Identifier
Identifier
Values
([(0,1)],2) generating graphics... => -1
([(1,2)],3) generating graphics... => 0
([(0,2),(1,2)],3) generating graphics... => 0
([(0,1),(0,2),(1,2)],3) generating graphics... => -1
([(2,3)],4) generating graphics... => 0
([(1,3),(2,3)],4) generating graphics... => 0
([(1,2),(1,3),(2,3)],4) generating graphics... => 0
([(0,3),(1,3),(2,3)],4) generating graphics... => 0
([(0,3),(1,2)],4) generating graphics... => -1
([(0,2),(0,3),(1,2),(1,3)],4) generating graphics... => 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) generating graphics... => 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) generating graphics... => -1
([(3,4)],5) generating graphics... => 0
([(2,4),(3,4)],5) generating graphics... => 0
([(2,3),(2,4),(3,4)],5) generating graphics... => 0
([(1,4),(2,4),(3,4)],5) generating graphics... => 0
([(0,4),(1,4),(2,4),(3,4)],5) generating graphics... => 0
([(1,4),(2,3)],5) generating graphics... => 0
([(1,3),(1,4),(2,3),(2,4)],5) generating graphics... => 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 0
([(0,1),(2,4),(3,4)],5) generating graphics... => 1
([(0,4),(1,3),(2,3),(2,4)],5) generating graphics... => 1
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) generating graphics... => 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) generating graphics... => 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => -1
([(0,1),(2,3),(2,4),(3,4)],5) generating graphics... => 1
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) generating graphics... => 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) generating graphics... => 1
([(4,5)],6) generating graphics... => 0
([(3,5),(4,5)],6) generating graphics... => 0
([(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(2,5),(3,5),(4,5)],6) generating graphics... => 0
([(1,5),(2,5),(3,5),(4,5)],6) generating graphics... => 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) generating graphics... => 0
([(2,5),(3,4)],6) generating graphics... => 0
([(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,2),(3,5),(4,5)],6) generating graphics... => 1
([(1,5),(2,4),(3,4),(3,5)],6) generating graphics... => 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 0
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,2),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 1
([(0,1),(2,5),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,5),(2,4),(3,4)],6) generating graphics... => 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) generating graphics... => 1
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 1
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) generating graphics... => -1
([(0,5),(1,4),(2,3)],6) generating graphics... => -1
([(0,1),(2,5),(3,4),(4,5)],6) generating graphics... => 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) generating graphics... => 1
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) generating graphics... => 1
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 1
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) generating graphics... => 1
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 1
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) generating graphics... => 1
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 0
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => -1
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) generating graphics... => 0
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 0
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(5,6)],7) generating graphics... => 0
([(4,6),(5,6)],7) generating graphics... => 0
([(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(3,6),(4,5)],7) generating graphics... => 0
([(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(2,3),(4,6),(5,6)],7) generating graphics... => 1
([(2,6),(3,5),(4,5),(4,6)],7) generating graphics... => 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(2,3),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(1,2),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(1,6),(2,6),(3,5),(4,5)],7) generating graphics... => 0
([(1,6),(2,6),(3,5),(4,5),(5,6)],7) generating graphics... => 1
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) generating graphics... => 0
([(1,6),(2,5),(3,4)],7) generating graphics... => 0
([(1,2),(3,6),(4,5),(5,6)],7) generating graphics... => 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 1
([(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(1,6),(2,5),(3,4),(4,6),(5,6)],7) generating graphics... => 1
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) generating graphics... => 1
([(1,5),(1,6),(2,3),(2,4),(3,6),(4,5)],7) generating graphics... => 1
([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 1
([(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7) generating graphics... => 1
([(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5)],7) generating graphics... => 1
([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 0
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,3),(1,2),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(2,6),(3,6),(4,5),(5,6)],7) generating graphics... => 1
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,3),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(2,5),(3,4),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,4),(1,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(4,5),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(1,4),(1,5),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 0
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6)],7) generating graphics... => 1
([(0,1),(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,1),(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,6),(1,3),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,4),(1,5),(2,3),(2,5),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,6),(1,2),(1,6),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,4),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,4),(0,5),(1,3),(1,6),(2,3),(2,5),(2,6),(3,4),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,4),(1,3),(1,5),(1,6),(2,3),(2,5),(2,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,5),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(4,5),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,2),(0,6),(1,2),(1,4),(1,5),(2,3),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,2),(1,5),(1,6),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,6)],7) generating graphics... => 1
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)],7) generating graphics... => 1
([(0,1),(0,2),(0,3),(0,4),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 0
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => -1
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 0
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 0
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,6),(4,5),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,2),(0,4),(0,6),(1,2),(1,3),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,5),(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,3),(0,4),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,2),(1,3),(1,6),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(5,6)],7) generating graphics... => 1
([(0,4),(0,5),(1,2),(1,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(0,6),(1,2),(1,5),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(0,6),(1,3),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5)],7) generating graphics... => 1
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7) generating graphics... => 1
([(0,1),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,1),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,1),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,2),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,6),(1,4),(2,3),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,6),(1,2),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7) generating graphics... => 1
([(0,6),(1,3),(1,4),(2,3),(2,5),(2,6),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(1,5),(2,3),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7) generating graphics... => 1
([(0,6),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,2),(1,5),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7) generating graphics... => 1
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5)],7) generating graphics... => 1
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,2),(1,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,6),(1,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 1
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7) generating graphics... => 2
([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7) generating graphics... => 0
([(0,4),(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5)],7) generating graphics... => 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) generating graphics... => 1
([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) generating graphics... => 2
([(0,4),(0,5),(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) generating graphics... => 2
Description
The second largest eigenvalue of a graph if it is integral.
This statistic is undefined if the second largest eigenvalue of the graph is not integral.
Chapter 4 of [1] provides lots of context.
References
[1] Brouwer, A. E., Haemers, W. H. Spectra of graphs MathSciNet:2882891
Code
def statistic(G):
    l = sorted([e for (e,_,_) in G.eigenvectors()])
    if len(l) >= 2 and l[-2] in ZZ:
        return l[-2]
Created
Apr 04, 2016 at 11:51 by Martin Rubey
Updated
Nov 01, 2017 at 12:12 by Christian Stump