Identifier
Identifier
Values
([],1) generating graphics... => 0
([],2) generating graphics... => 0
([(0,1)],2) generating graphics... => 1
([],3) generating graphics... => 0
([(1,2)],3) generating graphics... => 0
([(0,2),(1,2)],3) generating graphics... => 0
([(0,1),(0,2),(1,2)],3) generating graphics... => 0
([],4) generating graphics... => 0
([(2,3)],4) generating graphics... => 0
([(1,3),(2,3)],4) generating graphics... => 0
([(1,2),(1,3),(2,3)],4) generating graphics... => 0
([(0,3),(1,3),(2,3)],4) generating graphics... => 0
([(0,3),(1,2)],4) generating graphics... => 1
([(0,3),(1,2),(2,3)],4) generating graphics... => 1
([(0,3),(1,2),(1,3),(2,3)],4) generating graphics... => 1
([(0,2),(0,3),(1,2),(1,3)],4) generating graphics... => 2
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) generating graphics... => 2
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) generating graphics... => 3
([],5) generating graphics... => 0
([(3,4)],5) generating graphics... => 0
([(2,4),(3,4)],5) generating graphics... => 0
([(2,3),(2,4),(3,4)],5) generating graphics... => 0
([(1,4),(2,4),(3,4)],5) generating graphics... => 0
([(0,4),(1,4),(2,4),(3,4)],5) generating graphics... => 0
([(1,4),(2,3)],5) generating graphics... => 0
([(1,4),(2,3),(3,4)],5) generating graphics... => 0
([(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 0
([(1,3),(1,4),(2,3),(2,4)],5) generating graphics... => 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 0
([(0,1),(2,4),(3,4)],5) generating graphics... => 0
([(0,4),(1,4),(2,3),(3,4)],5) generating graphics... => 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 0
([(0,4),(1,3),(2,3),(2,4)],5) generating graphics... => 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) generating graphics... => 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) generating graphics... => 0
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) generating graphics... => 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 0
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) generating graphics... => 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) generating graphics... => 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) generating graphics... => 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) generating graphics... => 0
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 0
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 0
([(0,1),(2,3),(2,4),(3,4)],5) generating graphics... => 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) generating graphics... => 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) generating graphics... => 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 0
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) generating graphics... => 0
([],6) generating graphics... => 0
([(4,5)],6) generating graphics... => 0
([(3,5),(4,5)],6) generating graphics... => 0
([(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(2,5),(3,5),(4,5)],6) generating graphics... => 0
([(1,5),(2,5),(3,5),(4,5)],6) generating graphics... => 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) generating graphics... => 0
([(2,5),(3,4)],6) generating graphics... => 0
([(2,5),(3,4),(4,5)],6) generating graphics... => 0
([(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,2),(3,5),(4,5)],6) generating graphics... => 0
([(1,5),(2,5),(3,4),(4,5)],6) generating graphics... => 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,5),(2,4),(3,4),(3,5)],6) generating graphics... => 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) generating graphics... => 0
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 0
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 0
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,2),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 0
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 0
([(0,1),(2,5),(3,5),(4,5)],6) generating graphics... => 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) generating graphics... => 0
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,5),(1,5),(2,4),(3,4)],6) generating graphics... => 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) generating graphics... => 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) generating graphics... => 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 0
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 0
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) generating graphics... => 0
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 0
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) generating graphics... => 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 1
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) generating graphics... => 2
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) generating graphics... => 0
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) generating graphics... => 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,4),(2,3)],6) generating graphics... => 1
([(0,1),(2,5),(3,4),(4,5)],6) generating graphics... => 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 2
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) generating graphics... => 2
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 2
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 2
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 2
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) generating graphics... => 1
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 1
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 2
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6) generating graphics... => 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 2
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) generating graphics... => 2
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 3
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 4
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 5
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 6
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 6
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 5
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 5
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 3
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 5
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) generating graphics... => 2
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 2
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) generating graphics... => 3
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6) generating graphics... => 3
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 4
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 4
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) generating graphics... => 4
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 5
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 6
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 6
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 7
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 8
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 10
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 12
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 15
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 4
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) generating graphics... => 6
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 6
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 7
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 8
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 9
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 6
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 6
click to show generating function       
Description
The number of perfect matchings of a graph.
A matching of a graph $G$ is a subset $F \subset E(G)$ such that no two edges in $F$ share a vertex in common. A perfect matching $F'$ is then a matching such that every vertex in $V(G)$ is incident with exactly one edge in $F'$.
Code
def statistic(g):
    return abs(g.matching_polynomial()(0))

Created
Jul 28, 2015 at 18:52 by Martin Rubey
Updated
Dec 17, 2015 at 22:58 by Matthew Donahue