8)] generating graphics... => 4
[(1,5),(2,6),(3,4),(7,8)] generating graphics... => 3
[(1,5),(2,7),(3,8),(4,6)] generating graphics... => 4
[(1,5),(2,7),(3,6),(4,8)] generating graphics... => 4
[(1,5),(2,7),(3,4),(6,8)] generating graphics... => 3
[(1,5),(2,8),(3,4),(6,7)] generating graphics... => 3
[(1,5),(2,8),(3,6),(4,7)] generating graphics... => 4
[(1,5),(2,8),(3,7),(4,6)] generating graphics... => 4
[(1,6),(2,3),(4,8),(5,7)] generating graphics... => 3
[(1,6),(2,3),(4,7),(5,8)] generating graphics... => 3
[(1,6),(2,3),(4,5),(7,8)] generating graphics... => 2
[(1,6),(2,4),(3,8),(5,7)] generating graphics... => 3
[(1,6),(2,4),(3,7),(5,8)] generating graphics... => 3
[(1,6),(2,4),(3,5),(7,8)] generating graphics... => 3
[(1,6),(2,5),(3,8),(4,7)] generating graphics... => 4
[(1,6),(2,5),(3,7),(4,8)] generating graphics... => 4
[(1,6),(2,5),(3,4),(7,8)] generating graphics... => 3
[(1,6),(2,7),(3,8),(4,5)] generating graphics... => 4
[(1,6),(2,7),(3,5),(4,8)] generating graphics... => 4
[(1,6),(2,7),(3,4),(5,8)] generating graphics... => 3
[(1,6),(2,8),(3,4),(5,7)] generating graphics... => 3
[(1,6),(2,8),(3,5),(4,7)] generating graphics... => 4
[(1,6),(2,8),(3,7),(4,5)] generating graphics... => 4
[(1,7),(2,3),(4,8),(5,6)] generating graphics... => 3
[(1,7),(2,3),(4,6),(5,8)] generating graphics... => 3
[(1,7),(2,3),(4,5),(6,8)] generating graphics... => 2
[(1,7),(2,4),(3,8),(5,6)] generating graphics... => 3
[(1,7),(2,4),(3,6),(5,8)] generating graphics... => 3
[(1,7),(2,4),(3,5),(6,8)] generating graphics... => 3
[(1,7),(2,5),(3,8),(4,6)] generating graphics... => 4
[(1,7),(2,5),(3,6),(4,8)] generating graphics... => 4
[(1,7),(2,5),(3,4),(6,8)] generating graphics... => 3
[(1,7),(2,6),(3,8),(4,5)] generating graphics... => 4
[(1,7),(2,6),(3,5),(4,8)] generating graphics... => 4
[(1,7),(2,6),(3,4),(5,8)] generating graphics... => 3
[(1,7),(2,8),(3,4),(5,6)] generating graphics... => 3
[(1,7),(2,8),(3,5),(4,6)] generating graphics... => 4
[(1,7),(2,8),(3,6),(4,5)] generating graphics... => 4
[(1,8),(2,3),(4,5),(6,7)] generating graphics... => 2
[(1,8),(2,3),(4,6),(5,7)] generating graphics... => 3
[(1,8),(2,3),(4,7),(5,6)] generating graphics... => 3
[(1,8),(2,4),(3,5),(6,7)] generating graphics... => 3
[(1,8),(2,4),(3,6),(5,7)] generating graphics... => 3
[(1,8),(2,4),(3,7),(5,6)] generating graphics... => 3
[(1,8),(2,5),(3,4),(6,7)] generating graphics... => 3
[(1,8),(2,5),(3,6),(4,7)] generating graphics... => 4
[(1,8),(2,5),(3,7),(4,6)] generating graphics... => 4
[(1,8),(2,6),(3,4),(5,7)] generating graphics... => 3
[(1,8),(2,6),(3,5),(4,7)] generating graphics... => 4
[(1,8),(2,6),(3,7),(4,5)] generating graphics... => 4
[(1,8),(2,7),(3,4),(5,6)] generating graphics... => 3
[(1,8),(2,7),(3,5),(4,6)] generating graphics... => 4
[(1,8),(2,7),(3,6),(4,5)] generating graphics... => 4
[(1,2),(3,4),(5,6),(7,10),(8,9)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,9),(8,10)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,8),(9,10)] generating graphics... => 1
[(1,2),(3,4),(5,7),(6,10),(8,9)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,9),(8,10)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,8),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,7),(9,10)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,9),(7,10)] generating graphics... => 3
[(1,2),(3,4),(5,8),(6,10),(7,9)] generating graphics... => 3
[(1,2),(3,4),(5,9),(6,7),(8,10)] generating graphics... => 2
[(1,2),(3,4),(5,9),(6,8),(7,10)] generating graphics... => 3
[(1,2),(3,4),(5,9),(6,10),(7,8)] generating graphics... => 3
[(1,2),(3,4),(5,10),(6,7),(8,9)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,8),(7,9)] generating graphics... => 3
[(1,2),(3,4),(5,10),(6,9),(7,8)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,10),(8,9)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,9),(8,10)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,8),(9,10)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,10),(8,9)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,9),(8,10)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,8),(9,10)] generating graphics... => 2
[(1,2),(3,5),(4,8),(6,7),(9,10)] generating graphics... => 2
[(1,2),(3,5),(4,8),(6,9),(7,10)] generating graphics... => 3
[(1,2),(3,5),(4,8),(6,10),(7,9)] generating graphics... => 3
[(1,2),(3,5),(4,9),(6,7),(8,10)] generating graphics... => 2
[(1,2),(3,5),(4,9),(6,8),(7,10)] generating graphics... => 3
[(1,2),(3,5),(4,9),(6,10),(7,8)] generating graphics... => 3
[(1,2),(3,5),(4,10),(6,7),(8,9)] generating graphics... => 2
[(1,2),(3,5),(4,10),(6,8),(7,9)] generating graphics... => 3
[(1,2),(3,5),(4,10),(6,9),(7,8)] generating graphics... => 3
[(1,2),(3,6),(4,5),(7,10),(8,9)] generating graphics... => 2
[(1,2),(3,6),(4,5),(7,9),(8,10)] generating graphics... => 2
[(1,2),(3,6),(4,5),(7,8),(9,10)] generating graphics... => 2
[(1,2),(3,6),(4,7),(5,10),(8,9)] generating graphics... => 3
[(1,2),(3,6),(4,7),(5,9),(8,10)] generating graphics... => 3
[(1,2),(3,6),(4,7),(5,8),(9,10)] generating graphics... => 3
[(1,2),(3,6),(4,8),(5,7),(9,10)] generating graphics... => 3
[(1,2),(3,6),(4,8),(5,9),(7,10)] generating graphics... => 3
[(1,2),(3,6),(4,8),(5,10),(7,9)] generating graphics... => 3
[(1,2),(3,6),(4,9),(5,7),(8,10)] generating graphics... => 3
[(1,2),(3,6),(4,9),(5,8),(7,10)] generating graphics... => 3
[(1,2),(3,6),(4,9),(5,10),(7,8)] generating graphics... => 3
[(1,2),(3,6),(4,10),(5,7),(8,9)] generating graphics... => 3
[(1,2),(3,6),(4,10),(5,8),(7,9)] generating graphics... => 3
[(1,2),(3,6),(4,10),(5,9),(7,8)] generating graphics... => 3
[(1,2),(3,7),(4,5),(6,10),(8,9)] generating graphics... => 2
[(1,2),(3,7),(4,5),(6,9),(8,10)] generating graphics... => 2
[(1,2),(3,7),(4,5),(6,8),(9,10)] generating graphics... => 2
[(1,2),(3,7),(4,6),(5,10),(8,9)] generating graphics... => 3
[(1,2),(3,7),(4,6),(5,9),(8,10)] generating graphics... => 3
[(1,2),(3,7),(4,6),(5,8),(9,10)] generating graphics... => 3
[(1,2),(3,7),(4,8),(5,6),(9,10)] generating graphics... => 3
[(1,2),(3,7),(4,8),(5,9),(6,10)] generating graphics... => 4
[(1,2),(3,7),(4,8),(5,10),(6,9)] generating graphics... => 4
[(1,2),(3,7),(4,9),(5,6),(8,10)] generating graphics... => 3
[(1,2),(3,7),(4,9),(5,8),(6,10)] generating graphics... => 4
[(1,2),(3,7),(4,9),(5,10),(6,8)] generating graphics... => 4
[(1,2),(3,7),(4,10),(5,6),(8,9)] generating graphics... => 3
[(1,2),(3,7),(4,10),(5,8),(6,9)] generating graphics... => 4
[(1,2),(3,7),(4,10),(5,9),(6,8)] generating graphics... => 4
[(1,2),(3,8),(4,5),(6,7),(9,10)] generating graphics... => 2
[(1,2),(3,8),(4,5),(6,9),(7,10)] generating graphics... => 3
[(1,2),(3,8),(4,5),(6,10),(7,9)] generating graphics... => 3
[(1,2),(3,8),(4,6),(5,7),(9,10)] generating graphics... => 3
[(1,2),(3,8),(4,6),(5,9),(7,10)] generating graphics... => 3
[(1,2),(3,8),(4,6),(5,10),(7,9)] generating graphics... => 3
[(1,2),(3,8),(4,7),(5,6),(9,10)] generating graphics... => 3
[(1,2),(3,8),(4,7),(5,9),(6,10)] generating graphics... => 4
[(1,2),(3,8),(4,7),(5,10),(6,9)] generating graphics... => 4
[(1,2),(3,8),(4,9),(5,10),(6,7)] generating graphics... => 4
[(1,2),(3,8),(4,9),(5,7),(6,10)] generating graphics... => 4
[(1,2),(3,8),(4,9),(5,6),(7,10)] generating graphics... => 3
[(1,2),(3,8),(4,10),(5,9),(6,7)] generating graphics... => 4
[(1,2),(3,8),(4,10),(5,7),(6,9)] generating graphics... => 4
[(1,2),(3,8),(4,10),(5,6),(7,9)] generating graphics... => 3
[(1,2),(3,9),(4,5),(6,7),(8,10)] generating graphics... => 2
[(1,2),(3,9),(4,5),(6,8),(7,10)] generating graphics... => 3
[(1,2),(3,9),(4,5),(6,10),(7,8)] generating graphics... => 3
[(1,2),(3,9),(4,6),(5,7),(8,10)] generating graphics... => 3
[(1,2),(3,9),(4,6),(5,8),(7,10)] generating graphics... => 3
[(1,2),(3,9),(4,6),(5,10),(7,8)] generating graphics... => 3
[(1,2),(3,9),(4,7),(5,6),(8,10)] generating graphics... => 3
[(1,2),(3,9),(4,7),(5,8),(6,10)] generating graphics... => 4
[(1,2),(3,9),(4,7),(5,10),(6,8)] generating graphics... => 4
[(1,2),(3,9),(4,8),(5,10),(6,7)] generating graphics... => 4
[(1,2),(3,9),(4,8),(5,7),(6,10)] generating graphics... => 4
[(1,2),(3,9),(4,8),(5,6),(7,10)] generating graphics... => 3
[(1,2),(3,9),(4,10),(5,8),(6,7)] generating graphics... => 4
[(1,2),(3,9),(4,10),(5,7),(6,8)] generating graphics... => 4
[(1,2),(3,9),(4,10),(5,6),(7,8)] generating graphics... => 3
[(1,2),(3,10),(4,5),(6,7),(8,9)] generating graphics... => 2
[(1,2),(3,10),(4,5),(6,8),(7,9)] generating graphics... => 3
[(1,2),(3,10),(4,5),(6,9),(7,8)] generating graphics... => 3
[(1,2),(3,10),(4,6),(5,7),(8,9)] generating graphics... => 3
[(1,2),(3,10),(4,6),(5,8),(7,9)] generating graphics... => 3
[(1,2),(3,10),(4,6),(5,9),(7,8)] generating graphics... => 3
[(1,2),(3,10),(4,7),(5,6),(8,9)] generating graphics... => 3
[(1,2),(3,10),(4,7),(5,8),(6,9)] generating graphics... => 4
[(1,2),(3,10),(4,7),(5,9),(6,8)] generating graphics... => 4
[(1,2),(3,10),(4,8),(5,9),(6,7)] generating graphics... => 4
[(1,2),(3,10),(4,8),(5,7),(6,9)] generating graphics... => 4
[(1,2),(3,10),(4,8),(5,6),(7,9)] generating graphics... => 3
[(1,2),(3,10),(4,9),(5,8),(6,7)] generating graphics... => 4
[(1,2),(3,10),(4,9),(5,7),(6,8)] generating graphics... => 4
[(1,2),(3,10),(4,9),(5,6),(7,8)] generating graphics... => 3
[(1,3),(2,4),(5,6),(7,10),(8,9)] generating graphics... => 2
[(1,3),(2,4),(5,6),(7,9),(8,10)] generating graphics... => 2
[(1,3),(2,4),(5,6),(7,8),(9,10)] generating graphics... => 2
[(1,3),(2,4),(5,7),(6,10),(8,9)] generating graphics... => 2
[(1,3),(2,4),(5,7),(6,9),(8,10)] generating graphics... => 2
[(1,3),(2,4),(5,7),(6,8),(9,10)] generating graphics... => 2
[(1,3),(2,4),(5,8),(6,7),(9,10)] generating graphics... => 2
[(1,3),(2,4),(5,8),(6,9),(7,10)] generating graphics... => 3
[(1,3),(2,4),(5,8),(6,10),(7,9)] generating graphics... => 3
[(1,3),(2,4),(5,9),(6,7),(8,10)] generating graphics... => 2
[(1,3),(2,4),(5,9),(6,8),(7,10)] generating graphics... => 3
[(1,3),(2,4),(5,9),(6,10),(7,8)] generating graphics... => 3
[(1,3),(2,4),(5,10),(6,7),(8,9)] generating graphics... => 2
[(1,3),(2,4),(5,10),(6,8),(7,9)] generating graphics... => 3
[(1,3),(2,4),(5,10),(6,9),(7,8)] generating graphics... => 3
[(1,3),(2,5),(4,6),(7,10),(8,9)] generating graphics... => 2
[(1,3),(2,5),(4,6),(7,9),(8,10)] generating graphics... => 2
[(1,3),(2,5),(4,6),(7,8),(9,10)] generating graphics... => 2
[(1,3),(2,5),(4,7),(6,10),(8,9)] generating graphics... => 2
[(1,3),(2,5),(4,7),(6,9),(8,10)] generating graphics... => 2
[(1,3),(2,5),(4,7),(6,8),(9,10)] generating graphics... => 2
[(1,3),(2,5),(4,8),(6,7),(9,10)] generating graphics... => 2
[(1,3),(2,5),(4,8),(6,9),(7,10)] generating graphics... => 3
[(1,3),(2,5),(4,8),(6,10),(7,9)] generating graphics... => 3
[(1,3),(2,5),(4,9),(6,7),(8,10)] generating graphics... => 2
[(1,3),(2,5),(4,9),(6,8),(7,10)] generating graphics... => 3
[(1,3),(2,5),(4,9),(6,10),(7,8)] generating graphics... => 3
[(1,3),(2,5),(4,10),(6,7),(8,9)] generating graphics... => 2
[(1,3),(2,5),(4,10),(6,8),(7,9)] generating graphics... => 3
[(1,3),(2,5),(4,10),(6,9),(7,8)] generating graphics... => 3
[(1,3),(2,6),(4,5),(7,10),(8,9)] generating graphics... => 2
[(1,3),(2,6),(4,5),(7,9),(8,10)] generating graphics... => 2
[(1,3),(2,6),(4,5),(7,8),(9,10)] generating graphics... => 2
[(1,3),(2,6),(4,7),(5,10),(8,9)] generating graphics... => 3
[(1,3),(2,6),(4,7),(5,9),(8,10)] generating graphics... => 3
[(1,3),(2,6),(4,7),(5,8),(9,10)] generating graphics... => 3
[(1,3),(2,6),(4,8),(5,7),(9,10)] generating graphics... => 3
[(1,3),(2,6),(4,8),(5,9),(7,10)] generating graphics... => 3
[(1,3),(2,6),(4,8),(5,10),(7,9)] generating graphics... => 3
[(1,3),(2,6),(4,9),(5,7),(8,10)] generating graphics... => 3
[(1,3),(2,6),(4,9),(5,8),(7,10)] generating graphics... => 3
[(1,3),(2,6),(4,9),(5,10),(7,8)] generating graphics... => 3
[(1,3),(2,6),(4,10),(5,7),(8,9)] generating graphics... => 3
[(1,3),(2,6),(4,10),(5,8),(7,9)] generating graphics... => 3
[(1,3),(2,6),(4,10),(5,9),(7,8)] generating graphics... => 3
[(1,3),(2,7),(4,5),(6,10),(8,9)] generating graphics... => 2
[(1,3),(2,7),(4,5),(6,9),(8,10)] generating graphics... => 2
[(1,3),(2,7),(4,5),(6,8),(9,10)] generating graphics... => 2
[(1,3),(2,7),(4,6),(5,10),(8,9)] generating graphics... => 3
[(1,3),(2,7),(4,6),(5,9),(8,10)] generating graphics... => 3
[(1,3),(2,7),(4,6),(5,8),(9,10)] generating graphics... => 3
[(1,3),(2,7),(4,8),(5,6),(9,10)] generating graphics... => 3
[(1,3),(2,7),(4,8),(5,9),(6,10)] generating graphics... => 4
[(1,3),(2,7),(4,8),(5,10),(6,9)] generating graphics... => 4
[(1,3),(2,7),(4,9),(5,6),(8,10)] generating graphics... => 3
[(1,3),(2,7),(4,9),(5,8),(6,10)] generating graphics... => 4
[(1,3),(2,7),(4,9),(5,10),(6,8)] generating graphics... => 4
[(1,3),(2,7),(4,10),(5,6),(8,9)] generating graphics... => 3
[(1,3),(2,7),(4,10),(5,8),(6,9)] generating graphics... => 4
[(1,3),(2,7),(4,10),(5,9),(6,8)] generating graphics... => 4
[(1,3),(2,8),(4,5),(6,7),(9,10)] generating graphics... => 2
[(1,3),(2,8),(4,5),(6,9),(7,10)] generating graphics... => 3
[(1,3),(2,8),(4,5),(6,10),(7,9)] generating graphics... => 3
[(1,3),(2,8),(4,6),(5,7),(9,10)] generating graphics... => 3
[(1,3),(2,8),(4,6),(5,9),(7,10)] generating graphics... => 3
[(1,3),(2,8),(4,6),(5,10),(7,9)] generating graphics... => 3
[(1,3),(2,8),(4,7),(5,6),(9,10)] generating graphics... => 3
[(1,3),(2,8),(4,7),(5,9),(6,10)] generating graphics... => 4
[(1,3),(2,8),(4,7),(5,10),(6,9)] generating graphics... => 4
[(1,3),(2,8),(4,9),(5,10),(6,7)] generating graphics... => 4
[(1,3),(2,8),(4,9),(5,7),(6,10)] generating graphics... => 4
[(1,3),(2,8),(4,9),(5,6),(7,10)] generating graphics... => 3
[(1,3),(2,8),(4,10),(5,9),(6,7)] generating graphics... => 4
[(1,3),(2,8),(4,10),(5,7),(6,9)] generating graphics... => 4
[(1,3),(2,8),(4,10),(5,6),(7,9)] generating graphics... => 3
[(1,3),(2,9),(4,5),(6,7),(8,10)] generating graphics... => 2
[(1,3),(2,9),(4,5),(6,8),(7,10)] generating graphics... => 3
[(1,3),(2,9),(4,5),(6,10),(7,8)] generating graphics... => 3
[(1,3),(2,9),(4,6),(5,7),(8,10)] generating graphics... => 3
[(1,3),(2,9),(4,6),(5,8),(7,10)] generating graphics... => 3
[(1,3),(2,9),(4,6),(5,10),(7,8)] generating graphics... => 3
[(1,3),(2,9),(4,7),(5,6),(8,10)] generating graphics... => 3
[(1,3),(2,9),(4,7),(5,8),(6,10)] generating graphics... => 4
[(1,3),(2,9),(4,7),(5,10),(6,8)] generating graphics... => 4
[(1,3),(2,9),(4,8),(5,10),(6,7)] generating graphics... => 4
[(1,3),(2,9),(4,8),(5,7),(6,10)] generating graphics... => 4
[(1,3),(2,9),(4,8),(5,6),(7,10)] generating graphics... => 3
[(1,3),(2,9),(4,10),(5,8),(6,7)] generating graphics... => 4
[(1,3),(2,9),(4,10),(5,7),(6,8)] generating graphics... => 4
[(1,3),(2,9),(4,10),(5,6),(7,8)] generating graphics... => 3
[(1,3),(2,10),(4,5),(6,7),(8,9)] generating graphics... => 2
[(1,3),(2,10),(4,5),(6,8),(7,9)] generating graphics... => 3
[(1,3),(2,10),(4,5),(6,9),(7,8)] generating graphics... => 3
[(1,3),(2,10),(4,6),(5,7),(8,9)] generating graphics... => 3
[(1,3),(2,10),(4,6),(5,8),(7,9)] generating graphics... => 3
[(1,3),(2,10),(4,6),(5,9),(7,8)] generating graphics... => 3
[(1,3),(2,10),(4,7),(5,6),(8,9)] generating graphics... => 3
[(1,3),(2,10),(4,7),(5,8),(6,9)] generating graphics... => 4
[(1,3),(2,10),(4,7),(5,9),(6,8)] generating graphics... => 4
[(1,3),(2,10),(4,8),(5,9),(6,7)] generating graphics... => 4
[(1,3),(2,10),(4,8),(5,7),(6,9)] generating graphics... => 4
[(1,3),(2,10),(4,8),(5,6),(7,9)] generating graphics... => 3
[(1,3),(2,10),(4,9),(5,8),(6,7)] generating graphics... => 4
[(1,3),(2,10),(4,9),(5,7),(6,8)] generating graphics... => 4
[(1,3),(2,10),(4,9),(5,6),(7,8)] generating graphics... => 3
[(1,4),(2,3),(5,6),(7,10),(8,9)] generating graphics... => 2
[(1,4),(2,3),(5,6),(7,9),(8,10)] generating graphics... => 2
[(1,4),(2,3),(5,6),(7,8),(9,10)] generating graphics... => 2
[(1,4),(2,3),(5,7),(6,10),(8,9)] generating graphics... => 2
[(1,4),(2,3),(5,7),(6,9),(8,10)] generating graphics... => 2
[(1,4),(2,3),(5,7),(6,8),(9,10)] generating graphics... => 2
[(1,4),(2,3),(5,8),(6,7),(9,10)] generating graphics... => 2
[(1,4),(2,3),(5,8),(6,9),(7,10)] generating graphics... => 3
[(1,4),(2,3),(5,8),(6,10),(7,9)] generating graphics... => 3
[(1,4),(2,3),(5,9),(6,7),(8,10)] generating graphics... => 2
[(1,4),(2,3),(5,9),(6,8),(7,10)] generating graphics... => 3
[(1,4),(2,3),(5,9),(6,10),(7,8)] generating graphics... => 3
[(1,4),(2,3),(5,10),(6,7),(8,9)] generating graphics... => 2
[(1,4),(2,3),(5,10),(6,8),(7,9)] generating graphics... => 3
[(1,4),(2,3),(5,10),(6,9),(7,8)] generating graphics... => 3
[(1,4),(2,5),(3,6),(7,10),(8,9)] generating graphics... => 3
[(1,4),(2,5),(3,6),(7,9),(8,10)] generating graphics... => 3
[(1,4),(2,5),(3,6),(7,8),(9,10)] generating graphics... => 3
[(1,4),(2,5),(3,7),(6,10),(8,9)] generating graphics... => 3
[(1,4),(2,5),(3,7),(6,9),(8,10)] generating graphics... => 3
[(1,4),(2,5),(3,7),(6,8),(9,10)] generating graphics... => 3
[(1,4),(2,5),(3,8),(6,7),(9,10)] generating graphics... => 3
[(1,4),(2,5),(3,8),(6,9),(7,10)] generating graphics... => 3
[(1,4),(2,5),(3,8),(6,10),(7,9)] generating graphics... => 3
[(1,4),(2,5),(3,9),(6,7),(8,10)] generating graphics... => 3
[(1,4),(2,5),(3,9),(6,8),(7,10)] generating graphics... => 3
[(1,4),(2,5),(3,9),(6,10),(7,8)] generating graphics... => 3
[(1,4),(2,5),(3,10),(6,7),(8,9)] generating graphics... => 3
[(1,4),(2,5),(3,10),(6,8),(7,9)] generating graphics... => 3
[(1,4),(2,5),(3,10),(6,9),(7,8)] generating graphics... => 3
[(1,4),(2,6),(3,5),(7,10),(8,9)] generating graphics... => 3
[(1,4),(2,6),(3,5),(7,9),(8,10)] generating graphics... => 3
[(1,4),(2,6),(3,5),(7,8),(9,10)] generating graphics... => 3
[(1,4),(2,6),(3,7),(5,10),(8,9)] generating graphics... => 3
[(1,4),(2,6),(3,7),(5,9),(8,10)] generating graphics... => 3
[(1,4),(2,6),(3,7),(5,8),(9,10)] generating graphics... => 3
[(1,4),(2,6),(3,8),(5,7),(9,10)] generating graphics... => 3
[(1,4),(2,6),(3,8),(5,9),(7,10)] generating graphics... => 3
[(1,4),(2,6),(3,8),(5,10),(7,9)] generating graphics... => 3
[(1,4),(2,6),(3,9),(5,7),(8,10)] generating graphics... => 3
[(1,4),(2,6),(3,9),(5,8),(7,10)] generating graphics... => 3
[(1,4),(2,6),(3,9),(5,10),(7,8)] generating graphics... => 3
[(1,4),(2,6),(3,10),(5,7),(8,9)] generating graphics... => 3
[(1,4),(2,6),(3,10),(5,8),(7,9)] generating graphics... => 3
[(1,4),(2,6),(3,10),(5,9),(7,8)] generating graphics... => 3
[(1,4),(2,7),(3,5),(6,10),(8,9)] generating graphics... => 3
[(1,4),(2,7),(3,5),(6,9),(8,10)] generating graphics... => 3
[(1,4),(2,7),(3,5),(6,8),(9,10)] generating graphics... => 3
[(1,4),(2,7),(3,6),(5,10),(8,9)] generating graphics... => 3
[(1,4),(2,7),(3,6),(5,9),(8,10)] generating graphics... => 3
[(1,4),(2,7),(3,6),(5,8),(9,10)] generating graphics... => 3
[(1,4),(2,7),(3,8),(5,6),(9,10)] generating graphics... => 3
[(1,4),(2,7),(3,8),(5,9),(6,10)] generating graphics... => 4
[(1,4),(2,7),(3,8),(5,10),(6,9)] generating graphics... => 4
[(1,4),(2,7),(3,9),(5,6),(8,10)] generating graphics... => 3
[(1,4),(2,7),(3,9),(5,8),(6,10)] generating graphics... => 4
[(1,4),(2,7),(3,9),(5,10),(6,8)] generating graphics... => 4
[(1,4),(2,7),(3,10),(5,6),(8,9)] generating graphics... => 3
[(1,4),(2,7),(3,10),(5,8),(6,9)] generating graphics... => 4
[(1,4),(2,7),(3,10),(5,9),(6,8)] generating graphics... => 4
[(1,4),(2,8),(3,5),(6,7),(9,10)] generating graphics... => 3
[(1,4),(2,8),(3,5),(6,9),(7,10)] generating graphics... => 3
[(1,4),(2,8),(3,5),(6,10),(7,9)] generating graphics... => 3
[(1,4),(2,8),(3,6),(5,7),(9,10)] generating graphics... => 3
[(1,4),(2,8),(3,6),(5,9),(7,10)] generating graphics... => 3
[(1,4),(2,8),(3,6),(5,10),(7,9)] generating graphics... => 3
[(1,4),(2,8),(3,7),(5,6),(9,10)] generating graphics... => 3
[(1,4),(2,8),(3,7),(5,9),(6,10)] generating graphics... => 4
[(1,4),(2,8),(3,7),(5,10),(6,9)] generating graphics... => 4
[(1,4),(2,8),(3,9),(5,10),(6,7)] generating graphics... => 4
[(1,4),(2,8),(3,9),(5,7),(6,10)] generating graphics... => 4
[(1,4),(2,8),(3,9),(5,6),(7,10)] generating graphics... => 3
[(1,4),(2,8),(3,10),(5,9),(6,7)] generating graphics... => 4
[(1,4),(2,8),(3,10),(5,7),(6,9)] generating graphics... => 4
[(1,4),(2,8),(3,10),(5,6),(7,9)] generating graphics... => 3
[(1,4),(2,9),(3,5),(6,7),(8,10)] generating graphics... => 3
[(1,4),(2,9),(3,5),(6,8),(7,10)] generating graphics... => 3
[(1,4),(2,9),(3,5),(6,10),(7,8)] generating graphics... => 3
[(1,4),(2,9),(3,6),(5,7),(8,10)] generating graphics... => 3
[(1,4),(2,9),(3,6),(5,8),(7,10)] generating graphics... => 3
[(1,4),(2,9),(3,6),(5,10),(7,8)] generating graphics... => 3
[(1,4),(2,9),(3,7),(5,6),(8,10)] generating graphics... => 3
[(1,4),(2,9),(3,7),(5,8),(6,10)] generating graphics... => 4
[(1,4),(2,9),(3,7),(5,10),(6,8)] generating graphics... => 4
[(1,4),(2,9),(3,8),(5,10),(6,7)] generating graphics... => 4
[(1,4),(2,9),(3,8),(5,7),(6,10)] generating graphics... => 4
[(1,4),(2,9),(3,8),(5,6),(7,10)] generating graphics... => 3
[(1,4),(2,9),(3,10),(5,8),(6,7)] generating graphics... => 4
[(1,4),(2,9),(3,10),(5,7),(6,8)] generating graphics... => 4
[(1,4),(2,9),(3,10),(5,6),(7,8)] generating graphics... => 3
[(1,4),(2,10),(3,5),(6,7),(8,9)] generating graphics... => 3
[(1,4),(2,10),(3,5),(6,8),(7,9)] generating graphics... => 3
[(1,4),(2,10),(3,5),(6,9),(7,8)] generating graphics... => 3
[(1,4),(2,10),(3,6),(5,7),(8,9)] generating graphics... => 3
[(1,4),(2,10),(3,6),(5,8),(7,9)] generating graphics... => 3
[(1,4),(2,10),(3,6),(5,9),(7,8)] generating graphics... => 3
[(1,4),(2,10),(3,7),(5,6),(8,9)] generating graphics... => 3
[(1,4),(2,10),(3,7),(5,8),(6,9)] generating graphics... => 4
[(1,4),(2,10),(3,7),(5,9),(6,8)] generating graphics... => 4
[(1,4),(2,10),(3,8),(5,9),(6,7)] generating graphics... => 4
[(1,4),(2,10),(3,8),(5,7),(6,9)] generating graphics... => 4
[(1,4),(2,10),(3,8),(5,6),(7,9)] generating graphics... => 3
[(1,4),(2,10),(3,9),(5,8),(6,7)] generating graphics... => 4
[(1,4),(2,10),(3,9),(5,7),(6,8)] generating graphics... => 4
[(1,4),(2,10),(3,9),(5,6),(7,8)] generating graphics... => 3
[(1,5),(2,3),(4,6),(7,10),(8,9)] generating graphics... => 2
[(1,5),(2,3),(4,6),(7,9),(8,10)] generating graphics... => 2
[(1,5),(2,3),(4,6),(7,8),(9,10)] generating graphics... => 2
[(1,5),(2,3),(4,7),(6,10),(8,9)] generating graphics... => 2
[(1,5),(2,3),(4,7),(6,9),(8,10)] generating graphics... => 2
[(1,5),(2,3),(4,7),(6,8),(9,10)] generating graphics... => 2
[(1,5),(2,3),(4,8),(6,7),(9,10)] generating graphics... => 2
[(1,5),(2,3),(4,8),(6,9),(7,10)] generating graphics... => 3
[(1,5),(2,3),(4,8),(6,10),(7,9)] generating graphics... => 3
[(1,5),(2,3),(4,9),(6,7),(8,10)] generating graphics... => 2
[(1,5),(2,3),(4,9),(6,8),(7,10)] generating graphics... => 3
[(1,5),(2,3),(4,9),(6,10),(7,8)] generating graphics... => 3
[(1,5),(2,3),(4,10),(6,7),(8,9)] generating graphics... => 2
[(1,5),(2,3),(4,10),(6,8),(7,9)] generating graphics... => 3
[(1,5),(2,3),(4,10),(6,9),(7,8)] generating graphics... => 3
[(1,5),(2,4),(3,6),(7,10),(8,9)] generating graphics... => 3
[(1,5),(2,4),(3,6),(7,9),(8,10)] generating graphics... => 3
[(1,5),(2,4),(3,6),(7,8),(9,10)] generating graphics... => 3
[(1,5),(2,4),(3,7),(6,10),(8,9)] generating graphics... => 3
[(1,5),(2,4),(3,7),(6,9),(8,10)] generating graphics... => 3
[(1,5),(2,4),(3,7),(6,8),(9,10)] generating graphics... => 3
[(1,5),(2,4),(3,8),(6,7),(9,10)] generating graphics... => 3
[(1,5),(2,4),(3,8),(6,9),(7,10)] generating graphics... => 3
[(1,5),(2,4),(3,8),(6,10),(7,9)] generating graphics... => 3
[(1,5),(2,4),(3,9),(6,7),(8,10)] generating graphics... => 3
[(1,5),(2,4),(3,9),(6,8),(7,10)] generating graphics... => 3
[(1,5),(2,4),(3,9),(6,10),(7,8)] generating graphics... => 3
[(1,5),(2,4),(3,10),(6,7),(8,9)] generating graphics... => 3
[(1,5),(2,4),(3,10),(6,8),(7,9)] generating graphics... => 3
[(1,5),(2,4),(3,10),(6,9),(7,8)] generating graphics... => 3
[(1,5),(2,6),(3,4),(7,10),(8,9)] generating graphics... => 3
[(1,5),(2,6),(3,4),(7,9),(8,10)] generating graphics... => 3
[(1,5),(2,6),(3,4),(7,8),(9,10)] generating graphics... => 3
[(1,5),(2,6),(3,7),(4,10),(8,9)] generating graphics... => 4
[(1,5),(2,6),(3,7),(4,9),(8,10)] generating graphics... => 4
[(1,5),(2,6),(3,7),(4,8),(9,10)] generating graphics... => 4
[(1,5),(2,6),(3,8),(4,7),(9,10)] generating graphics... => 4
[(1,5),(2,6),(3,8),(4,9),(7,10)] generating graphics... => 4
[(1,5),(2,6),(3,8),(4,10),(7,9)] generating graphics... => 4
[(1,5),(2,6),(3,9),(4,7),(8,10)] generating graphics... => 4
[(1,5),(2,6),(3,9),(4,8),(7,10)] generating graphics... => 4
[(1,5),(2,6),(3,9),(4,10),(7,8)] generating graphics... => 4
[(1,5),(2,6),(3,10),(4,7),(8,9)] generating graphics... => 4
[(1,5),(2,6),(3,10),(4,8),(7,9)] generating graphics... => 4
[(1,5),(2,6),(3,10),(4,9),(7,8)] generating graphics... => 4
[(1,5),(2,7),(3,4),(6,10),(8,9)] generating graphics... => 3
[(1,5),(2,7),(3,4),(6,9),(8,10)] generating graphics... => 3
[(1,5),(2,7),(3,4),(6,8),(9,10)] generating graphics... => 3
[(1,5),(2,7),(3,6),(4,10),(8,9)] generating graphics... => 4
[(1,5),(2,7),(3,6),(4,9),(8,10)] generating graphics... => 4
[(1,5),(2,7),(3,6),(4,8),(9,10)] generating graphics... => 4
[(1,5),(2,7),(3,8),(4,6),(9,10)] generating graphics... => 4
[(1,5),(2,7),(3,8),(4,9),(6,10)] generating graphics... => 4
[(1,5),(2,7),(3,8),(4,10),(6,9)] generating graphics... => 4
[(1,5),(2,7),(3,9),(4,6),(8,10)] generating graphics... => 4
[(1,5),(2,7),(3,9),(4,8),(6,10)] generating graphics... => 4
[(1,5),(2,7),(3,9),(4,10),(6,8)] generating graphics... => 4
[(1,5),(2,7),(3,10),(4,6),(8,9)] generating graphics... => 4
[(1,5),(2,7),(3,10),(4,8),(6,9)] generating graphics... => 4
[(1,5),(2,7),(3,10),(4,9),(6,8)] generating graphics... => 4
[(1,5),(2,8),(3,4),(6,7),(9,10)] generating graphics... => 3
[(1,5),(2,8),(3,4),(6,9),(7,10)] generating graphics... => 3
[(1,5),(2,8),(3,4),(6,10),(7,9)] generating graphics... => 3
[(1,5),(2,8),(3,6),(4,7),(9,10)] generating graphics... => 4
[(1,5),(2,8),(3,6),(4,9),(7,10)] generating graphics... => 4
[(1,5),(2,8),(3,6),(4,10),(7,9)] generating graphics... => 4
[(1,5),(2,8),(3,7),(4,6),(9,10)] generating graphics... => 4
[(1,5),(2,8),(3,7),(4,9),(6,10)] generating graphics... => 4
[(1,5),(2,8),(3,7),(4,10),(6,9)] generating graphics... => 4
[(1,5),(2,8),(3,9),(4,10),(6,7)] generating graphics... => 4
[(1,5),(2,8),(3,9),(4,7),(6,10)] generating graphics... => 4
[(1,5),(2,8),(3,9),(4,6),(7,10)] generating graphics... => 4
[(1,5),(2,8),(3,10),(4,9),(6,7)] generating graphics... => 4
[(1,5),(2,8),(3,10),(4,7),(6,9)] generating graphics... => 4
[(1,5),(2,8),(3,10),(4,6),(7,9)] generating graphics... => 4
[(1,5),(2,9),(3,4),(6,7),(8,10)] generating graphics... => 3
[(1,5),(2,9),(3,4),(6,8),(7,10)] generating graphics... => 3
[(1,5),(2,9),(3,4),(6,10),(7,8)] generating graphics... => 3
[(1,5),(2,9),(3,6),(4,7),(8,10)] generating graphics... => 4
[(1,5),(2,9),(3,6),(4,8),(7,10)] generating graphics... => 4
[(1,5),(2,9),(3,6),(4,10),(7,8)] generating graphics... => 4
[(1,5),(2,9),(3,7),(4,6),(8,10)] generating graphics... => 4
[(1,5),(2,9),(3,7),(4,8),(6,10)] generating graphics... => 4
[(1,5),(2,9),(3,7),(4,10),(6,8)] generating graphics... => 4
[(1,5),(2,9),(3,8),(4,10),(6,7)] generating graphics... => 4
[(1,5),(2,9),(3,8),(4,7),(6,10)] generating graphics... => 4
[(1,5),(2,9),(3,8),(4,6),(7,10)] generating graphics... => 4
[(1,5),(2,9),(3,10),(4,8),(6,7)] generating graphics... => 4
[(1,5),(2,9),(3,10),(4,7),(6,8)] generating graphics... => 4
[(1,5),(2,9),(3,10),(4,6),(7,8)] generating graphics... => 4
[(1,5),(2,10),(3,4),(6,7),(8,9)] generating graphics... => 3
[(1,5),(2,10),(3,4),(6,8),(7,9)] generating graphics... => 3
[(1,5),(2,10),(3,4),(6,9),(7,8)] generating graphics... => 3
[(1,5),(2,10),(3,6),(4,7),(8,9)] generating graphics... => 4
[(1,5),(2,10),(3,6),(4,8),(7,9)] generating graphics... => 4
[(1,5),(2,10),(3,6),(4,9),(7,8)] generating graphics... => 4
[(1,5),(2,10),(3,7),(4,6),(8,9)] generating graphics... => 4
[(1,5),(2,10),(3,7),(4,8),(6,9)] generating graphics... => 4
[(1,5),(2,10),(3,7),(4,9),(6,8)] generating graphics... => 4
[(1,5),(2,10),(3,8),(4,9),(6,7)] generating graphics... => 4
[(1,5),(2,10),(3,8),(4,7),(6,9)] generating graphics... => 4
[(1,5),(2,10),(3,8),(4,6),(7,9)] generating graphics... => 4
[(1,5),(2,10),(3,9),(4,8),(6,7)] generating graphics... => 4
[(1,5),(2,10),(3,9),(4,7),(6,8)] generating graphics... => 4
[(1,5),(2,10),(3,9),(4,6),(7,8)] generating graphics... => 4
[(1,6),(2,3),(4,5),(7,10),(8,9)] generating graphics... => 2
[(1,6),(2,3),(4,5),(7,9),(8,10)] generating graphics... => 2
[(1,6),(2,3),(4,5),(7,8),(9,10)] generating graphics... => 2
[(1,6),(2,3),(4,7),(5,10),(8,9)] generating graphics... => 3
[(1,6),(2,3),(4,7),(5,9),(8,10)] generating graphics... => 3
[(1,6),(2,3),(4,7),(5,8),(9,10)] generating graphics... => 3
[(1,6),(2,3),(4,8),(5,7),(9,10)] generating graphics... => 3
[(1,6),(2,3),(4,8),(5,9),(7,10)] generating graphics... => 3
[(1,6),(2,3),(4,8),(5,10),(7,9)] generating graphics... => 3
[(1,6),(2,3),(4,9),(5,7),(8,10)] generating graphics... => 3
[(1,6),(2,3),(4,9),(5,8),(7,10)] generating graphics... => 3
[(1,6),(2,3),(4,9),(5,10),(7,8)] generating graphics... => 3
[(1,6),(2,3),(4,10),(5,7),(8,9)] generating graphics... => 3
[(1,6),(2,3),(4,10),(5,8),(7,9)] generating graphics... => 3
[(1,6),(2,3),(4,10),(5,9),(7,8)] generating graphics... => 3
[(1,6),(2,4),(3,5),(7,10),(8,9)] generating graphics... => 3
[(1,6),(2,4),(3,5),(7,9),(8,10)] generating graphics... => 3
[(1,6),(2,4),(3,5),(7,8),(9,10)] generating graphics... => 3
[(1,6),(2,4),(3,7),(5,10),(8,9)] generating graphics... => 3
[(1,6),(2,4),(3,7),(5,9),(8,10)] generating graphics... => 3
[(1,6),(2,4),(3,7),(5,8),(9,10)] generating graphics... => 3
[(1,6),(2,4),(3,8),(5,7),(9,10)] generating graphics... => 3
[(1,6),(2,4),(3,8),(5,9),(7,10)] generating graphics... => 3
[(1,6),(2,4),(3,8),(5,10),(7,9)] generating graphics... => 3
[(1,6),(2,4),(3,9),(5,7),(8,10)] generating graphics... => 3
[(1,6),(2,4),(3,9),(5,8),(7,10)] generating graphics... => 3
[(1,6),(2,4),(3,9),(5,10),(7,8)] generating graphics... => 3
[(1,6),(2,4),(3,10),(5,7),(8,9)] generating graphics... => 3
[(1,6),(2,4),(3,10),(5,8),(7,9)] generating graphics... => 3
[(1,6),(2,4),(3,10),(5,9),(7,8)] generating graphics... => 3
[(1,6),(2,5),(3,4),(7,10),(8,9)] generating graphics... => 3
[(1,6),(2,5),(3,4),(7,9),(8,10)] generating graphics... => 3
[(1,6),(2,5),(3,4),(7,8),(9,10)] generating graphics... => 3
[(1,6),(2,5),(3,7),(4,10),(8,9)] generating graphics... => 4
[(1,6),(2,5),(3,7),(4,9),(8,10)] generating graphics... => 4
[(1,6),(2,5),(3,7),(4,8),(9,10)] generating graphics... => 4
[(1,6),(2,5),(3,8),(4,7),(9,10)] generating graphics... => 4
[(1,6),(2,5),(3,8),(4,9),(7,10)] generating graphics... => 4
[(1,6),(2,5),(3,8),(4,10),(7,9)] generating graphics... => 4
[(1,6),(2,5),(3,9),(4,7),(8,10)] generating graphics... => 4
[(1,6),(2,5),(3,9),(4,8),(7,10)] generating graphics... => 4
[(1,6),(2,5),(3,9),(4,10),(7,8)] generating graphics... => 4
[(1,6),(2,5),(3,10),(4,7),(8,9)] generating graphics... => 4
[(1,6),(2,5),(3,10),(4,8),(7,9)] generating graphics... => 4
[(1,6),(2,5),(3,10),(4,9),(7,8)] generating graphics... => 4
[(1,6),(2,7),(3,4),(5,10),(8,9)] generating graphics... => 3
[(1,6),(2,7),(3,4),(5,9),(8,10)] generating graphics... => 3
[(1,6),(2,7),(3,4),(5,8),(9,10)] generating graphics... => 3
[(1,6),(2,7),(3,5),(4,10),(8,9)] generating graphics... => 4
[(1,6),(2,7),(3,5),(4,9),(8,10)] generating graphics... => 4
[(1,6),(2,7),(3,5),(4,8),(9,10)] generating graphics... => 4
[(1,6),(2,7),(3,8),(4,5),(9,10)] generating graphics... => 4
[(1,6),(2,7),(3,8),(4,9),(5,10)] generating graphics... => 5
[(1,6),(2,7),(3,8),(4,10),(5,9)] generating graphics... => 5
[(1,6),(2,7),(3,9),(4,5),(8,10)] generating graphics... => 4
[(1,6),(2,7),(3,9),(4,8),(5,10)] generating graphics... => 5
[(1,6),(2,7),(3,9),(4,10),(5,8)] generating graphics... => 5
[(1,6),(2,7),(3,10),(4,5),(8,9)] generating graphics... => 4
[(1,6),(2,7),(3,10),(4,8),(5,9)] generating graphics... => 5
[(1,6),(2,7),(3,10),(4,9),(5,8)] generating graphics... => 5
[(1,6),(2,8),(3,4),(5,7),(9,10)] generating graphics... => 3
[(1,6),(2,8),(3,4),(5,9),(7,10)] generating graphics... => 3
[(1,6),(2,8),(3,4),(5,10),(7,9)] generating graphics... => 3
[(1,6),(2,8),(3,5),(4,7),(9,10)] generating graphics... => 4
[(1,6),(2,8),(3,5),(4,9),(7,10)] generating graphics... => 4
[(1,6),(2,8),(3,5),(4,10),(7,9)] generating graphics... => 4
[(1,6),(2,8),(3,7),(4,5),(9,10)] generating graphics... => 4
[(1,6),(2,8),(3,7),(4,9),(5,10)] generating graphics... => 5
[(1,6),(2,8),(3,7),(4,10),(5,9)] generating graphics... => 5
[(1,6),(2,8),(3,9),(4,10),(5,7)] generating graphics... => 5
[(1,6),(2,8),(3,9),(4,7),(5,10)] generating graphics... => 5
[(1,6),(2,8),(3,9),(4,5),(7,10)] generating graphics... => 4
[(1,6),(2,8),(3,10),(4,9),(5,7)] generating graphics... => 5
[(1,6),(2,8),(3,10),(4,7),(5,9)] generating graphics... => 5
[(1,6),(2,8),(3,10),(4,5),(7,9)] generating graphics... => 4
[(1,6),(2,9),(3,4),(5,7),(8,10)] generating graphics... => 3
[(1,6),(2,9),(3,4),(5,8),(7,10)] generating graphics... => 3
[(1,6),(2,9),(3,4),(5,10),(7,8)] generating graphics... => 3
[(1,6),(2,9),(3,5),(4,7),(8,10)] generating graphics... => 4
[(1,6),(2,9),(3,5),(4,8),(7,10)] generating graphics... => 4
[(1,6),(2,9),(3,5),(4,10),(7,8)] generating graphics... => 4
[(1,6),(2,9),(3,7),(4,5),(8,10)] generating graphics... => 4
[(1,6),(2,9),(3,7),(4,8),(5,10)] generating graphics... => 5
[(1,6),(2,9),(3,7),(4,10),(5,8)] generating graphics... => 5
[(1,6),(2,9),(3,8),(4,10),(5,7)] generating graphics... => 5
[(1,6),(2,9),(3,8),(4,7),(5,10)] generating graphics... => 5
[(1,6),(2,9),(3,8),(4,5),(7,10)] generating graphics... => 4
[(1,6),(2,9),(3,10),(4,8),(5,7)] generating graphics... => 5
[(1,6),(2,9),(3,10),(4,7),(5,8)] generating graphics... => 5
[(1,6),(2,9),(3,10),(4,5),(7,8)] generating graphics... => 4
[(1,6),(2,10),(3,4),(5,7),(8,9)] generating graphics... => 3
[(1,6),(2,10),(3,4),(5,8),(7,9)] generating graphics... => 3
[(1,6),(2,10),(3,4),(5,9),(7,8)] generating graphics... => 3
[(1,6),(2,10),(3,5),(4,7),(8,9)] generating graphics... => 4
[(1,6),(2,10),(3,5),(4,8),(7,9)] generating graphics... => 4
[(1,6),(2,10),(3,5),(4,9),(7,8)] generating graphics... => 4
[(1,6),(2,10),(3,7),(4,5),(8,9)] generating graphics... => 4
[(1,6),(2,10),(3,7),(4,8),(5,9)] generating graphics... => 5
[(1,6),(2,10),(3,7),(4,9),(5,8)] generating graphics... => 5
[(1,6),(2,10),(3,8),(4,9),(5,7)] generating graphics... => 5
[(1,6),(2,10),(3,8),(4,7),(5,9)] generating graphics... => 5
[(1,6),(2,10),(3,8),(4,5),(7,9)] generating graphics... => 4
[(1,6),(2,10),(3,9),(4,8),(5,7)] generating graphics... => 5
[(1,6),(2,10),(3,9),(4,7),(5,8)] generating graphics... => 5
[(1,6),(2,10),(3,9),(4,5),(7,8)] generating graphics... => 4
[(1,7),(2,3),(4,5),(6,10),(8,9)] generating graphics... => 2
[(1,7),(2,3),(4,5),(6,9),(8,10)] generating graphics... => 2
[(1,7),(2,3),(4,5),(6,8),(9,10)] generating graphics... => 2
[(1,7),(2,3),(4,6),(5,10),(8,9)] generating graphics... => 3
[(1,7),(2,3),(4,6),(5,9),(8,10)] generating graphics... => 3
[(1,7),(2,3),(4,6),(5,8),(9,10)] generating graphics... => 3
[(1,7),(2,3),(4,8),(5,6),(9,10)] generating graphics... => 3
[(1,7),(2,3),(4,8),(5,9),(6,10)] generating graphics... => 4
[(1,7),(2,3),(4,8),(5,10),(6,9)] generating graphics... => 4
[(1,7),(2,3),(4,9),(5,6),(8,10)] generating graphics... => 3
[(1,7),(2,3),(4,9),(5,8),(6,10)] generating graphics... => 4
[(1,7),(2,3),(4,9),(5,10),(6,8)] generating graphics... => 4
[(1,7),(2,3),(4,10),(5,6),(8,9)] generating graphics... => 3
[(1,7),(2,3),(4,10),(5,8),(6,9)] generating graphics... => 4
[(1,7),(2,3),(4,10),(5,9),(6,8)] generating graphics... => 4
[(1,7),(2,4),(3,5),(6,10),(8,9)] generating graphics... => 3
[(1,7),(2,4),(3,5),(6,9),(8,10)] generating graphics... => 3
[(1,7),(2,4),(3,5),(6,8),(9,10)] generating graphics... => 3
[(1,7),(2,4),(3,6),(5,10),(8,9)] generating graphics... => 3
[(1,7),(2,4),(3,6),(5,9),(8,10)] generating graphics... => 3
[(1,7),(2,4),(3,6),(5,8),(9,10)] generating graphics... => 3
[(1,7),(2,4),(3,8),(5,6),(9,10)] generating graphics... => 3
[(1,7),(2,4),(3,8),(5,9),(6,10)] generating graphics... => 4
[(1,7),(2,4),(3,8),(5,10),(6,9)] generating graphics... => 4
[(1,7),(2,4),(3,9),(5,6),(8,10)] generating graphics... => 3
[(1,7),(2,4),(3,9),(5,8),(6,10)] generating graphics... => 4
[(1,7),(2,4),(3,9),(5,10),(6,8)] generating graphics... => 4
[(1,7),(2,4),(3,10),(5,6),(8,9)] generating graphics... => 3
[(1,7),(2,4),(3,10),(5,8),(6,9)] generating graphics... => 4
[(1,7),(2,4),(3,10),(5,9),(6,8)] generating graphics... => 4
[(1,7),(2,5),(3,4),(6,10),(8,9)] generating graphics... => 3
[(1,7),(2,5),(3,4),(6,9),(8,10)] generating graphics... => 3
[(1,7),(2,5),(3,4),(6,8),(9,10)] generating graphics... => 3
[(1,7),(2,5),(3,6),(4,10),(8,9)] generating graphics... => 4
[(1,7),(2,5),(3,6),(4,9),(8,10)] generating graphics... => 4
[(1,7),(2,5),(3,6),(4,8),(9,10)] generating graphics... => 4
[(1,7),(2,5),(3,8),(4,6),(9,10)] generating graphics... => 4
[(1,7),(2,5),(3,8),(4,9),(6,10)] generating graphics... => 4
[(1,7),(2,5),(3,8),(4,10),(6,9)] generating graphics... => 4
[(1,7),(2,5),(3,9),(4,6),(8,10)] generating graphics... => 4
[(1,7),(2,5),(3,9),(4,8),(6,10)] generating graphics... => 4
[(1,7),(2,5),(3,9),(4,10),(6,8)] generating graphics... => 4
[(1,7),(2,5),(3,10),(4,6),(8,9)] generating graphics... => 4
[(1,7),(2,5),(3,10),(4,8),(6,9)] generating graphics... => 4
[(1,7),(2,5),(3,10),(4,9),(6,8)] generating graphics... => 4
[(1,7),(2,6),(3,4),(5,10),(8,9)] generating graphics... => 3
[(1,7),(2,6),(3,4),(5,9),(8,10)] generating graphics... => 3
[(1,7),(2,6),(3,4),(5,8),(9,10)] generating graphics... => 3
[(1,7),(2,6),(3,5),(4,10),(8,9)] generating graphics... => 4
[(1,7),(2,6),(3,5),(4,9),(8,10)] generating graphics... => 4
[(1,7),(2,6),(3,5),(4,8),(9,10)] generating graphics... => 4
[(1,7),(2,6),(3,8),(4,5),(9,10)] generating graphics... => 4
[(1,7),(2,6),(3,8),(4,9),(5,10)] generating graphics... => 5
[(1,7),(2,6),(3,8),(4,10),(5,9)] generating graphics... => 5
[(1,7),(2,6),(3,9),(4,5),(8,10)] generating graphics... => 4
[(1,7),(2,6),(3,9),(4,8),(5,10)] generating graphics... => 5
[(1,7),(2,6),(3,9),(4,10),(5,8)] generating graphics... => 5
[(1,7),(2,6),(3,10),(4,5),(8,9)] generating graphics... => 4
[(1,7),(2,6),(3,10),(4,8),(5,9)] generating graphics... => 5
[(1,7),(2,6),(3,10),(4,9),(5,8)] generating graphics... => 5
[(1,7),(2,8),(3,4),(5,6),(9,10)] generating graphics... => 3
[(1,7),(2,8),(3,4),(5,9),(6,10)] generating graphics... => 4
[(1,7),(2,8),(3,4),(5,10),(6,9)] generating graphics... => 4
[(1,7),(2,8),(3,5),(4,6),(9,10)] generating graphics... => 4
[(1,7),(2,8),(3,5),(4,9),(6,10)] generating graphics... => 4
[(1,7),(2,8),(3,5),(4,10),(6,9)] generating graphics... => 4
[(1,7),(2,8),(3,6),(4,5),(9,10)] generating graphics... => 4
[(1,7),(2,8),(3,6),(4,9),(5,10)] generating graphics... => 5
[(1,7),(2,8),(3,6),(4,10),(5,9)] generating graphics... => 5
[(1,7),(2,8),(3,9),(4,10),(5,6)] generating graphics... => 5
[(1,7),(2,8),(3,9),(4,6),(5,10)] generating graphics... => 5
[(1,7),(2,8),(3,9),(4,5),(6,10)] generating graphics... => 4
[(1,7),(2,8),(3,10),(4,9),(5,6)] generating graphics... => 5
[(1,7),(2,8),(3,10),(4,6),(5,9)] generating graphics... => 5
[(1,7),(2,8),(3,10),(4,5),(6,9)] generating graphics... => 4
[(1,7),(2,9),(3,4),(5,6),(8,10)] generating graphics... => 3
[(1,7),(2,9),(3,4),(5,8),(6,10)] generating graphics... => 4
[(1,7),(2,9),(3,4),(5,10),(6,8)] generating graphics... => 4
[(1,7),(2,9),(3,5),(4,6),(8,10)] generating graphics... => 4
[(1,7),(2,9),(3,5),(4,8),(6,10)] generating graphics... => 4
[(1,7),(2,9),(3,5),(4,10),(6,8)] generating graphics... => 4
[(1,7),(2,9),(3,6),(4,5),(8,10)] generating graphics... => 4
[(1,7),(2,9),(3,6),(4,8),(5,10)] generating graphics... => 5
[(1,7),(2,9),(3,6),(4,10),(5,8)] generating graphics... => 5
[(1,7),(2,9),(3,8),(4,10),(5,6)] generating graphics... => 5
[(1,7),(2,9),(3,8),(4,6),(5,10)] generating graphics... => 5
[(1,7),(2,9),(3,8),(4,5),(6,10)] generating graphics... => 4
[(1,7),(2,9),(3,10),(4,8),(5,6)] generating graphics... => 5
[(1,7),(2,9),(3,10),(4,6),(5,8)] generating graphics... => 5
[(1,7),(2,9),(3,10),(4,5),(6,8)] generating graphics... => 4
[(1,7),(2,10),(3,4),(5,6),(8,9)] generating graphics... => 3
[(1,7),(2,10),(3,4),(5,8),(6,9)] generating graphics... => 4
[(1,7),(2,10),(3,4),(5,9),(6,8)] generating graphics... => 4
[(1,7),(2,10),(3,5),(4,6),(8,9)] generating graphics... => 4
[(1,7),(2,10),(3,5),(4,8),(6,9)] generating graphics... => 4
[(1,7),(2,10),(3,5),(4,9),(6,8)] generating graphics... => 4
[(1,7),(2,10),(3,6),(4,5),(8,9)] generating graphics... => 4
[(1,7),(2,10),(3,6),(4,8),(5,9)] generating graphics... => 5
[(1,7),(2,10),(3,6),(4,9),(5,8)] generating graphics... => 5
[(1,7),(2,10),(3,8),(4,9),(5,6)] generating graphics... => 5
[(1,7),(2,10),(3,8),(4,6),(5,9)] generating graphics... => 5
[(1,7),(2,10),(3,8),(4,5),(6,9)] generating graphics... => 4
[(1,7),(2,10),(3,9),(4,8),(5,6)] generating graphics... => 5
[(1,7),(2,10),(3,9),(4,6),(5,8)] generating graphics... => 5
[(1,7),(2,10),(3,9),(4,5),(6,8)] generating graphics... => 4
[(1,8),(2,3),(4,5),(6,7),(9,10)] generating graphics... => 2
[(1,8),(2,3),(4,5),(6,9),(7,10)] generating graphics... => 3
[(1,8),(2,3),(4,5),(6,10),(7,9)] generating graphics... => 3
[(1,8),(2,3),(4,6),(5,7),(9,10)] generating graphics... => 3
[(1,8),(2,3),(4,6),(5,9),(7,10)] generating graphics... => 3
[(1,8),(2,3),(4,6),(5,10),(7,9)] generating graphics... => 3
[(1,8),(2,3),(4,7),(5,6),(9,10)] generating graphics... => 3
[(1,8),(2,3),(4,7),(5,9),(6,10)] generating graphics... => 4
[(1,8),(2,3),(4,7),(5,10),(6,9)] generating graphics... => 4
[(1,8),(2,3),(4,9),(5,10),(6,7)] generating graphics... => 4
[(1,8),(2,3),(4,9),(5,7),(6,10)] generating graphics... => 4
[(1,8),(2,3),(4,9),(5,6),(7,10)] generating graphics... => 3
[(1,8),(2,3),(4,10),(5,9),(6,7)] generating graphics... => 4
[(1,8),(2,3),(4,10),(5,7),(6,9)] generating graphics... => 4
[(1,8),(2,3),(4,10),(5,6),(7,9)] generating graphics... => 3
[(1,8),(2,4),(3,5),(6,7),(9,10)] generating graphics... => 3
[(1,8),(2,4),(3,5),(6,9),(7,10)] generating graphics... => 3
[(1,8),(2,4),(3,5),(6,10),(7,9)] generating graphics... => 3
[(1,8),(2,4),(3,6),(5,7),(9,10)] generating graphics... => 3
[(1,8),(2,4),(3,6),(5,9),(7,10)] generating graphics... => 3
[(1,8),(2,4),(3,6),(5,10),(7,9)] generating graphics... => 3
[(1,8),(2,4),(3,7),(5,6),(9,10)] generating graphics... => 3
[(1,8),(2,4),(3,7),(5,9),(6,10)] generating graphics... => 4
[(1,8),(2,4),(3,7),(5,10),(6,9)] generating graphics... => 4
[(1,8),(2,4),(3,9),(5,10),(6,7)] generating graphics... => 4
[(1,8),(2,4),(3,9),(5,7),(6,10)] generating graphics... => 4
[(1,8),(2,4),(3,9),(5,6),(7,10)] generating graphics... => 3
[(1,8),(2,4),(3,10),(5,9),(6,7)] generating graphics... => 4
[(1,8),(2,4),(3,10),(5,7),(6,9)] generating graphics... => 4
[(1,8),(2,4),(3,10),(5,6),(7,9)] generating graphics... => 3
[(1,8),(2,5),(3,4),(6,7),(9,10)] generating graphics... => 3
[(1,8),(2,5),(3,4),(6,9),(7,10)] generating graphics... => 3
[(1,8),(2,5),(3,4),(6,10),(7,9)] generating graphics... => 3
[(1,8),(2,5),(3,6),(4,7),(9,10)] generating graphics... => 4
[(1,8),(2,5),(3,6),(4,9),(7,10)] generating graphics... => 4
[(1,8),(2,5),(3,6),(4,10),(7,9)] generating graphics... => 4
[(1,8),(2,5),(3,7),(4,6),(9,10)] generating graphics... => 4
[(1,8),(2,5),(3,7),(4,9),(6,10)] generating graphics... => 4
[(1,8),(2,5),(3,7),(4,10),(6,9)] generating graphics... => 4
[(1,8),(2,5),(3,9),(4,10),(6,7)] generating graphics... => 4
[(1,8),(2,5),(3,9),(4,7),(6,10)] generating graphics... => 4
[(1,8),(2,5),(3,9),(4,6),(7,10)] generating graphics... => 4
[(1,8),(2,5),(3,10),(4,9),(6,7)] generating graphics... => 4
[(1,8),(2,5),(3,10),(4,7),(6,9)] generating graphics... => 4
[(1,8),(2,5),(3,10),(4,6),(7,9)] generating graphics... => 4
[(1,8),(2,6),(3,4),(5,7),(9,10)] generating graphics... => 3
[(1,8),(2,6),(3,4),(5,9),(7,10)] generating graphics... => 3
[(1,8),(2,6),(3,4),(5,10),(7,9)] generating graphics... => 3
[(1,8),(2,6),(3,5),(4,7),(9,10)] generating graphics... => 4
[(1,8),(2,6),(3,5),(4,9),(7,10)] generating graphics... => 4
[(1,8),(2,6),(3,5),(4,10),(7,9)] generating graphics... => 4
[(1,8),(2,6),(3,7),(4,5),(9,10)] generating graphics... => 4
[(1,8),(2,6),(3,7),(4,9),(5,10)] generating graphics... => 5
[(1,8),(2,6),(3,7),(4,10),(5,9)] generating graphics... => 5
[(1,8),(2,6),(3,9),(4,10),(5,7)] generating graphics... => 5
[(1,8),(2,6),(3,9),(4,7),(5,10)] generating graphics... => 5
[(1,8),(2,6),(3,9),(4,5),(7,10)] generating graphics... => 4
[(1,8),(2,6),(3,10),(4,9),(5,7)] generating graphics... => 5
[(1,8),(2,6),(3,10),(4,7),(5,9)] generating graphics... => 5
[(1,8),(2,6),(3,10),(4,5),(7,9)] generating graphics... => 4
[(1,8),(2,7),(3,4),(5,6),(9,10)] generating graphics... => 3
[(1,8),(2,7),(3,4),(5,9),(6,10)] generating graphics... => 4
[(1,8),(2,7),(3,4),(5,10),(6,9)] generating graphics... => 4
[(1,8),(2,7),(3,5),(4,6),(9,10)] generating graphics... => 4
[(1,8),(2,7),(3,5),(4,9),(6,10)] generating graphics... => 4
[(1,8),(2,7),(3,5),(4,10),(6,9)] generating graphics... => 4
[(1,8),(2,7),(3,6),(4,5),(9,10)] generating graphics... => 4
[(1,8),(2,7),(3,6),(4,9),(5,10)] generating graphics... => 5
[(1,8),(2,7),(3,6),(4,10),(5,9)] generating graphics... => 5
[(1,8),(2,7),(3,9),(4,10),(5,6)] generating graphics... => 5
[(1,8),(2,7),(3,9),(4,6),(5,10)] generating graphics... => 5
[(1,8),(2,7),(3,9),(4,5),(6,10)] generating graphics... => 4
[(1,8),(2,7),(3,10),(4,9),(5,6)] generating graphics... => 5
[(1,8),(2,7),(3,10),(4,6),(5,9)] generating graphics... => 5
[(1,8),(2,7),(3,10),(4,5),(6,9)] generating graphics... => 4
[(1,8),(2,9),(3,4),(5,10),(6,7)] generating graphics... => 4
[(1,8),(2,9),(3,4),(5,7),(6,10)] generating graphics... => 4
[(1,8),(2,9),(3,4),(5,6),(7,10)] generating graphics... => 3
[(1,8),(2,9),(3,5),(4,10),(6,7)] generating graphics... => 4
[(1,8),(2,9),(3,5),(4,7),(6,10)] generating graphics... => 4
[(1,8),(2,9),(3,5),(4,6),(7,10)] generating graphics... => 4
[(1,8),(2,9),(3,6),(4,10),(5,7)] generating graphics... => 5
[(1,8),(2,9),(3,6),(4,7),(5,10)] generating graphics... => 5
[(1,8),(2,9),(3,6),(4,5),(7,10)] generating graphics... => 4
[(1,8),(2,9),(3,7),(4,10),(5,6)] generating graphics... => 5
[(1,8),(2,9),(3,7),(4,6),(5,10)] generating graphics... => 5
[(1,8),(2,9),(3,7),(4,5),(6,10)] generating graphics... => 4
[(1,8),(2,9),(3,10),(4,5),(6,7)] generating graphics... => 4
[(1,8),(2,9),(3,10),(4,6),(5,7)] generating graphics... => 5
[(1,8),(2,9),(3,10),(4,7),(5,6)] generating graphics... => 5
[(1,8),(2,10),(3,4),(5,9),(6,7)] generating graphics... => 4
[(1,8),(2,10),(3,4),(5,7),(6,9)] generating graphics... => 4
[(1,8),(2,10),(3,4),(5,6),(7,9)] generating graphics... => 3
[(1,8),(2,10),(3,5),(4,9),(6,7)] generating graphics... => 4
[(1,8),(2,10),(3,5),(4,7),(6,9)] generating graphics... => 4
[(1,8),(2,10),(3,5),(4,6),(7,9)] generating graphics... => 4
[(1,8),(2,10),(3,6),(4,9),(5,7)] generating graphics... => 5
[(1,8),(2,10),(3,6),(4,7),(5,9)] generating graphics... => 5
[(1,8),(2,10),(3,6),(4,5),(7,9)] generating graphics... => 4
[(1,8),(2,10),(3,7),(4,9),(5,6)] generating graphics... => 5
[(1,8),(2,10),(3,7),(4,6),(5,9)] generating graphics... => 5
[(1,8),(2,10),(3,7),(4,5),(6,9)] generating graphics... => 4
[(1,8),(2,10),(3,9),(4,5),(6,7)] generating graphics... => 4
[(1,8),(2,10),(3,9),(4,6),(5,7)] generating graphics... => 5
[(1,8),(2,10),(3,9),(4,7),(5,6)] generating graphics... => 5
[(1,9),(2,3),(4,5),(6,7),(8,10)] generating graphics... => 2
[(1,9),(2,3),(4,5),(6,8),(7,10)] generating graphics... => 3
[(1,9),(2,3),(4,5),(6,10),(7,8)] generating graphics... => 3
[(1,9),(2,3),(4,6),(5,7),(8,10)] generating graphics... => 3
[(1,9),(2,3),(4,6),(5,8),(7,10)] generating graphics... => 3
[(1,9),(2,3),(4,6),(5,10),(7,8)] generating graphics... => 3
[(1,9),(2,3),(4,7),(5,6),(8,10)] generating graphics... => 3
[(1,9),(2,3),(4,7),(5,8),(6,10)] generating graphics... => 4
[(1,9),(2,3),(4,7),(5,10),(6,8)] generating graphics... => 4
[(1,9),(2,3),(4,8),(5,10),(6,7)] generating graphics... => 4
[(1,9),(2,3),(4,8),(5,7),(6,10)] generating graphics... => 4
[(1,9),(2,3),(4,8),(5,6),(7,10)] generating graphics... => 3
[(1,9),(2,3),(4,10),(5,8),(6,7)] generating graphics... => 4
[(1,9),(2,3),(4,10),(5,7),(6,8)] generating graphics... => 4
[(1,9),(2,3),(4,10),(5,6),(7,8)] generating graphics... => 3
[(1,9),(2,4),(3,5),(6,7),(8,10)] generating graphics... => 3
[(1,9),(2,4),(3,5),(6,8),(7,10)] generating graphics... => 3
[(1,9),(2,4),(3,5),(6,10),(7,8)] generating graphics... => 3
[(1,9),(2,4),(3,6),(5,7),(8,10)] generating graphics... => 3
[(1,9),(2,4),(3,6),(5,8),(7,10)] generating graphics... => 3
[(1,9),(2,4),(3,6),(5,10),(7,8)] generating graphics... => 3
[(1,9),(2,4),(3,7),(5,6),(8,10)] generating graphics... => 3
[(1,9),(2,4),(3,7),(5,8),(6,10)] generating graphics... => 4
[(1,9),(2,4),(3,7),(5,10),(6,8)] generating graphics... => 4
[(1,9),(2,4),(3,8),(5,10),(6,7)] generating graphics... => 4
[(1,9),(2,4),(3,8),(5,7),(6,10)] generating graphics... => 4
[(1,9),(2,4),(3,8),(5,6),(7,10)] generating graphics... => 3
[(1,9),(2,4),(3,10),(5,8),(6,7)] generating graphics... => 4
[(1,9),(2,4),(3,10),(5,7),(6,8)] generating graphics... => 4
[(1,9),(2,4),(3,10),(5,6),(7,8)] generating graphics... => 3
[(1,9),(2,5),(3,4),(6,7),(8,10)] generating graphics... => 3
[(1,9),(2,5),(3,4),(6,8),(7,10)] generating graphics... => 3
[(1,9),(2,5),(3,4),(6,10),(7,8)] generating graphics... => 3
[(1,9),(2,5),(3,6),(4,7),(8,10)] generating graphics... => 4
[(1,9),(2,5),(3,6),(4,8),(7,10)] generating graphics... => 4
[(1,9),(2,5),(3,6),(4,10),(7,8)] generating graphics... => 4
[(1,9),(2,5),(3,7),(4,6),(8,10)] generating graphics... => 4
[(1,9),(2,5),(3,7),(4,8),(6,10)] generating graphics... => 4
[(1,9),(2,5),(3,7),(4,10),(6,8)] generating graphics... => 4
[(1,9),(2,5),(3,8),(4,10),(6,7)] generating graphics... => 4
[(1,9),(2,5),(3,8),(4,7),(6,10)] generating graphics... => 4
[(1,9),(2,5),(3,8),(4,6),(7,10)] generating graphics... => 4
[(1,9),(2,5),(3,10),(4,8),(6,7)] generating graphics... => 4
[(1,9),(2,5),(3,10),(4,7),(6,8)] generating graphics... => 4
[(1,9),(2,5),(3,10),(4,6),(7,8)] generating graphics... => 4
[(1,9),(2,6),(3,4),(5,7),(8,10)] generating graphics... => 3
[(1,9),(2,6),(3,4),(5,8),(7,10)] generating graphics... => 3
[(1,9),(2,6),(3,4),(5,10),(7,8)] generating graphics... => 3
[(1,9),(2,6),(3,5),(4,7),(8,10)] generating graphics... => 4
[(1,9),(2,6),(3,5),(4,8),(7,10)] generating graphics... => 4
[(1,9),(2,6),(3,5),(4,10),(7,8)] generating graphics... => 4
[(1,9),(2,6),(3,7),(4,5),(8,10)] generating graphics... => 4
[(1,9),(2,6),(3,7),(4,8),(5,10)] generating graphics... => 5
[(1,9),(2,6),(3,7),(4,10),(5,8)] generating graphics... => 5
[(1,9),(2,6),(3,8),(4,10),(5,7)] generating graphics... => 5
[(1,9),(2,6),(3,8),(4,7),(5,10)] generating graphics... => 5
[(1,9),(2,6),(3,8),(4,5),(7,10)] generating graphics... => 4
[(1,9),(2,6),(3,10),(4,8),(5,7)] generating graphics... => 5
[(1,9),(2,6),(3,10),(4,7),(5,8)] generating graphics... => 5
[(1,9),(2,6),(3,10),(4,5),(7,8)] generating graphics... => 4
[(1,9),(2,7),(3,4),(5,6),(8,10)] generating graphics... => 3
[(1,9),(2,7),(3,4),(5,8),(6,10)] generating graphics... => 4
[(1,9),(2,7),(3,4),(5,10),(6,8)] generating graphics... => 4
[(1,9),(2,7),(3,5),(4,6),(8,10)] generating graphics... => 4
[(1,9),(2,7),(3,5),(4,8),(6,10)] generating graphics... => 4
[(1,9),(2,7),(3,5),(4,10),(6,8)] generating graphics... => 4
[(1,9),(2,7),(3,6),(4,5),(8,10)] generating graphics... => 4
[(1,9),(2,7),(3,6),(4,8),(5,10)] generating graphics... => 5
[(1,9),(2,7),(3,6),(4,10),(5,8)] generating graphics... => 5
[(1,9),(2,7),(3,8),(4,10),(5,6)] generating graphics... => 5
[(1,9),(2,7),(3,8),(4,6),(5,10)] generating graphics... => 5
[(1,9),(2,7),(3,8),(4,5),(6,10)] generating graphics... => 4
[(1,9),(2,7),(3,10),(4,8),(5,6)] generating graphics... => 5
[(1,9),(2,7),(3,10),(4,6),(5,8)] generating graphics... => 5
[(1,9),(2,7),(3,10),(4,5),(6,8)] generating graphics... => 4
[(1,9),(2,8),(3,4),(5,10),(6,7)] generating graphics... => 4
[(1,9),(2,8),(3,4),(5,7),(6,10)] generating graphics... => 4
[(1,9),(2,8),(3,4),(5,6),(7,10)] generating graphics... => 3
[(1,9),(2,8),(3,5),(4,10),(6,7)] generating graphics... => 4
[(1,9),(2,8),(3,5),(4,7),(6,10)] generating graphics... => 4
[(1,9),(2,8),(3,5),(4,6),(7,10)] generating graphics... => 4
[(1,9),(2,8),(3,6),(4,10),(5,7)] generating graphics... => 5
[(1,9),(2,8),(3,6),(4,7),(5,10)] generating graphics... => 5
[(1,9),(2,8),(3,6),(4,5),(7,10)] generating graphics... => 4
[(1,9),(2,8),(3,7),(4,10),(5,6)] generating graphics... => 5
[(1,9),(2,8),(3,7),(4,6),(5,10)] generating graphics... => 5
[(1,9),(2,8),(3,7),(4,5),(6,10)] generating graphics... => 4
[(1,9),(2,8),(3,10),(4,5),(6,7)] generating graphics... => 4
[(1,9),(2,8),(3,10),(4,6),(5,7)] generating graphics... => 5
[(1,9),(2,8),(3,10),(4,7),(5,6)] generating graphics... => 5
[(1,9),(2,10),(3,4),(5,8),(6,7)] generating graphics... => 4
[(1,9),(2,10),(3,4),(5,7),(6,8)] generating graphics... => 4
[(1,9),(2,10),(3,4),(5,6),(7,8)] generating graphics... => 3
[(1,9),(2,10),(3,5),(4,8),(6,7)] generating graphics... => 4
[(1,9),(2,10),(3,5),(4,7),(6,8)] generating graphics... => 4
[(1,9),(2,10),(3,5),(4,6),(7,8)] generating graphics... => 4
[(1,9),(2,10),(3,6),(4,8),(5,7)] generating graphics... => 5
[(1,9),(2,10),(3,6),(4,7),(5,8)] generating graphics... => 5
[(1,9),(2,10),(3,6),(4,5),(7,8)] generating graphics... => 4
[(1,9),(2,10),(3,7),(4,8),(5,6)] generating graphics... => 5
[(1,9),(2,10),(3,7),(4,6),(5,8)] generating graphics... => 5
[(1,9),(2,10),(3,7),(4,5),(6,8)] generating graphics... => 4
[(1,9),(2,10),(3,8),(4,5),(6,7)] generating graphics... => 4
[(1,9),(2,10),(3,8),(4,6),(5,7)] generating graphics... => 5
[(1,9),(2,10),(3,8),(4,7),(5,6)] generating graphics... => 5
[(1,10),(2,3),(4,5),(6,7),(8,9)] generating graphics... => 2
[(1,10),(2,3),(4,5),(6,8),(7,9)] generating graphics... => 3
[(1,10),(2,3),(4,5),(6,9),(7,8)] generating graphics... => 3
[(1,10),(2,3),(4,6),(5,7),(8,9)] generating graphics... => 3
[(1,10),(2,3),(4,6),(5,8),(7,9)] generating graphics... => 3
[(1,10),(2,3),(4,6),(5,9),(7,8)] generating graphics... => 3
[(1,10),(2,3),(4,7),(5,6),(8,9)] generating graphics... => 3
[(1,10),(2,3),(4,7),(5,8),(6,9)] generating graphics... => 4
[(1,10),(2,3),(4,7),(5,9),(6,8)] generating graphics... => 4
[(1,10),(2,3),(4,8),(5,9),(6,7)] generating graphics... => 4
[(1,10),(2,3),(4,8),(5,7),(6,9)] generating graphics... => 4
[(1,10),(2,3),(4,8),(5,6),(7,9)] generating graphics... => 3
[(1,10),(2,3),(4,9),(5,8),(6,7)] generating graphics... => 4
[(1,10),(2,3),(4,9),(5,7),(6,8)] generating graphics... => 4
[(1,10),(2,3),(4,9),(5,6),(7,8)] generating graphics... => 3
[(1,10),(2,4),(3,5),(6,7),(8,9)] generating graphics... => 3
[(1,10),(2,4),(3,5),(6,8),(7,9)] generating graphics... => 3
[(1,10),(2,4),(3,5),(6,9),(7,8)] generating graphics... => 3
[(1,10),(2,4),(3,6),(5,7),(8,9)] generating graphics... => 3
[(1,10),(2,4),(3,6),(5,8),(7,9)] generating graphics... => 3
[(1,10),(2,4),(3,6),(5,9),(7,8)] generating graphics... => 3
[(1,10),(2,4),(3,7),(5,6),(8,9)] generating graphics... => 3
[(1,10),(2,4),(3,7),(5,8),(6,9)] generating graphics... => 4
[(1,10),(2,4),(3,7),(5,9),(6,8)] generating graphics... => 4
[(1,10),(2,4),(3,8),(5,9),(6,7)] generating graphics... => 4
[(1,10),(2,4),(3,8),(5,7),(6,9)] generating graphics... => 4
[(1,10),(2,4),(3,8),(5,6),(7,9)] generating graphics... => 3
[(1,10),(2,4),(3,9),(5,8),(6,7)] generating graphics... => 4
[(1,10),(2,4),(3,9),(5,7),(6,8)] generating graphics... => 4
[(1,10),(2,4),(3,9),(5,6),(7,8)] generating graphics... => 3
[(1,10),(2,5),(3,4),(6,7),(8,9)] generating graphics... => 3
[(1,10),(2,5),(3,4),(6,8),(7,9)] generating graphics... => 3
[(1,10),(2,5),(3,4),(6,9),(7,8)] generating graphics... => 3
[(1,10),(2,5),(3,6),(4,7),(8,9)] generating graphics... => 4
[(1,10),(2,5),(3,6),(4,8),(7,9)] generating graphics... => 4
[(1,10),(2,5),(3,6),(4,9),(7,8)] generating graphics... => 4
[(1,10),(2,5),(3,7),(4,6),(8,9)] generating graphics... => 4
[(1,10),(2,5),(3,7),(4,8),(6,9)] generating graphics... => 4
[(1,10),(2,5),(3,7),(4,9),(6,8)] generating graphics... => 4
[(1,10),(2,5),(3,8),(4,9),(6,7)] generating graphics... => 4
[(1,10),(2,5),(3,8),(4,7),(6,9)] generating graphics... => 4
[(1,10),(2,5),(3,8),(4,6),(7,9)] generating graphics... => 4
[(1,10),(2,5),(3,9),(4,8),(6,7)] generating graphics... => 4
[(1,10),(2,5),(3,9),(4,7),(6,8)] generating graphics... => 4
[(1,10),(2,5),(3,9),(4,6),(7,8)] generating graphics... => 4
[(1,10),(2,6),(3,4),(5,7),(8,9)] generating graphics... => 3
[(1,10),(2,6),(3,4),(5,8),(7,9)] generating graphics... => 3
[(1,10),(2,6),(3,4),(5,9),(7,8)] generating graphics... => 3
[(1,10),(2,6),(3,5),(4,7),(8,9)] generating graphics... => 4
[(1,10),(2,6),(3,5),(4,8),(7,9)] generating graphics... => 4
[(1,10),(2,6),(3,5),(4,9),(7,8)] generating graphics... => 4
[(1,10),(2,6),(3,7),(4,5),(8,9)] generating graphics... => 4
[(1,10),(2,6),(3,7),(4,8),(5,9)] generating graphics... => 5
[(1,10),(2,6),(3,7),(4,9),(5,8)] generating graphics... => 5
[(1,10),(2,6),(3,8),(4,9),(5,7)] generating graphics... => 5
[(1,10),(2,6),(3,8),(4,7),(5,9)] generating graphics... => 5
[(1,10),(2,6),(3,8),(4,5),(7,9)] generating graphics... => 4
[(1,10),(2,6),(3,9),(4,8),(5,7)] generating graphics... => 5
[(1,10),(2,6),(3,9),(4,7),(5,8)] generating graphics... => 5
[(1,10),(2,6),(3,9),(4,5),(7,8)] generating graphics... => 4
[(1,10),(2,7),(3,4),(5,6),(8,9)] generating graphics... => 3
[(1,10),(2,7),(3,4),(5,8),(6,9)] generating graphics... => 4
[(1,10),(2,7),(3,4),(5,9),(6,8)] generating graphics... => 4
[(1,10),(2,7),(3,5),(4,6),(8,9)] generating graphics... => 4
[(1,10),(2,7),(3,5),(4,8),(6,9)] generating graphics... => 4
[(1,10),(2,7),(3,5),(4,9),(6,8)] generating graphics... => 4
[(1,10),(2,7),(3,6),(4,5),(8,9)] generating graphics... => 4
[(1,10),(2,7),(3,6),(4,8),(5,9)] generating graphics... => 5
[(1,10),(2,7),(3,6),(4,9),(5,8)] generating graphics... => 5
[(1,10),(2,7),(3,8),(4,9),(5,6)] generating graphics... => 5
[(1,10),(2,7),(3,8),(4,6),(5,9)] generating graphics... => 5
[(1,10),(2,7),(3,8),(4,5),(6,9)] generating graphics... => 4
[(1,10),(2,7),(3,9),(4,8),(5,6)] generating graphics... => 5
[(1,10),(2,7),(3,9),(4,6),(5,8)] generating graphics... => 5
[(1,10),(2,7),(3,9),(4,5),(6,8)] generating graphics... => 4
[(1,10),(2,8),(3,4),(5,9),(6,7)] generating graphics... => 4
[(1,10),(2,8),(3,4),(5,7),(6,9)] generating graphics... => 4
[(1,10),(2,8),(3,4),(5,6),(7,9)] generating graphics... => 3
[(1,10),(2,8),(3,5),(4,9),(6,7)] generating graphics... => 4
[(1,10),(2,8),(3,5),(4,7),(6,9)] generating graphics... => 4
[(1,10),(2,8),(3,5),(4,6),(7,9)] generating graphics... => 4
[(1,10),(2,8),(3,6),(4,9),(5,7)] generating graphics... => 5
[(1,10),(2,8),(3,6),(4,7),(5,9)] generating graphics... => 5
[(1,10),(2,8),(3,6),(4,5),(7,9)] generating graphics... => 4
[(1,10),(2,8),(3,7),(4,9),(5,6)] generating graphics... => 5
[(1,10),(2,8),(3,7),(4,6),(5,9)] generating graphics... => 5
[(1,10),(2,8),(3,7),(4,5),(6,9)] generating graphics... => 4
[(1,10),(2,8),(3,9),(4,5),(6,7)] generating graphics... => 4
[(1,10),(2,8),(3,9),(4,6),(5,7)] generating graphics... => 5
[(1,10),(2,8),(3,9),(4,7),(5,6)] generating graphics... => 5
[(1,10),(2,9),(3,4),(5,8),(6,7)] generating graphics... => 4
[(1,10),(2,9),(3,4),(5,7),(6,8)] generating graphics... => 4
[(1,10),(2,9),(3,4),(5,6),(7,8)] generating graphics... => 3
[(1,10),(2,9),(3,5),(4,8),(6,7)] generating graphics... => 4
[(1,10),(2,9),(3,5),(4,7),(6,8)] generating graphics... => 4
[(1,10),(2,9),(3,5),(4,6),(7,8)] generating graphics... => 4
[(1,10),(2,9),(3,6),(4,8),(5,7)] generating graphics... => 5
[(1,10),(2,9),(3,6),(4,7),(5,8)] generating graphics... => 5
[(1,10),(2,9),(3,6),(4,5),(7,8)] generating graphics... => 4
[(1,10),(2,9),(3,7),(4,8),(5,6)] generating graphics... => 5
[(1,10),(2,9),(3,7),(4,6),(5,8)] generating graphics... => 5
[(1,10),(2,9),(3,7),(4,5),(6,8)] generating graphics... => 4
[(1,10),(2,9),(3,8),(4,5),(6,7)] generating graphics... => 4
[(1,10),(2,9),(3,8),(4,6),(5,7)] generating graphics... => 5
[(1,10),(2,9),(3,8),(4,7),(5,6)] generating graphics... => 5
[(1,12),(2,11),(3,10),(4,9),(5,8),(6,7)] generating graphics... => 6
[(1,2),(3,10),(4,9),(5,8),(6,7),(11,12)] generating graphics... => 4
[(1,12),(2,3),(4,9),(5,8),(6,7),(10,11)] generating graphics... => 4
[(1,2),(3,12),(4,9),(5,8),(6,7),(10,11)] generating graphics... => 4
[(1,10),(2,3),(4,9),(5,8),(6,7),(11,12)] generating graphics... => 4
[(1,12),(2,11),(3,4),(5,8),(6,7),(9,10)] generating graphics... => 4
[(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)] generating graphics... => 2
[(1,12),(2,3),(4,11),(5,8),(6,7),(9,10)] generating graphics... => 4
[(1,2),(3,12),(4,11),(5,8),(6,7),(9,10)] generating graphics... => 4
[(1,4),(2,3),(5,8),(6,7),(9,10),(11,12)] generating graphics... => 2
[(1,12),(2,9),(3,4),(5,8),(6,7),(10,11)] generating graphics... => 4
[(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)] generating graphics... => 2
[(1,10),(2,9),(3,4),(5,8),(6,7),(11,12)] generating graphics... => 4
[(1,4),(2,3),(5,8),(6,7),(9,12),(10,11)] generating graphics... => 2
[(1,12),(2,11),(3,10),(4,5),(6,7),(8,9)] generating graphics... => 4
[(1,2),(3,10),(4,5),(6,7),(8,9),(11,12)] generating graphics... => 2
[(1,12),(2,3),(4,5),(6,7),(8,9),(10,11)] generating graphics... => 2
[(1,2),(3,12),(4,5),(6,7),(8,9),(10,11)] generating graphics... => 2
[(1,10),(2,3),(4,5),(6,7),(8,9),(11,12)] generating graphics... => 2
[(1,12),(2,11),(3,4),(5,10),(6,7),(8,9)] generating graphics... => 4
[(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)] generating graphics... => 2
[(1,12),(2,3),(4,11),(5,10),(6,7),(8,9)] generating graphics... => 4
[(1,2),(3,12),(4,11),(5,10),(6,7),(8,9)] generating graphics... => 4
[(1,4),(2,3),(5,10),(6,7),(8,9),(11,12)] generating graphics... => 2
[(1,12),(2,5),(3,4),(6,7),(8,9),(10,11)] generating graphics... => 3
[(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)] generating graphics... => 2
[(1,10),(2,5),(3,4),(6,7),(8,9),(11,12)] generating graphics... => 3
[(1,4),(2,3),(5,12),(6,7),(8,9),(10,11)] generating graphics... => 2
[(1,12),(2,11),(3,8),(4,5),(6,7),(9,10)] generating graphics... => 4
[(1,2),(3,8),(4,5),(6,7),(9,10),(11,12)] generating graphics... => 2
[(1,12),(2,3),(4,5),(6,7),(8,11),(9,10)] generating graphics... => 3
[(1,2),(3,12),(4,5),(6,7),(8,11),(9,10)] generating graphics... => 3
[(1,8),(2,3),(4,5),(6,7),(9,10),(11,12)] generating graphics... => 2
[(1,12),(2,9),(3,8),(4,5),(6,7),(10,11)] generating graphics... => 4
[(1,2),(3,8),(4,5),(6,7),(9,12),(10,11)] generating graphics... => 2
[(1,10),(2,9),(3,8),(4,5),(6,7),(11,12)] generating graphics... => 4
[(1,8),(2,3),(4,5),(6,7),(9,12),(10,11)] generating graphics... => 2
[(1,12),(2,5),(3,4),(6,7),(8,11),(9,10)] generating graphics... => 3
[(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)] generating graphics... => 3
[(1,8),(2,5),(3,4),(6,7),(9,10),(11,12)] generating graphics... => 3
[(1,4),(2,3),(5,12),(6,7),(8,11),(9,10)] generating graphics... => 3
[(1,8),(2,5),(3,4),(6,7),(9,12),(10,11)] generating graphics... => 3
[(1,12),(2,11),(3,10),(4,9),(5,6),(7,8)] generating graphics... => 5
[(1,2),(3,10),(4,9),(5,6),(7,8),(11,12)] generating graphics... => 3
[(1,12),(2,3),(4,9),(5,6),(7,8),(10,11)] generating graphics... => 3
[(1,2),(3,12),(4,9),(5,6),(7,8),(10,11)] generating graphics... => 3
[(1,10),(2,3),(4,9),(5,6),(7,8),(11,12)] generating graphics... => 3
[(1,12),(2,11),(3,4),(5,6),(7,8),(9,10)] generating graphics... => 3
[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] generating graphics... => 1
[(1,12),(2,3),(4,11),(5,6),(7,8),(9,10)] generating graphics... => 3
[(1,2),(3,12),(4,11),(5,6),(7,8),(9,10)] generating graphics... => 3
[(1,4),(2,3),(5,6),(7,8),(9,10),(11,12)] generating graphics... => 2
[(1,12),(2,9),(3,4),(5,6),(7,8),(10,11)] generating graphics... => 3
[(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)] generating graphics... => 2
[(1,10),(2,9),(3,4),(5,6),(7,8),(11,12)] generating graphics... => 3
[(1,4),(2,3),(5,6),(7,8),(9,12),(10,11)] generating graphics... => 2
[(1,12),(2,11),(3,10),(4,5),(6,9),(7,8)] generating graphics... => 5
[(1,2),(3,10),(4,5),(6,9),(7,8),(11,12)] generating graphics... => 3
[(1,12),(2,3),(4,5),(6,9),(7,8),(10,11)] generating graphics... => 3
[(1,2),(3,12),(4,5),(6,9),(7,8),(10,11)] generating graphics... => 3
[(1,10),(2,3),(4,5),(6,9),(7,8),(11,12)] generating graphics... => 3
[(1,12),(2,11),(3,4),(5,10),(6,9),(7,8)] generating graphics... => 5
[(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)] generating graphics... => 3
[(1,12),(2,3),(4,11),(5,10),(6,9),(7,8)] generating graphics... => 5
[(1,2),(3,12),(4,11),(5,10),(6,9),(7,8)] generating graphics... => 5
[(1,4),(2,3),(5,10),(6,9),(7,8),(11,12)] generating graphics... => 3
[(1,12),(2,5),(3,4),(6,9),(7,8),(10,11)] generating graphics... => 3
[(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)] generating graphics... => 3
[(1,10),(2,5),(3,4),(6,9),(7,8),(11,12)] generating graphics... => 3
[(1,4),(2,3),(5,12),(6,9),(7,8),(10,11)] generating graphics... => 3
[(1,12),(2,11),(3,6),(4,5),(7,8),(9,10)] generating graphics... => 4
[(1,2),(3,6),(4,5),(7,8),(9,10),(11,12)] generating graphics... => 2
[(1,12),(2,3),(4,5),(6,11),(7,8),(9,10)] generating graphics... => 3
[(1,2),(3,12),(4,5),(6,11),(7,8),(9,10)] generating graphics... => 3
[(1,6),(2,3),(4,5),(7,8),(9,10),(11,12)] generating graphics... => 2
[(1,12),(2,9),(3,6),(4,5),(7,8),(10,11)] generating graphics... => 4
[(1,2),(3,6),(4,5),(7,8),(9,12),(10,11)] generating graphics... => 2
[(1,10),(2,9),(3,6),(4,5),(7,8),(11,12)] generating graphics... => 4
[(1,6),(2,3),(4,5),(7,8),(9,12),(10,11)] generating graphics... => 2
[(1,12),(2,5),(3,4),(6,11),(7,8),(9,10)] generating graphics... => 3
[(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)] generating graphics... => 3
[(1,6),(2,5),(3,4),(7,8),(9,10),(11,12)] generating graphics... => 3
[(1,4),(2,3),(5,12),(6,11),(7,8),(9,10)] generating graphics... => 3
[(1,6),(2,5),(3,4),(7,8),(9,12),(10,11)] generating graphics... => 3
[(1,12),(2,11),(3,10),(4,7),(5,6),(8,9)] generating graphics... => 5
[(1,2),(3,10),(4,7),(5,6),(8,9),(11,12)] generating graphics... => 3
[(1,12),(2,3),(4,7),(5,6),(8,9),(10,11)] generating graphics... => 3
[(1,2),(3,12),(4,7),(5,6),(8,9),(10,11)] generating graphics... => 3
[(1,10),(2,3),(4,7),(5,6),(8,9),(11,12)] generating graphics... => 3
[(1,12),(2,11),(3,4),(5,6),(7,10),(8,9)] generating graphics... => 4
[(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)] generating graphics... => 2
[(1,12),(2,3),(4,11),(5,6),(7,10),(8,9)] generating graphics... => 4
[(1,2),(3,12),(4,11),(5,6),(7,10),(8,9)] generating graphics... => 4
[(1,4),(2,3),(5,6),(7,10),(8,9),(11,12)] generating graphics... => 2
[(1,12),(2,7),(3,4),(5,6),(8,9),(10,11)] generating graphics... => 3
[(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)] generating graphics... => 2
[(1,10),(2,7),(3,4),(5,6),(8,9),(11,12)] generating graphics... => 3
[(1,4),(2,3),(5,6),(7,12),(8,9),(10,11)] generating graphics... => 2
[(1,12),(2,11),(3,8),(4,7),(5,6),(9,10)] generating graphics... => 5
[(1,2),(3,8),(4,7),(5,6),(9,10),(11,12)] generating graphics... => 3
[(1,12),(2,3),(4,7),(5,6),(8,11),(9,10)] generating graphics... => 3
[(1,2),(3,12),(4,7),(5,6),(8,11),(9,10)] generating graphics... => 3
[(1,8),(2,3),(4,7),(5,6),(9,10),(11,12)] generating graphics... => 3
[(1,12),(2,9),(3,8),(4,7),(5,6),(10,11)] generating graphics... => 5
[(1,2),(3,8),(4,7),(5,6),(9,12),(10,11)] generating graphics... => 3
[(1,10),(2,9),(3,8),(4,7),(5,6),(11,12)] generating graphics... => 5
[(1,8),(2,3),(4,7),(5,6),(9,12),(10,11)] generating graphics... => 3
[(1,12),(2,7),(3,4),(5,6),(8,11),(9,10)] generating graphics... => 3
[(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)] generating graphics... => 3
[(1,8),(2,7),(3,4),(5,6),(9,10),(11,12)] generating graphics... => 3
[(1,4),(2,3),(5,6),(7,12),(8,11),(9,10)] generating graphics... => 3
[(1,8),(2,7),(3,4),(5,6),(9,12),(10,11)] generating graphics... => 3
[(1,12),(2,11),(3,6),(4,5),(7,10),(8,9)] generating graphics... => 4
[(1,2),(3,6),(4,5),(7,10),(8,9),(11,12)] generating graphics... => 2
[(1,12),(2,3),(4,5),(6,11),(7,10),(8,9)] generating graphics... => 4
[(1,2),(3,12),(4,5),(6,11),(7,10),(8,9)] generating graphics... => 4
[(1,6),(2,3),(4,5),(7,10),(8,9),(11,12)] generating graphics... => 2
[(1,12),(2,7),(3,6),(4,5),(8,9),(10,11)] generating graphics... => 4
[(1,2),(3,6),(4,5),(7,12),(8,9),(10,11)] generating graphics... => 2
[(1,10),(2,7),(3,6),(4,5),(8,9),(11,12)] generating graphics... => 4
[(1,6),(2,3),(4,5),(7,12),(8,9),(10,11)] generating graphics... => 2
[(1,12),(2,5),(3,4),(6,11),(7,10),(8,9)] generating graphics... => 4
[(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)] generating graphics... => 4
[(1,6),(2,5),(3,4),(7,10),(8,9),(11,12)] generating graphics... => 3
[(1,4),(2,3),(5,12),(6,11),(7,10),(8,9)] generating graphics... => 4
[(1,6),(2,5),(3,4),(7,12),(8,9),(10,11)] generating graphics... => 3
[(1,12),(2,7),(3,6),(4,5),(8,11),(9,10)] generating graphics... => 4
[(1,2),(3,6),(4,5),(7,12),(8,11),(9,10)] generating graphics... => 3
[(1,8),(2,7),(3,6),(4,5),(9,10),(11,12)] generating graphics... => 4
[(1,6),(2,3),(4,5),(7,12),(8,11),(9,10)] generating graphics... => 3
[(1,8),(2,7),(3,6),(4,5),(9,12),(10,11)] generating graphics... => 4
[(1,6),(2,5),(3,4),(7,12),(8,11),(9,10)] generating graphics... => 3
[(1,6),(2,7),(3,8),(4,9),(5,10),(11,12)] generating graphics... => 5
[(1,2),(3,8),(4,9),(5,10),(6,11),(7,12)] generating graphics... => 5
[(1,2),(3,7),(4,9),(5,10),(6,11),(8,12)] generating graphics... => 4
[(1,5),(2,7),(3,8),(4,9),(6,10),(11,12)] generating graphics... => 4
[(1,2),(3,6),(4,9),(5,10),(7,11),(8,12)] generating graphics... => 4
[(1,2),(3,7),(4,8),(5,10),(6,11),(9,12)] generating graphics... => 4
[(1,4),(2,7),(3,8),(5,9),(6,10),(11,12)] generating graphics... => 4
[(1,5),(2,6),(3,8),(4,9),(7,10),(11,12)] generating graphics... => 4
[(1,2),(3,5),(4,9),(6,10),(7,11),(8,12)] generating graphics... => 4
[(1,2),(3,6),(4,8),(5,10),(7,11),(9,12)] generating graphics... => 3
[(1,2),(3,7),(4,8),(5,9),(6,11),(10,12)] generating graphics... => 4
[(1,3),(2,4),(5,9),(6,10),(7,11),(8,12)] generating graphics... => 4
[(1,3),(2,7),(4,8),(5,9),(6,10),(11,12)] generating graphics... => 4
[(1,4),(2,6),(3,8),(5,9),(7,10),(11,12)] generating graphics... => 3
[(1,5),(2,6),(3,7),(4,8),(9,11),(10,12)] generating graphics... => 4
[(1,5),(2,6),(3,7),(4,9),(8,10),(11,12)] generating graphics... => 4
[(1,2),(3,4),(5,9),(6,10),(7,11),(8,12)] generating graphics... => 4
[(1,2),(3,5),(4,8),(6,10),(7,11),(9,12)] generating graphics... => 3
[(1,2),(3,6),(4,7),(5,10),(8,11),(9,12)] generating graphics... => 3
[(1,2),(3,6),(4,8),(5,9),(7,11),(10,12)] generating graphics... => 3
[(1,2),(3,7),(4,8),(5,9),(6,10),(11,12)] generating graphics... => 4
[(1,3),(2,4),(5,8),(6,10),(7,11),(9,12)] generating graphics... => 3
[(1,3),(2,6),(4,8),(5,9),(7,10),(11,12)] generating graphics... => 3
[(1,4),(2,5),(3,6),(7,10),(8,11),(9,12)] generating graphics... => 3
[(1,4),(2,5),(3,8),(6,9),(7,10),(11,12)] generating graphics... => 3
[(1,4),(2,6),(3,7),(5,8),(9,11),(10,12)] generating graphics... => 3
[(1,4),(2,6),(3,7),(5,9),(8,10),(11,12)] generating graphics... => 3
[(1,5),(2,6),(3,7),(4,8),(9,10),(11,12)] generating graphics... => 4
[(1,2),(3,4),(5,8),(6,10),(7,11),(9,12)] generating graphics... => 3
[(1,2),(3,5),(4,7),(6,10),(8,11),(9,12)] generating graphics... => 3
[(1,2),(3,5),(4,8),(6,9),(7,11),(10,12)] generating graphics... => 3
[(1,2),(3,6),(4,7),(5,9),(8,11),(10,12)] generating graphics... => 3
[(1,2),(3,6),(4,8),(5,9),(7,10),(11,12)] generating graphics... => 3
[(1,3),(2,4),(5,7),(6,10),(8,11),(9,12)] generating graphics... => 3
[(1,3),(2,4),(5,8),(6,9),(7,11),(10,12)] generating graphics... => 3
[(1,3),(2,5),(4,6),(7,10),(8,11),(9,12)] generating graphics... => 3
[(1,3),(2,5),(4,8),(6,9),(7,10),(11,12)] generating graphics... => 3
[(1,3),(2,6),(4,7),(5,8),(9,11),(10,12)] generating graphics... => 3
[(1,3),(2,6),(4,7),(5,9),(8,10),(11,12)] generating graphics... => 3
[(1,4),(2,5),(3,6),(7,9),(8,11),(10,12)] generating graphics... => 3
[(1,4),(2,5),(3,7),(6,8),(9,11),(10,12)] generating graphics... => 3
[(1,4),(2,5),(3,7),(6,9),(8,10),(11,12)] generating graphics... => 3
[(1,4),(2,6),(3,7),(5,8),(9,10),(11,12)] generating graphics... => 3
[(1,2),(3,4),(5,6),(7,9),(8,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,8),(9,11),(10,12)] generating graphics... => 2
[(1,3),(2,4),(5,6),(7,9),(8,11),(10,12)] generating graphics... => 2
[(1,3),(2,4),(5,6),(7,8),(9,11),(10,12)] generating graphics... => 2
[(1,3),(2,5),(4,6),(7,9),(8,11),(10,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,9),(8,11),(10,12)] generating graphics... => 2
[(1,3),(2,5),(4,6),(7,8),(9,11),(10,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,8),(9,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,8),(6,9),(7,11),(10,12)] generating graphics... => 3
[(1,2),(3,5),(4,7),(6,9),(8,11),(10,12)] generating graphics... => 2
[(1,2),(3,5),(4,7),(6,8),(9,11),(10,12)] generating graphics... => 2
[(1,4),(2,5),(3,6),(7,8),(9,11),(10,12)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,9),(8,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,8),(9,11),(10,12)] generating graphics... => 2
[(1,4),(2,5),(3,8),(6,9),(7,11),(10,12)] generating graphics... => 3
[(1,3),(2,5),(4,8),(6,9),(7,11),(10,12)] generating graphics... => 3
[(1,2),(3,4),(5,7),(6,10),(8,11),(9,12)] generating graphics... => 3
[(1,4),(2,5),(3,7),(6,9),(8,11),(10,12)] generating graphics... => 3
[(1,3),(2,5),(4,7),(6,9),(8,11),(10,12)] generating graphics... => 2
[(1,3),(2,5),(4,7),(6,8),(9,11),(10,12)] generating graphics... => 2
[(1,3),(2,4),(5,7),(6,9),(8,11),(10,12)] generating graphics... => 2
[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,10),(8,11),(9,12)] generating graphics... => 3
[(1,4),(2,7),(3,8),(5,9),(6,11),(10,12)] generating graphics... => 4
[(1,3),(2,7),(4,8),(5,9),(6,11),(10,12)] generating graphics... => 4
[(1,4),(2,6),(3,8),(5,9),(7,11),(10,12)] generating graphics... => 3
[(1,3),(2,6),(4,8),(5,9),(7,11),(10,12)] generating graphics... => 3
[(1,4),(2,6),(3,7),(5,9),(8,11),(10,12)] generating graphics... => 3
[(1,3),(2,6),(4,7),(5,9),(8,11),(10,12)] generating graphics... => 3
[(1,2),(3,6),(4,7),(5,8),(9,11),(10,12)] generating graphics... => 3
[(1,3),(2,4),(5,6),(7,10),(8,11),(9,12)] generating graphics... => 3
[(1,4),(2,5),(3,6),(7,8),(9,10),(11,12)] generating graphics... => 3
[(1,3),(2,6),(4,7),(5,8),(9,10),(11,12)] generating graphics... => 3
[(1,2),(3,6),(4,7),(5,8),(9,10),(11,12)] generating graphics... => 3
[(1,3),(2,4),(5,8),(6,9),(7,10),(11,12)] generating graphics... => 3
[(1,2),(3,4),(5,8),(6,9),(7,10),(11,12)] generating graphics... => 3
[(1,4),(2,6),(3,8),(5,10),(7,11),(9,12)] generating graphics... => 3
[(1,4),(2,6),(3,7),(5,10),(8,11),(9,12)] generating graphics... => 3
[(1,4),(2,5),(3,7),(6,10),(8,11),(9,12)] generating graphics... => 3
[(1,3),(2,5),(4,7),(6,10),(8,11),(9,12)] generating graphics... => 3
[(1,2),(3,5),(4,8),(6,9),(7,10),(11,12)] generating graphics... => 3
[(1,5),(2,6),(3,8),(4,10),(7,11),(9,12)] generating graphics... => 4
[(1,4),(2,5),(3,8),(6,10),(7,11),(9,12)] generating graphics... => 3
[(1,5),(2,6),(3,8),(4,9),(7,11),(10,12)] generating graphics... => 4
[(1,3),(2,6),(4,7),(5,10),(8,11),(9,12)] generating graphics... => 3
[(1,5),(2,6),(3,7),(4,9),(8,11),(10,12)] generating graphics... => 4
[(1,2),(3,5),(4,6),(7,10),(8,11),(9,12)] generating graphics... => 3
[(1,4),(2,5),(3,6),(7,9),(8,10),(11,12)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,9),(8,10),(11,12)] generating graphics... => 2
[(1,3),(2,4),(5,6),(7,8),(9,10),(11,12)] generating graphics... => 2
[(1,3),(2,4),(5,6),(7,9),(8,10),(11,12)] generating graphics... => 2
[(1,3),(2,5),(4,8),(6,10),(7,11),(9,12)] generating graphics... => 3
[(1,3),(2,4),(5,7),(6,8),(9,10),(11,12)] generating graphics... => 2
[(1,3),(2,5),(4,6),(7,8),(9,10),(11,12)] generating graphics... => 2
[(1,3),(2,5),(4,9),(6,10),(7,11),(8,12)] generating graphics... => 4
[(1,3),(2,5),(4,7),(6,9),(8,10),(11,12)] generating graphics... => 2
[(1,3),(2,6),(4,8),(5,10),(7,11),(9,12)] generating graphics... => 3
[(1,3),(2,4),(5,7),(6,9),(8,10),(11,12)] generating graphics... => 2
[(1,3),(2,5),(4,7),(6,8),(9,10),(11,12)] generating graphics... => 2
[(1,3),(2,6),(4,9),(5,10),(7,11),(8,12)] generating graphics... => 4
[(1,3),(2,5),(4,6),(7,9),(8,10),(11,12)] generating graphics... => 2
[(1,3),(2,7),(4,8),(5,10),(6,11),(9,12)] generating graphics... => 4
[(1,3),(2,7),(4,9),(5,10),(6,11),(8,12)] generating graphics... => 4
[(1,4),(2,6),(3,9),(5,10),(7,11),(8,12)] generating graphics... => 4
[(1,2),(3,5),(4,7),(6,8),(9,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,9),(8,10),(11,12)] generating graphics... => 2
[(1,2),(3,5),(4,6),(7,8),(9,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,7),(6,8),(9,10),(11,12)] generating graphics... => 2
[(1,2),(3,4),(5,6),(7,9),(8,10),(11,12)] generating graphics... => 2
[(1,6),(2,7),(3,8),(4,9),(5,11),(10,12)] generating graphics... => 5
[(1,5),(2,7),(3,8),(4,9),(6,11),(10,12)] generating graphics... => 4
[(1,5),(2,6),(3,7),(4,10),(8,11),(9,12)] generating graphics... => 4
[(1,6),(2,7),(3,8),(4,10),(5,11),(9,12)] generating graphics... => 5
[(1,5),(2,7),(3,8),(4,10),(6,11),(9,12)] generating graphics... => 4
[(1,4),(2,5),(3,7),(6,8),(9,10),(11,12)] generating graphics... => 3
[(1,2),(3,6),(4,7),(5,9),(8,10),(11,12)] generating graphics... => 3
[(1,6),(2,7),(3,9),(4,10),(5,11),(8,12)] generating graphics... => 5
[(1,6),(2,8),(3,9),(4,10),(5,11),(7,12)] generating graphics... => 5
[(1,4),(2,7),(3,8),(5,10),(6,11),(9,12)] generating graphics... => 4
[(1,5),(2,6),(3,9),(4,10),(7,11),(8,12)] generating graphics... => 4
[(1,4),(2,7),(3,9),(5,10),(6,11),(8,12)] generating graphics... => 4
[(1,5),(2,7),(3,9),(4,10),(6,11),(8,12)] generating graphics... => 4
[(1,4),(2,8),(3,9),(5,10),(6,11),(7,12)] generating graphics... => 5
[(1,7),(2,8),(3,9),(4,10),(5,11),(6,12)] generating graphics... => 6
[(1,5),(2,8),(3,9),(4,10),(6,11),(7,12)] generating graphics... => 5
[(1,3),(2,8),(4,9),(5,10),(6,11),(7,12)] generating graphics... => 5
[(1,4),(2,5),(3,9),(6,10),(7,11),(8,12)] generating graphics... => 4
[(1,2),(3,5),(4,7),(6,9),(8,10),(11,12)] generating graphics... => 2
[(1,2),(3,14),(4,5),(6,13),(7,12),(8,11),(9,10)] generating graphics... => 5
[(1,2),(3,14),(4,13),(5,6),(7,12),(8,9),(10,11)] generating graphics... => 4
[(1,2),(3,14),(4,13),(5,6),(7,12),(8,11),(9,10)] generating graphics... => 5
[(1,2),(3,14),(4,13),(5,8),(6,7),(9,12),(10,11)] generating graphics... => 4
[(1,2),(3,14),(4,13),(5,10),(6,7),(8,9),(11,12)] generating graphics... => 4
[(1,2),(3,14),(4,13),(5,12),(6,7),(8,9),(10,11)] generating graphics... => 4
[(1,2),(3,14),(4,13),(5,12),(6,7),(8,11),(9,10)] generating graphics... => 5
[(1,2),(3,14),(4,11),(5,10),(6,9),(7,8),(12,13)] generating graphics... => 5
[(1,2),(3,14),(4,13),(5,10),(6,9),(7,8),(11,12)] generating graphics... => 5
[(1,2),(3,14),(4,13),(5,12),(6,9),(7,8),(10,11)] generating graphics... => 5
[(1,2),(3,14),(4,13),(5,12),(6,11),(7,8),(9,10)] generating graphics... => 5
[(1,2),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9)] generating graphics... => 6
[(1,4),(2,3),(5,14),(6,13),(7,12),(8,11),(9,10)] generating graphics... => 5
[(1,12),(2,3),(4,11),(5,10),(6,9),(7,8),(13,14)] generating graphics... => 5
[(1,12),(2,11),(3,4),(5,10),(6,7),(8,9),(13,14)] generating graphics... => 4
[(1,12),(2,11),(3,4),(5,10),(6,9),(7,8),(13,14)] generating graphics... => 5
[(1,12),(2,11),(3,6),(4,5),(7,10),(8,9),(13,14)] generating graphics... => 4
[(1,12),(2,11),(3,8),(4,5),(6,7),(9,10),(13,14)] generating graphics... => 4
[(1,12),(2,11),(3,10),(4,5),(6,7),(8,9),(13,14)] generating graphics... => 4
[(1,12),(2,11),(3,10),(4,5),(6,9),(7,8),(13,14)] generating graphics... => 5
[(1,10),(2,9),(3,8),(4,7),(5,6),(11,14),(12,13)] generating graphics... => 5
[(1,12),(2,9),(3,8),(4,7),(5,6),(10,11),(13,14)] generating graphics... => 5
[(1,12),(2,11),(3,8),(4,7),(5,6),(9,10),(13,14)] generating graphics... => 5
[(1,12),(2,11),(3,10),(4,7),(5,6),(8,9),(13,14)] generating graphics... => 5
[(1,12),(2,11),(3,10),(4,9),(5,6),(7,8),(13,14)] generating graphics... => 5
[(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,14)] generating graphics... => 6
[(1,2),(3,16),(4,15),(5,14),(6,7),(8,13),(9,12),(10,11)] generating graphics... => 6
[(1,2),(3,16),(4,15),(5,14),(6,13),(7,8),(9,10),(11,12)] generating graphics... => 5
[(1,2),(3,16),(4,15),(5,14),(6,13),(7,8),(9,12),(10,11)] generating graphics... => 6
[(1,2),(3,16),(4,15),(5,14),(6,11),(7,10),(8,9),(12,13)] generating graphics... => 6
[(1,2),(3,16),(4,15),(5,14),(6,13),(7,10),(8,9),(11,12)] generating graphics... => 6
[(1,2),(3,16),(4,15),(5,14),(6,13),(7,12),(8,9),(10,11)] generating graphics... => 6
[(1,2),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10)] generating graphics... => 7
[(1,14),(2,13),(3,12),(4,5),(6,11),(7,10),(8,9),(15,16)] generating graphics... => 6
[(1,14),(2,13),(3,12),(4,11),(5,6),(7,8),(9,10),(15,16)] generating graphics... => 5
[(1,14),(2,13),(3,12),(4,11),(5,6),(7,10),(8,9),(15,16)] generating graphics... => 6
[(1,14),(2,13),(3,12),(4,9),(5,8),(6,7),(10,11),(15,16)] generating graphics... => 6
[(1,14),(2,13),(3,12),(4,11),(5,8),(6,7),(9,10),(15,16)] generating graphics... => 6
[(1,14),(2,13),(3,12),(4,11),(5,10),(6,7),(8,9),(15,16)] generating graphics... => 6
[(1,14),(2,13),(3,12),(4,11),(5,10),(6,9),(7,8),(15,16)] generating graphics... => 7
[(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9),(17,18)] generating graphics... => 8
[(1,2),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11)] generating graphics... => 8
[(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,8),(9,10),(17,18)] generating graphics... => 7
[(1,2),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,10),(11,12)] generating graphics... => 7
[(1,16),(2,15),(3,14),(4,13),(5,12),(6,9),(7,8),(10,11),(17,18)] generating graphics... => 7
[(1,16),(2,15),(3,14),(4,13),(5,12),(6,7),(8,11),(9,10),(17,18)] generating graphics... => 7
[(1,2),(3,18),(4,17),(5,16),(6,15),(7,14),(8,11),(9,10),(12,13)] generating graphics... => 7
[(1,2),(3,18),(4,17),(5,16),(6,15),(7,14),(8,9),(10,13),(11,12)] generating graphics... => 7
[(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10),(19,20)] generating graphics... => 9
[(1,2),(3,20),(4,19),(5,18),(6,17),(7,16),(8,15),(9,14),(10,13),(11,12)] generating graphics... => 9
[(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,9),(10,11),(19,20)] generating graphics... => 8
[(1,2),(3,20),(4,19),(5,18),(6,17),(7,16),(8,15),(9,14),(10,11),(12,13)] generating graphics... => 8
[(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,22)] generating graphics... => 10
[(1,2),(3,22),(4,21),(5,20),(6,19),(7,18),(8,17),(9,16),(10,15),(11,14),(12,13)] generating graphics... => 10
click to show generating function       
Description
The size of the largest partition in the oscillating tableau corresponding to the perfect matching.
Equivalently, this is the maximal number of crosses in the corresponding triangular rook filling that can be covered by a rectangle.
Code
def statistic(m):
    return max([len([1 for e in m if min(e) <= k+1 and max(e) > k+1]) for k in range(m.size()-1)])

def statistic2(m):
    filling = {(min(e)-1,m.size()-max(e)): 1 for e in m}
    G = GrowthDiagramRSK(filling, shape=[i for i in range(m.size()-1,0,-1)])
    return max(sum(p) for p in G.out_labels()[1::2])
Created
Mar 26, 2017 at 00:21 by Martin Rubey
Updated
May 14, 2018 at 21:07 by Martin Rubey