Identifier
Identifier
Values
[1,2] => 1
[2,1] => 1
[1,2,3] => 1
[1,3,2] => 1
[2,1,3] => 1
[2,3,1] => 1
[3,1,2] => 1
[3,2,1] => 1
[1,2,3,4] => 1
[1,2,4,3] => 1
[1,3,2,4] => 2
[1,3,4,2] => 1
[1,4,2,3] => 2
[1,4,3,2] => 1
[2,1,3,4] => 1
[2,1,4,3] => 1
[2,3,1,4] => 2
[2,3,4,1] => 1
[2,4,1,3] => 2
[2,4,3,1] => 1
[3,1,2,4] => 1
[3,1,4,2] => 2
[3,2,1,4] => 1
[3,2,4,1] => 2
[3,4,1,2] => 1
[3,4,2,1] => 1
[4,1,2,3] => 1
[4,1,3,2] => 2
[4,2,1,3] => 1
[4,2,3,1] => 2
[4,3,1,2] => 1
[4,3,2,1] => 1
[1,2,3,4,5] => 1
[1,2,3,5,4] => 1
[1,2,4,3,5] => 2
[1,2,4,5,3] => 1
[1,2,5,3,4] => 2
[1,2,5,4,3] => 1
[1,3,2,4,5] => 2
[1,3,2,5,4] => 2
[1,3,4,2,5] => 2
[1,3,4,5,2] => 1
[1,3,5,2,4] => 2
[1,3,5,4,2] => 1
[1,4,2,3,5] => 2
[1,4,2,5,3] => 2
[1,4,3,2,5] => 2
[1,4,3,5,2] => 2
[1,4,5,2,3] => 2
[1,4,5,3,2] => 1
[1,5,2,3,4] => 2
[1,5,2,4,3] => 2
[1,5,3,2,4] => 2
[1,5,3,4,2] => 2
[1,5,4,2,3] => 2
[1,5,4,3,2] => 1
[2,1,3,4,5] => 1
[2,1,3,5,4] => 1
[2,1,4,3,5] => 2
[2,1,4,5,3] => 1
[2,1,5,3,4] => 2
[2,1,5,4,3] => 1
[2,3,1,4,5] => 2
[2,3,1,5,4] => 2
[2,3,4,1,5] => 2
[2,3,4,5,1] => 1
[2,3,5,1,4] => 2
[2,3,5,4,1] => 1
[2,4,1,3,5] => 2
[2,4,1,5,3] => 2
[2,4,3,1,5] => 2
[2,4,3,5,1] => 2
[2,4,5,1,3] => 2
[2,4,5,3,1] => 1
[2,5,1,3,4] => 2
[2,5,1,4,3] => 2
[2,5,3,1,4] => 2
[2,5,3,4,1] => 2
[2,5,4,1,3] => 2
[2,5,4,3,1] => 1
[3,1,2,4,5] => 1
[3,1,2,5,4] => 1
[3,1,4,2,5] => 2
[3,1,4,5,2] => 2
[3,1,5,2,4] => 2
[3,1,5,4,2] => 2
[3,2,1,4,5] => 1
[3,2,1,5,4] => 1
[3,2,4,1,5] => 2
[3,2,4,5,1] => 2
[3,2,5,1,4] => 2
[3,2,5,4,1] => 2
[3,4,1,2,5] => 2
[3,4,1,5,2] => 2
[3,4,2,1,5] => 2
[3,4,2,5,1] => 2
[3,4,5,1,2] => 1
[3,4,5,2,1] => 1
[3,5,1,2,4] => 2
[3,5,1,4,2] => 2
[3,5,2,1,4] => 2
[3,5,2,4,1] => 2
[3,5,4,1,2] => 1
[3,5,4,2,1] => 1
[4,1,2,3,5] => 1
[4,1,2,5,3] => 2
[4,1,3,2,5] => 2
[4,1,3,5,2] => 2
[4,1,5,2,3] => 2
[4,1,5,3,2] => 2
[4,2,1,3,5] => 1
[4,2,1,5,3] => 2
[4,2,3,1,5] => 2
[4,2,3,5,1] => 2
[4,2,5,1,3] => 2
[4,2,5,3,1] => 2
[4,3,1,2,5] => 1
[4,3,1,5,2] => 2
[4,3,2,1,5] => 1
[4,3,2,5,1] => 2
[4,3,5,1,2] => 2
[4,3,5,2,1] => 2
[4,5,1,2,3] => 1
[4,5,1,3,2] => 2
[4,5,2,1,3] => 1
[4,5,2,3,1] => 2
[4,5,3,1,2] => 1
[4,5,3,2,1] => 1
[5,1,2,3,4] => 1
[5,1,2,4,3] => 2
[5,1,3,2,4] => 2
[5,1,3,4,2] => 2
[5,1,4,2,3] => 2
[5,1,4,3,2] => 2
[5,2,1,3,4] => 1
[5,2,1,4,3] => 2
[5,2,3,1,4] => 2
[5,2,3,4,1] => 2
[5,2,4,1,3] => 2
[5,2,4,3,1] => 2
[5,3,1,2,4] => 1
[5,3,1,4,2] => 2
[5,3,2,1,4] => 1
[5,3,2,4,1] => 2
[5,3,4,1,2] => 2
[5,3,4,2,1] => 2
[5,4,1,2,3] => 1
[5,4,1,3,2] => 2
[5,4,2,1,3] => 1
[5,4,2,3,1] => 2
[5,4,3,1,2] => 1
[5,4,3,2,1] => 1
[1,2,3,4,5,6] => 1
[1,2,3,4,6,5] => 1
[1,2,3,5,4,6] => 2
[1,2,3,5,6,4] => 1
[1,2,3,6,4,5] => 2
[1,2,3,6,5,4] => 1
[1,2,4,3,5,6] => 2
[1,2,4,3,6,5] => 2
[1,2,4,5,3,6] => 2
[1,2,4,5,6,3] => 1
[1,2,4,6,3,5] => 2
[1,2,4,6,5,3] => 1
[1,2,5,3,4,6] => 2
[1,2,5,3,6,4] => 2
[1,2,5,4,3,6] => 2
[1,2,5,4,6,3] => 2
[1,2,5,6,3,4] => 2
[1,2,5,6,4,3] => 1
[1,2,6,3,4,5] => 2
[1,2,6,3,5,4] => 2
[1,2,6,4,3,5] => 2
[1,2,6,4,5,3] => 2
[1,2,6,5,3,4] => 2
[1,2,6,5,4,3] => 1
[1,3,2,4,5,6] => 2
[1,3,2,4,6,5] => 2
[1,3,2,5,4,6] => 3
[1,3,2,5,6,4] => 2
[1,3,2,6,4,5] => 3
[1,3,2,6,5,4] => 2
[1,3,4,2,5,6] => 2
[1,3,4,2,6,5] => 2
[1,3,4,5,2,6] => 2
[1,3,4,5,6,2] => 1
[1,3,4,6,2,5] => 2
[1,3,4,6,5,2] => 1
[1,3,5,2,4,6] => 2
[1,3,5,2,6,4] => 2
[1,3,5,4,2,6] => 2
[1,3,5,4,6,2] => 2
[1,3,5,6,2,4] => 2
[1,3,5,6,4,2] => 1
[1,3,6,2,4,5] => 2
[1,3,6,2,5,4] => 2
[1,3,6,4,2,5] => 2
[1,3,6,4,5,2] => 2
[1,3,6,5,2,4] => 2
[1,3,6,5,4,2] => 1
[1,4,2,3,5,6] => 2
[1,4,2,3,6,5] => 2
[1,4,2,5,3,6] => 3
[1,4,2,5,6,3] => 2
[1,4,2,6,3,5] => 3
[1,4,2,6,5,3] => 2
[1,4,3,2,5,6] => 2
[1,4,3,2,6,5] => 2
[1,4,3,5,2,6] => 3
[1,4,3,5,6,2] => 2
[1,4,3,6,2,5] => 3
[1,4,3,6,5,2] => 2
[1,4,5,2,3,6] => 2
[1,4,5,2,6,3] => 2
[1,4,5,3,2,6] => 2
[1,4,5,3,6,2] => 2
[1,4,5,6,2,3] => 2
[1,4,5,6,3,2] => 1
[1,4,6,2,3,5] => 2
[1,4,6,2,5,3] => 2
[1,4,6,3,2,5] => 2
[1,4,6,3,5,2] => 2
[1,4,6,5,2,3] => 2
[1,4,6,5,3,2] => 1
[1,5,2,3,4,6] => 2
[1,5,2,3,6,4] => 2
[1,5,2,4,3,6] => 3
[1,5,2,4,6,3] => 2
[1,5,2,6,3,4] => 3
[1,5,2,6,4,3] => 2
[1,5,3,2,4,6] => 2
[1,5,3,2,6,4] => 2
[1,5,3,4,2,6] => 3
[1,5,3,4,6,2] => 2
[1,5,3,6,2,4] => 3
[1,5,3,6,4,2] => 2
[1,5,4,2,3,6] => 2
[1,5,4,2,6,3] => 2
[1,5,4,3,2,6] => 2
[1,5,4,3,6,2] => 2
[1,5,4,6,2,3] => 3
[1,5,4,6,3,2] => 2
[1,5,6,2,3,4] => 2
[1,5,6,2,4,3] => 2
[1,5,6,3,2,4] => 2
[1,5,6,3,4,2] => 2
[1,5,6,4,2,3] => 2
[1,5,6,4,3,2] => 1
[1,6,2,3,4,5] => 2
[1,6,2,3,5,4] => 2
[1,6,2,4,3,5] => 3
[1,6,2,4,5,3] => 2
[1,6,2,5,3,4] => 3
[1,6,2,5,4,3] => 2
[1,6,3,2,4,5] => 2
[1,6,3,2,5,4] => 2
[1,6,3,4,2,5] => 3
[1,6,3,4,5,2] => 2
[1,6,3,5,2,4] => 3
[1,6,3,5,4,2] => 2
[1,6,4,2,3,5] => 2
[1,6,4,2,5,3] => 2
[1,6,4,3,2,5] => 2
[1,6,4,3,5,2] => 2
[1,6,4,5,2,3] => 3
[1,6,4,5,3,2] => 2
[1,6,5,2,3,4] => 2
[1,6,5,2,4,3] => 2
[1,6,5,3,2,4] => 2
[1,6,5,3,4,2] => 2
[1,6,5,4,2,3] => 2
[1,6,5,4,3,2] => 1
[2,1,3,4,5,6] => 1
[2,1,3,4,6,5] => 1
[2,1,3,5,4,6] => 2
[2,1,3,5,6,4] => 1
[2,1,3,6,4,5] => 2
[2,1,3,6,5,4] => 1
[2,1,4,3,5,6] => 2
[2,1,4,3,6,5] => 2
[2,1,4,5,3,6] => 2
[2,1,4,5,6,3] => 1
[2,1,4,6,3,5] => 2
[2,1,4,6,5,3] => 1
[2,1,5,3,4,6] => 2
[2,1,5,3,6,4] => 2
[2,1,5,4,3,6] => 2
[2,1,5,4,6,3] => 2
[2,1,5,6,3,4] => 2
[2,1,5,6,4,3] => 1
[2,1,6,3,4,5] => 2
[2,1,6,3,5,4] => 2
[2,1,6,4,3,5] => 2
[2,1,6,4,5,3] => 2
[2,1,6,5,3,4] => 2
[2,1,6,5,4,3] => 1
[2,3,1,4,5,6] => 2
[2,3,1,4,6,5] => 2
[2,3,1,5,4,6] => 3
[2,3,1,5,6,4] => 2
[2,3,1,6,4,5] => 3
[2,3,1,6,5,4] => 2
[2,3,4,1,5,6] => 2
[2,3,4,1,6,5] => 2
[2,3,4,5,1,6] => 2
[2,3,4,5,6,1] => 1
[2,3,4,6,1,5] => 2
[2,3,4,6,5,1] => 1
[2,3,5,1,4,6] => 2
[2,3,5,1,6,4] => 2
[2,3,5,4,1,6] => 2
[2,3,5,4,6,1] => 2
[2,3,5,6,1,4] => 2
[2,3,5,6,4,1] => 1
[2,3,6,1,4,5] => 2
[2,3,6,1,5,4] => 2
[2,3,6,4,1,5] => 2
[2,3,6,4,5,1] => 2
[2,3,6,5,1,4] => 2
[2,3,6,5,4,1] => 1
[2,4,1,3,5,6] => 2
[2,4,1,3,6,5] => 2
[2,4,1,5,3,6] => 3
[2,4,1,5,6,3] => 2
[2,4,1,6,3,5] => 3
[2,4,1,6,5,3] => 2
[2,4,3,1,5,6] => 2
[2,4,3,1,6,5] => 2
[2,4,3,5,1,6] => 3
[2,4,3,5,6,1] => 2
[2,4,3,6,1,5] => 3
[2,4,3,6,5,1] => 2
[2,4,5,1,3,6] => 2
[2,4,5,1,6,3] => 2
[2,4,5,3,1,6] => 2
[2,4,5,3,6,1] => 2
[2,4,5,6,1,3] => 2
[2,4,5,6,3,1] => 1
[2,4,6,1,3,5] => 2
[2,4,6,1,5,3] => 2
[2,4,6,3,1,5] => 2
[2,4,6,3,5,1] => 2
[2,4,6,5,1,3] => 2
[2,4,6,5,3,1] => 1
[2,5,1,3,4,6] => 2
[2,5,1,3,6,4] => 2
[2,5,1,4,3,6] => 3
[2,5,1,4,6,3] => 2
[2,5,1,6,3,4] => 3
[2,5,1,6,4,3] => 2
[2,5,3,1,4,6] => 2
[2,5,3,1,6,4] => 2
[2,5,3,4,1,6] => 3
[2,5,3,4,6,1] => 2
[2,5,3,6,1,4] => 3
[2,5,3,6,4,1] => 2
[2,5,4,1,3,6] => 2
[2,5,4,1,6,3] => 2
[2,5,4,3,1,6] => 2
[2,5,4,3,6,1] => 2
[2,5,4,6,1,3] => 3
[2,5,4,6,3,1] => 2
[2,5,6,1,3,4] => 2
[2,5,6,1,4,3] => 2
[2,5,6,3,1,4] => 2
[2,5,6,3,4,1] => 2
[2,5,6,4,1,3] => 2
[2,5,6,4,3,1] => 1
[2,6,1,3,4,5] => 2
[2,6,1,3,5,4] => 2
[2,6,1,4,3,5] => 3
[2,6,1,4,5,3] => 2
[2,6,1,5,3,4] => 3
[2,6,1,5,4,3] => 2
[2,6,3,1,4,5] => 2
[2,6,3,1,5,4] => 2
[2,6,3,4,1,5] => 3
[2,6,3,4,5,1] => 2
[2,6,3,5,1,4] => 3
[2,6,3,5,4,1] => 2
[2,6,4,1,3,5] => 2
[2,6,4,1,5,3] => 2
[2,6,4,3,1,5] => 2
[2,6,4,3,5,1] => 2
[2,6,4,5,1,3] => 3
[2,6,4,5,3,1] => 2
[2,6,5,1,3,4] => 2
[2,6,5,1,4,3] => 2
[2,6,5,3,1,4] => 2
[2,6,5,3,4,1] => 2
[2,6,5,4,1,3] => 2
[2,6,5,4,3,1] => 1
[3,1,2,4,5,6] => 1
[3,1,2,4,6,5] => 1
[3,1,2,5,4,6] => 2
[3,1,2,5,6,4] => 1
[3,1,2,6,4,5] => 2
[3,1,2,6,5,4] => 1
[3,1,4,2,5,6] => 2
[3,1,4,2,6,5] => 2
[3,1,4,5,2,6] => 2
[3,1,4,5,6,2] => 2
[3,1,4,6,2,5] => 2
[3,1,4,6,5,2] => 2
[3,1,5,2,4,6] => 2
[3,1,5,2,6,4] => 2
[3,1,5,4,2,6] => 2
[3,1,5,4,6,2] => 3
[3,1,5,6,2,4] => 2
[3,1,5,6,4,2] => 2
[3,1,6,2,4,5] => 2
[3,1,6,2,5,4] => 2
[3,1,6,4,2,5] => 2
[3,1,6,4,5,2] => 3
[3,1,6,5,2,4] => 2
[3,1,6,5,4,2] => 2
[3,2,1,4,5,6] => 1
[3,2,1,4,6,5] => 1
[3,2,1,5,4,6] => 2
[3,2,1,5,6,4] => 1
[3,2,1,6,4,5] => 2
[3,2,1,6,5,4] => 1
[3,2,4,1,5,6] => 2
[3,2,4,1,6,5] => 2
[3,2,4,5,1,6] => 2
[3,2,4,5,6,1] => 2
[3,2,4,6,1,5] => 2
[3,2,4,6,5,1] => 2
[3,2,5,1,4,6] => 2
[3,2,5,1,6,4] => 2
[3,2,5,4,1,6] => 2
[3,2,5,4,6,1] => 3
[3,2,5,6,1,4] => 2
[3,2,5,6,4,1] => 2
[3,2,6,1,4,5] => 2
[3,2,6,1,5,4] => 2
[3,2,6,4,1,5] => 2
[3,2,6,4,5,1] => 3
[3,2,6,5,1,4] => 2
[3,2,6,5,4,1] => 2
[3,4,1,2,5,6] => 2
[3,4,1,2,6,5] => 2
[3,4,1,5,2,6] => 3
[3,4,1,5,6,2] => 2
[3,4,1,6,2,5] => 3
[3,4,1,6,5,2] => 2
[3,4,2,1,5,6] => 2
[3,4,2,1,6,5] => 2
[3,4,2,5,1,6] => 3
[3,4,2,5,6,1] => 2
[3,4,2,6,1,5] => 3
[3,4,2,6,5,1] => 2
[3,4,5,1,2,6] => 2
[3,4,5,1,6,2] => 2
[3,4,5,2,1,6] => 2
[3,4,5,2,6,1] => 2
[3,4,5,6,1,2] => 1
[3,4,5,6,2,1] => 1
[3,4,6,1,2,5] => 2
[3,4,6,1,5,2] => 2
[3,4,6,2,1,5] => 2
[3,4,6,2,5,1] => 2
[3,4,6,5,1,2] => 1
[3,4,6,5,2,1] => 1
[3,5,1,2,4,6] => 2
[3,5,1,2,6,4] => 2
[3,5,1,4,2,6] => 3
[3,5,1,4,6,2] => 2
[3,5,1,6,2,4] => 3
[3,5,1,6,4,2] => 2
[3,5,2,1,4,6] => 2
[3,5,2,1,6,4] => 2
[3,5,2,4,1,6] => 3
[3,5,2,4,6,1] => 2
[3,5,2,6,1,4] => 3
[3,5,2,6,4,1] => 2
[3,5,4,1,2,6] => 2
[3,5,4,1,6,2] => 2
[3,5,4,2,1,6] => 2
[3,5,4,2,6,1] => 2
[3,5,4,6,1,2] => 2
[3,5,4,6,2,1] => 2
[3,5,6,1,2,4] => 2
[3,5,6,1,4,2] => 2
[3,5,6,2,1,4] => 2
[3,5,6,2,4,1] => 2
[3,5,6,4,1,2] => 1
[3,5,6,4,2,1] => 1
[3,6,1,2,4,5] => 2
[3,6,1,2,5,4] => 2
[3,6,1,4,2,5] => 3
[3,6,1,4,5,2] => 2
[3,6,1,5,2,4] => 3
[3,6,1,5,4,2] => 2
[3,6,2,1,4,5] => 2
[3,6,2,1,5,4] => 2
[3,6,2,4,1,5] => 3
[3,6,2,4,5,1] => 2
[3,6,2,5,1,4] => 3
[3,6,2,5,4,1] => 2
[3,6,4,1,2,5] => 2
[3,6,4,1,5,2] => 2
[3,6,4,2,1,5] => 2
[3,6,4,2,5,1] => 2
[3,6,4,5,1,2] => 2
[3,6,4,5,2,1] => 2
[3,6,5,1,2,4] => 2
[3,6,5,1,4,2] => 2
[3,6,5,2,1,4] => 2
[3,6,5,2,4,1] => 2
[3,6,5,4,1,2] => 1
[3,6,5,4,2,1] => 1
[4,1,2,3,5,6] => 1
[4,1,2,3,6,5] => 1
[4,1,2,5,3,6] => 2
[4,1,2,5,6,3] => 2
[4,1,2,6,3,5] => 2
[4,1,2,6,5,3] => 2
[4,1,3,2,5,6] => 2
[4,1,3,2,6,5] => 2
[4,1,3,5,2,6] => 2
[4,1,3,5,6,2] => 2
[4,1,3,6,2,5] => 2
[4,1,3,6,5,2] => 2
[4,1,5,2,3,6] => 2
[4,1,5,2,6,3] => 3
[4,1,5,3,2,6] => 2
[4,1,5,3,6,2] => 3
[4,1,5,6,2,3] => 2
[4,1,5,6,3,2] => 2
[4,1,6,2,3,5] => 2
[4,1,6,2,5,3] => 3
[4,1,6,3,2,5] => 2
[4,1,6,3,5,2] => 3
[4,1,6,5,2,3] => 2
[4,1,6,5,3,2] => 2
[4,2,1,3,5,6] => 1
[4,2,1,3,6,5] => 1
[4,2,1,5,3,6] => 2
[4,2,1,5,6,3] => 2
[4,2,1,6,3,5] => 2
[4,2,1,6,5,3] => 2
[4,2,3,1,5,6] => 2
[4,2,3,1,6,5] => 2
[4,2,3,5,1,6] => 2
[4,2,3,5,6,1] => 2
[4,2,3,6,1,5] => 2
[4,2,3,6,5,1] => 2
[4,2,5,1,3,6] => 2
[4,2,5,1,6,3] => 3
[4,2,5,3,1,6] => 2
[4,2,5,3,6,1] => 3
[4,2,5,6,1,3] => 2
[4,2,5,6,3,1] => 2
[4,2,6,1,3,5] => 2
[4,2,6,1,5,3] => 3
[4,2,6,3,1,5] => 2
[4,2,6,3,5,1] => 3
[4,2,6,5,1,3] => 2
[4,2,6,5,3,1] => 2
[4,3,1,2,5,6] => 1
[4,3,1,2,6,5] => 1
[4,3,1,5,2,6] => 2
[4,3,1,5,6,2] => 2
[4,3,1,6,2,5] => 2
[4,3,1,6,5,2] => 2
[4,3,2,1,5,6] => 1
[4,3,2,1,6,5] => 1
[4,3,2,5,1,6] => 2
[4,3,2,5,6,1] => 2
[4,3,2,6,1,5] => 2
[4,3,2,6,5,1] => 2
[4,3,5,1,2,6] => 2
[4,3,5,1,6,2] => 3
[4,3,5,2,1,6] => 2
[4,3,5,2,6,1] => 3
[4,3,5,6,1,2] => 2
[4,3,5,6,2,1] => 2
[4,3,6,1,2,5] => 2
[4,3,6,1,5,2] => 3
[4,3,6,2,1,5] => 2
[4,3,6,2,5,1] => 3
[4,3,6,5,1,2] => 2
[4,3,6,5,2,1] => 2
[4,5,1,2,3,6] => 2
[4,5,1,2,6,3] => 2
[4,5,1,3,2,6] => 3
[4,5,1,3,6,2] => 2
[4,5,1,6,2,3] => 2
[4,5,1,6,3,2] => 2
[4,5,2,1,3,6] => 2
[4,5,2,1,6,3] => 2
[4,5,2,3,1,6] => 3
[4,5,2,3,6,1] => 2
[4,5,2,6,1,3] => 2
[4,5,2,6,3,1] => 2
[4,5,3,1,2,6] => 2
[4,5,3,1,6,2] => 2
[4,5,3,2,1,6] => 2
[4,5,3,2,6,1] => 2
[4,5,3,6,1,2] => 2
[4,5,3,6,2,1] => 2
[4,5,6,1,2,3] => 1
[4,5,6,1,3,2] => 2
[4,5,6,2,1,3] => 1
[4,5,6,2,3,1] => 2
[4,5,6,3,1,2] => 1
[4,5,6,3,2,1] => 1
[4,6,1,2,3,5] => 2
[4,6,1,2,5,3] => 2
[4,6,1,3,2,5] => 3
[4,6,1,3,5,2] => 2
[4,6,1,5,2,3] => 2
[4,6,1,5,3,2] => 2
[4,6,2,1,3,5] => 2
[4,6,2,1,5,3] => 2
[4,6,2,3,1,5] => 3
[4,6,2,3,5,1] => 2
[4,6,2,5,1,3] => 2
[4,6,2,5,3,1] => 2
[4,6,3,1,2,5] => 2
[4,6,3,1,5,2] => 2
[4,6,3,2,1,5] => 2
[4,6,3,2,5,1] => 2
[4,6,3,5,1,2] => 2
[4,6,3,5,2,1] => 2
[4,6,5,1,2,3] => 1
[4,6,5,1,3,2] => 2
[4,6,5,2,1,3] => 1
[4,6,5,2,3,1] => 2
[4,6,5,3,1,2] => 1
[4,6,5,3,2,1] => 1
[5,1,2,3,4,6] => 1
[5,1,2,3,6,4] => 2
[5,1,2,4,3,6] => 2
[5,1,2,4,6,3] => 2
[5,1,2,6,3,4] => 2
[5,1,2,6,4,3] => 2
[5,1,3,2,4,6] => 2
[5,1,3,2,6,4] => 3
[5,1,3,4,2,6] => 2
[5,1,3,4,6,2] => 2
[5,1,3,6,2,4] => 2
[5,1,3,6,4,2] => 2
[5,1,4,2,3,6] => 2
[5,1,4,2,6,3] => 3
[5,1,4,3,2,6] => 2
[5,1,4,3,6,2] => 3
[5,1,4,6,2,3] => 2
[5,1,4,6,3,2] => 2
[5,1,6,2,3,4] => 2
[5,1,6,2,4,3] => 3
[5,1,6,3,2,4] => 2
[5,1,6,3,4,2] => 3
[5,1,6,4,2,3] => 2
[5,1,6,4,3,2] => 2
[5,2,1,3,4,6] => 1
[5,2,1,3,6,4] => 2
[5,2,1,4,3,6] => 2
[5,2,1,4,6,3] => 2
[5,2,1,6,3,4] => 2
[5,2,1,6,4,3] => 2
[5,2,3,1,4,6] => 2
[5,2,3,1,6,4] => 3
[5,2,3,4,1,6] => 2
[5,2,3,4,6,1] => 2
[5,2,3,6,1,4] => 2
[5,2,3,6,4,1] => 2
[5,2,4,1,3,6] => 2
[5,2,4,1,6,3] => 3
[5,2,4,3,1,6] => 2
[5,2,4,3,6,1] => 3
[5,2,4,6,1,3] => 2
[5,2,4,6,3,1] => 2
[5,2,6,1,3,4] => 2
[5,2,6,1,4,3] => 3
[5,2,6,3,1,4] => 2
[5,2,6,3,4,1] => 3
[5,2,6,4,1,3] => 2
[5,2,6,4,3,1] => 2
[5,3,1,2,4,6] => 1
[5,3,1,2,6,4] => 2
[5,3,1,4,2,6] => 2
[5,3,1,4,6,2] => 2
[5,3,1,6,2,4] => 2
[5,3,1,6,4,2] => 2
[5,3,2,1,4,6] => 1
[5,3,2,1,6,4] => 2
[5,3,2,4,1,6] => 2
[5,3,2,4,6,1] => 2
[5,3,2,6,1,4] => 2
[5,3,2,6,4,1] => 2
[5,3,4,1,2,6] => 2
[5,3,4,1,6,2] => 3
[5,3,4,2,1,6] => 2
[5,3,4,2,6,1] => 3
[5,3,4,6,1,2] => 2
[5,3,4,6,2,1] => 2
[5,3,6,1,2,4] => 2
[5,3,6,1,4,2] => 3
[5,3,6,2,1,4] => 2
[5,3,6,2,4,1] => 3
[5,3,6,4,1,2] => 2
[5,3,6,4,2,1] => 2
[5,4,1,2,3,6] => 1
[5,4,1,2,6,3] => 2
[5,4,1,3,2,6] => 2
[5,4,1,3,6,2] => 2
[5,4,1,6,2,3] => 2
[5,4,1,6,3,2] => 2
[5,4,2,1,3,6] => 1
[5,4,2,1,6,3] => 2
[5,4,2,3,1,6] => 2
[5,4,2,3,6,1] => 2
[5,4,2,6,1,3] => 2
[5,4,2,6,3,1] => 2
[5,4,3,1,2,6] => 1
[5,4,3,1,6,2] => 2
[5,4,3,2,1,6] => 1
[5,4,3,2,6,1] => 2
[5,4,3,6,1,2] => 2
[5,4,3,6,2,1] => 2
[5,4,6,1,2,3] => 2
[5,4,6,1,3,2] => 3
[5,4,6,2,1,3] => 2
[5,4,6,2,3,1] => 3
[5,4,6,3,1,2] => 2
[5,4,6,3,2,1] => 2
[5,6,1,2,3,4] => 1
[5,6,1,2,4,3] => 2
[5,6,1,3,2,4] => 2
[5,6,1,3,4,2] => 2
[5,6,1,4,2,3] => 2
[5,6,1,4,3,2] => 2
[5,6,2,1,3,4] => 1
[5,6,2,1,4,3] => 2
[5,6,2,3,1,4] => 2
[5,6,2,3,4,1] => 2
[5,6,2,4,1,3] => 2
[5,6,2,4,3,1] => 2
[5,6,3,1,2,4] => 1
[5,6,3,1,4,2] => 2
[5,6,3,2,1,4] => 1
[5,6,3,2,4,1] => 2
[5,6,3,4,1,2] => 2
[5,6,3,4,2,1] => 2
[5,6,4,1,2,3] => 1
[5,6,4,1,3,2] => 2
[5,6,4,2,1,3] => 1
[5,6,4,2,3,1] => 2
[5,6,4,3,1,2] => 1
[5,6,4,3,2,1] => 1
[6,1,2,3,4,5] => 1
[6,1,2,3,5,4] => 2
[6,1,2,4,3,5] => 2
[6,1,2,4,5,3] => 2
[6,1,2,5,3,4] => 2
[6,1,2,5,4,3] => 2
[6,1,3,2,4,5] => 2
[6,1,3,2,5,4] => 3
[6,1,3,4,2,5] => 2
[6,1,3,4,5,2] => 2
[6,1,3,5,2,4] => 2
[6,1,3,5,4,2] => 2
[6,1,4,2,3,5] => 2
[6,1,4,2,5,3] => 3
[6,1,4,3,2,5] => 2
[6,1,4,3,5,2] => 3
[6,1,4,5,2,3] => 2
[6,1,4,5,3,2] => 2
[6,1,5,2,3,4] => 2
[6,1,5,2,4,3] => 3
[6,1,5,3,2,4] => 2
[6,1,5,3,4,2] => 3
[6,1,5,4,2,3] => 2
[6,1,5,4,3,2] => 2
[6,2,1,3,4,5] => 1
[6,2,1,3,5,4] => 2
[6,2,1,4,3,5] => 2
[6,2,1,4,5,3] => 2
[6,2,1,5,3,4] => 2
[6,2,1,5,4,3] => 2
[6,2,3,1,4,5] => 2
[6,2,3,1,5,4] => 3
[6,2,3,4,1,5] => 2
[6,2,3,4,5,1] => 2
[6,2,3,5,1,4] => 2
[6,2,3,5,4,1] => 2
[6,2,4,1,3,5] => 2
[6,2,4,1,5,3] => 3
[6,2,4,3,1,5] => 2
[6,2,4,3,5,1] => 3
[6,2,4,5,1,3] => 2
[6,2,4,5,3,1] => 2
[6,2,5,1,3,4] => 2
[6,2,5,1,4,3] => 3
[6,2,5,3,1,4] => 2
[6,2,5,3,4,1] => 3
[6,2,5,4,1,3] => 2
[6,2,5,4,3,1] => 2
[6,3,1,2,4,5] => 1
[6,3,1,2,5,4] => 2
[6,3,1,4,2,5] => 2
[6,3,1,4,5,2] => 2
[6,3,1,5,2,4] => 2
[6,3,1,5,4,2] => 2
[6,3,2,1,4,5] => 1
[6,3,2,1,5,4] => 2
[6,3,2,4,1,5] => 2
[6,3,2,4,5,1] => 2
[6,3,2,5,1,4] => 2
[6,3,2,5,4,1] => 2
[6,3,4,1,2,5] => 2
[6,3,4,1,5,2] => 3
[6,3,4,2,1,5] => 2
[6,3,4,2,5,1] => 3
[6,3,4,5,1,2] => 2
[6,3,4,5,2,1] => 2
[6,3,5,1,2,4] => 2
[6,3,5,1,4,2] => 3
[6,3,5,2,1,4] => 2
[6,3,5,2,4,1] => 3
[6,3,5,4,1,2] => 2
[6,3,5,4,2,1] => 2
[6,4,1,2,3,5] => 1
[6,4,1,2,5,3] => 2
[6,4,1,3,2,5] => 2
[6,4,1,3,5,2] => 2
[6,4,1,5,2,3] => 2
[6,4,1,5,3,2] => 2
[6,4,2,1,3,5] => 1
[6,4,2,1,5,3] => 2
[6,4,2,3,1,5] => 2
[6,4,2,3,5,1] => 2
[6,4,2,5,1,3] => 2
[6,4,2,5,3,1] => 2
[6,4,3,1,2,5] => 1
[6,4,3,1,5,2] => 2
[6,4,3,2,1,5] => 1
[6,4,3,2,5,1] => 2
[6,4,3,5,1,2] => 2
[6,4,3,5,2,1] => 2
[6,4,5,1,2,3] => 2
[6,4,5,1,3,2] => 3
[6,4,5,2,1,3] => 2
[6,4,5,2,3,1] => 3
[6,4,5,3,1,2] => 2
[6,4,5,3,2,1] => 2
[6,5,1,2,3,4] => 1
[6,5,1,2,4,3] => 2
[6,5,1,3,2,4] => 2
[6,5,1,3,4,2] => 2
[6,5,1,4,2,3] => 2
[6,5,1,4,3,2] => 2
[6,5,2,1,3,4] => 1
[6,5,2,1,4,3] => 2
[6,5,2,3,1,4] => 2
[6,5,2,3,4,1] => 2
[6,5,2,4,1,3] => 2
[6,5,2,4,3,1] => 2
[6,5,3,1,2,4] => 1
[6,5,3,1,4,2] => 2
[6,5,3,2,1,4] => 1
[6,5,3,2,4,1] => 2
[6,5,3,4,1,2] => 2
[6,5,3,4,2,1] => 2
[6,5,4,1,2,3] => 1
[6,5,4,1,3,2] => 2
[6,5,4,2,1,3] => 1
[6,5,4,2,3,1] => 2
[6,5,4,3,1,2] => 1
[6,5,4,3,2,1] => 1
[5,6,7,1,2,3,4] => 1
[6,7,1,2,3,4,5] => 1
[6,7,4,5,1,2,3] => 2
[7,4,5,6,1,2,3] => 2
[7,5,6,1,2,3,4] => 2
[7,5,6,3,4,1,2] => 3
[7,6,1,2,3,4,5] => 1
[7,6,4,5,1,2,3] => 2
[7,6,5,1,2,3,4] => 1
[7,6,5,3,4,1,2] => 2
[7,6,5,4,1,2,3] => 1
[8,7,5,6,3,4,1,2] => 3
[7,8,5,6,3,4,1,2] => 3
[8,7,6,4,5,1,2,3] => 2
[8,6,7,4,5,1,2,3] => 3
[8,7,4,5,6,1,2,3] => 2
[7,8,4,5,6,1,2,3] => 2
[8,7,6,5,1,2,3,4] => 1
[8,7,5,6,1,2,3,4] => 2
[7,8,5,6,1,2,3,4] => 2
[8,5,6,7,1,2,3,4] => 2
[5,6,7,8,1,2,3,4] => 1
[8,7,6,1,2,3,4,5] => 1
[8,6,7,1,2,3,4,5] => 2
[6,7,8,1,2,3,4,5] => 1
click to show generating function       
Description
The number of cyclic valleys and cyclic peaks of a permutation.
This is given by the number of indices $i$ such that $\pi_{i-1} > \pi_i < \pi_{i+1}$ with indices considered cyclically. Equivalently, this is the number of indices $i$ such that $\pi_{i-1} < \pi_i > \pi_{i+1}$ with indices considered cyclically.
Code
def statistic(pi):
    pi = [pi[-1]] + list(pi) + [pi[0]]
    return sum( 1 for i in [1..len(pi)-2] if pi[i-1] > pi[i] < pi[i+1] )
Created
Feb 27, 2015 at 15:28 by Christian Stump
Updated
Apr 27, 2018 at 14:50 by Christian Stump