Identifier
Identifier
Values
{{1}} generating graphics... => 1
{{1,2}} generating graphics... => 2
{{1},{2}} generating graphics... => 3
{{1,2,3}} generating graphics... => 3
{{1},{2,3}} generating graphics... => 4
{{1,3},{2}} generating graphics... => 5
{{1,2},{3}} generating graphics... => 5
{{1},{2},{3}} generating graphics... => 6
{{1,2,3,4}} generating graphics... => 4
{{1},{2,3,4}} generating graphics... => 5
{{1,3,4},{2}} generating graphics... => 6
{{1,2,4},{3}} generating graphics... => 7
{{1,2,3},{4}} generating graphics... => 7
{{1,2},{3,4}} generating graphics... => 6
{{1,3},{2,4}} generating graphics... => 7
{{1,4},{2,3}} generating graphics... => 7
{{1},{2},{3,4}} generating graphics... => 7
{{1},{2,4},{3}} generating graphics... => 8
{{1},{2,3},{4}} generating graphics... => 8
{{1,4},{2},{3}} generating graphics... => 9
{{1,3},{2},{4}} generating graphics... => 9
{{1,2},{3},{4}} generating graphics... => 9
{{1},{2},{3},{4}} generating graphics... => 10
{{1,2,3,4,5}} generating graphics... => 5
{{1},{2,3,4,5}} generating graphics... => 6
{{1,3,4,5},{2}} generating graphics... => 7
{{1,2,4,5},{3}} generating graphics... => 8
{{1,2,3,5},{4}} generating graphics... => 9
{{1,2,3,4},{5}} generating graphics... => 9
{{1,2},{3,4,5}} generating graphics... => 7
{{1,3},{2,4,5}} generating graphics... => 8
{{1,4},{2,3,5}} generating graphics... => 9
{{1,5},{2,3,4}} generating graphics... => 9
{{1,4,5},{2,3}} generating graphics... => 8
{{1,3,5},{2,4}} generating graphics... => 9
{{1,3,4},{2,5}} generating graphics... => 9
{{1,2,5},{3,4}} generating graphics... => 9
{{1,2,4},{3,5}} generating graphics... => 9
{{1,2,3},{4,5}} generating graphics... => 8
{{1},{2},{3,4,5}} generating graphics... => 8
{{1},{2,4,5},{3}} generating graphics... => 9
{{1},{2,3,5},{4}} generating graphics... => 10
{{1},{2,3,4},{5}} generating graphics... => 10
{{1,4,5},{2},{3}} generating graphics... => 10
{{1,3,5},{2},{4}} generating graphics... => 11
{{1,3,4},{2},{5}} generating graphics... => 11
{{1,2,5},{3},{4}} generating graphics... => 12
{{1,2,4},{3},{5}} generating graphics... => 12
{{1,2,3},{4},{5}} generating graphics... => 12
{{1},{2,3},{4,5}} generating graphics... => 9
{{1},{2,4},{3,5}} generating graphics... => 10
{{1},{2,5},{3,4}} generating graphics... => 10
{{1,3},{2},{4,5}} generating graphics... => 10
{{1,4},{2},{3,5}} generating graphics... => 11
{{1,5},{2},{3,4}} generating graphics... => 11
{{1,2},{3},{4,5}} generating graphics... => 10
{{1,4},{2,5},{3}} generating graphics... => 12
{{1,5},{2,4},{3}} generating graphics... => 12
{{1,2},{3,5},{4}} generating graphics... => 11
{{1,3},{2,5},{4}} generating graphics... => 12
{{1,5},{2,3},{4}} generating graphics... => 12
{{1,2},{3,4},{5}} generating graphics... => 11
{{1,3},{2,4},{5}} generating graphics... => 12
{{1,4},{2,3},{5}} generating graphics... => 12
{{1},{2},{3},{4,5}} generating graphics... => 11
{{1},{2},{3,5},{4}} generating graphics... => 12
{{1},{2},{3,4},{5}} generating graphics... => 12
{{1},{2,5},{3},{4}} generating graphics... => 13
{{1},{2,4},{3},{5}} generating graphics... => 13
{{1},{2,3},{4},{5}} generating graphics... => 13
{{1,5},{2},{3},{4}} generating graphics... => 14
{{1,4},{2},{3},{5}} generating graphics... => 14
{{1,3},{2},{4},{5}} generating graphics... => 14
{{1,2},{3},{4},{5}} generating graphics... => 14
{{1},{2},{3},{4},{5}} generating graphics... => 15
{{1,2,3,4,5,6}} generating graphics... => 6
{{1},{2,3,4,5,6}} generating graphics... => 7
{{1,3,4,5,6},{2}} generating graphics... => 8
{{1,2,4,5,6},{3}} generating graphics... => 9
{{1,2,3,5,6},{4}} generating graphics... => 10
{{1,2,3,4,6},{5}} generating graphics... => 11
{{1,2,3,4,5},{6}} generating graphics... => 11
{{1,2},{3,4,5,6}} generating graphics... => 8
{{1,3},{2,4,5,6}} generating graphics... => 9
{{1,4},{2,3,5,6}} generating graphics... => 10
{{1,5},{2,3,4,6}} generating graphics... => 11
{{1,6},{2,3,4,5}} generating graphics... => 11
{{1,4,5,6},{2,3}} generating graphics... => 9
{{1,3,5,6},{2,4}} generating graphics... => 10
{{1,3,4,6},{2,5}} generating graphics... => 11
{{1,3,4,5},{2,6}} generating graphics... => 11
{{1,2,5,6},{3,4}} generating graphics... => 10
{{1,2,4,6},{3,5}} generating graphics... => 11
{{1,2,4,5},{3,6}} generating graphics... => 11
{{1,2,3,6},{4,5}} generating graphics... => 11
{{1,2,3,5},{4,6}} generating graphics... => 11
{{1,2,3,4},{5,6}} generating graphics... => 10
{{1},{2},{3,4,5,6}} generating graphics... => 9
{{1},{2,4,5,6},{3}} generating graphics... => 10
{{1},{2,3,5,6},{4}} generating graphics... => 11
{{1},{2,3,4,6},{5}} generating graphics... => 12
{{1},{2,3,4,5},{6}} generating graphics... => 12
{{1,4,5,6},{2},{3}} generating graphics... => 11
{{1,3,5,6},{2},{4}} generating graphics... => 12
{{1,3,4,6},{2},{5}} generating graphics... => 13
{{1,3,4,5},{2},{6}} generating graphics... => 13
{{1,2,5,6},{3},{4}} generating graphics... => 13
{{1,2,4,6},{3},{5}} generating graphics... => 14
{{1,2,4,5},{3},{6}} generating graphics... => 14
{{1,2,3,6},{4},{5}} generating graphics... => 15
{{1,2,3,5},{4},{6}} generating graphics... => 15
{{1,2,3,4},{5},{6}} generating graphics... => 15
{{1,2,3},{4,5,6}} generating graphics... => 9
{{1,2,4},{3,5,6}} generating graphics... => 10
{{1,2,5},{3,4,6}} generating graphics... => 11
{{1,2,6},{3,4,5}} generating graphics... => 11
{{1,3,4},{2,5,6}} generating graphics... => 10
{{1,3,5},{2,4,6}} generating graphics... => 11
{{1,3,6},{2,4,5}} generating graphics... => 11
{{1,4,5},{2,3,6}} generating graphics... => 11
{{1,4,6},{2,3,5}} generating graphics... => 11
{{1,5,6},{2,3,4}} generating graphics... => 10
{{1},{2,3},{4,5,6}} generating graphics... => 10
{{1},{2,4},{3,5,6}} generating graphics... => 11
{{1},{2,5},{3,4,6}} generating graphics... => 12
{{1},{2,6},{3,4,5}} generating graphics... => 12
{{1},{2,5,6},{3,4}} generating graphics... => 11
{{1},{2,4,6},{3,5}} generating graphics... => 12
{{1},{2,4,5},{3,6}} generating graphics... => 12
{{1},{2,3,6},{4,5}} generating graphics... => 12
{{1},{2,3,5},{4,6}} generating graphics... => 12
{{1},{2,3,4},{5,6}} generating graphics... => 11
{{1,3},{2},{4,5,6}} generating graphics... => 11
{{1,4},{2},{3,5,6}} generating graphics... => 12
{{1,5},{2},{3,4,6}} generating graphics... => 13
{{1,6},{2},{3,4,5}} generating graphics... => 13
{{1,2},{3},{4,5,6}} generating graphics... => 11
{{1,2},{3,5,6},{4}} generating graphics... => 12
{{1,2},{3,4,6},{5}} generating graphics... => 13
{{1,2},{3,4,5},{6}} generating graphics... => 13
{{1,4},{2,5,6},{3}} generating graphics... => 13
{{1,5},{2,4,6},{3}} generating graphics... => 14
{{1,6},{2,4,5},{3}} generating graphics... => 14
{{1,3},{2,5,6},{4}} generating graphics... => 13
{{1,3},{2,4,6},{5}} generating graphics... => 14
{{1,3},{2,4,5},{6}} generating graphics... => 14
{{1,5},{2,3,6},{4}} generating graphics... => 15
{{1,6},{2,3,5},{4}} generating graphics... => 15
{{1,4},{2,3,6},{5}} generating graphics... => 15
{{1,4},{2,3,5},{6}} generating graphics... => 15
{{1,6},{2,3,4},{5}} generating graphics... => 15
{{1,5},{2,3,4},{6}} generating graphics... => 15
{{1,5,6},{2},{3,4}} generating graphics... => 12
{{1,4,6},{2},{3,5}} generating graphics... => 13
{{1,4,5},{2},{3,6}} generating graphics... => 13
{{1,3,6},{2},{4,5}} generating graphics... => 13
{{1,3,5},{2},{4,6}} generating graphics... => 13
{{1,3,4},{2},{5,6}} generating graphics... => 12
{{1,5,6},{2,4},{3}} generating graphics... => 13
{{1,4,6},{2,5},{3}} generating graphics... => 14
{{1,4,5},{2,6},{3}} generating graphics... => 14
{{1,5,6},{2,3},{4}} generating graphics... => 13
{{1,4,6},{2,3},{5}} generating graphics... => 14
{{1,4,5},{2,3},{6}} generating graphics... => 14
{{1,3,6},{2,5},{4}} generating graphics... => 15
{{1,3,5},{2,6},{4}} generating graphics... => 15
{{1,3,6},{2,4},{5}} generating graphics... => 15
{{1,3,5},{2,4},{6}} generating graphics... => 15
{{1,3,4},{2,6},{5}} generating graphics... => 15
{{1,3,4},{2,5},{6}} generating graphics... => 15
{{1,2,6},{3},{4,5}} generating graphics... => 14
{{1,2,5},{3},{4,6}} generating graphics... => 14
{{1,2,4},{3},{5,6}} generating graphics... => 13
{{1,2,6},{3,5},{4}} generating graphics... => 15
{{1,2,5},{3,6},{4}} generating graphics... => 15
{{1,2,6},{3,4},{5}} generating graphics... => 15
{{1,2,5},{3,4},{6}} generating graphics... => 15
{{1,2,4},{3,6},{5}} generating graphics... => 15
{{1,2,4},{3,5},{6}} generating graphics... => 15
{{1,2,3},{4},{5,6}} generating graphics... => 13
{{1,2,3},{4,6},{5}} generating graphics... => 14
{{1,2,3},{4,5},{6}} generating graphics... => 14
{{1},{2},{3},{4,5,6}} generating graphics... => 12
{{1},{2},{3,5,6},{4}} generating graphics... => 13
{{1},{2},{3,4,6},{5}} generating graphics... => 14
{{1},{2},{3,4,5},{6}} generating graphics... => 14
{{1},{2,5,6},{3},{4}} generating graphics... => 14
{{1},{2,4,6},{3},{5}} generating graphics... => 15
{{1},{2,4,5},{3},{6}} generating graphics... => 15
{{1},{2,3,6},{4},{5}} generating graphics... => 16
{{1},{2,3,5},{4},{6}} generating graphics... => 16
{{1},{2,3,4},{5},{6}} generating graphics... => 16
{{1,5,6},{2},{3},{4}} generating graphics... => 15
{{1,4,6},{2},{3},{5}} generating graphics... => 16
{{1,4,5},{2},{3},{6}} generating graphics... => 16
{{1,3,6},{2},{4},{5}} generating graphics... => 17
{{1,3,5},{2},{4},{6}} generating graphics... => 17
{{1,3,4},{2},{5},{6}} generating graphics... => 17
{{1,2,6},{3},{4},{5}} generating graphics... => 18
{{1,2,5},{3},{4},{6}} generating graphics... => 18
{{1,2,4},{3},{5},{6}} generating graphics... => 18
{{1,2,3},{4},{5},{6}} generating graphics... => 18
{{1,2},{3,4},{5,6}} generating graphics... => 12
{{1,2},{3,5},{4,6}} generating graphics... => 13
{{1,2},{3,6},{4,5}} generating graphics... => 13
{{1,3},{2,4},{5,6}} generating graphics... => 13
{{1,3},{2,5},{4,6}} generating graphics... => 14
{{1,3},{2,6},{4,5}} generating graphics... => 14
{{1,4},{2,3},{5,6}} generating graphics... => 13
{{1,4},{2,5},{3,6}} generating graphics... => 15
{{1,4},{2,6},{3,5}} generating graphics... => 15
{{1,5},{2,3},{4,6}} generating graphics... => 14
{{1,5},{2,4},{3,6}} generating graphics... => 15
{{1,5},{2,6},{3,4}} generating graphics... => 15
{{1,6},{2,3},{4,5}} generating graphics... => 14
{{1,6},{2,4},{3,5}} generating graphics... => 15
{{1,6},{2,5},{3,4}} generating graphics... => 15
{{1},{2},{3,4},{5,6}} generating graphics... => 13
{{1},{2},{3,5},{4,6}} generating graphics... => 14
{{1},{2},{3,6},{4,5}} generating graphics... => 14
{{1},{2,4},{3},{5,6}} generating graphics... => 14
{{1},{2,5},{3},{4,6}} generating graphics... => 15
{{1},{2,6},{3},{4,5}} generating graphics... => 15
{{1},{2,3},{4},{5,6}} generating graphics... => 14
{{1},{2,5},{3,6},{4}} generating graphics... => 16
{{1},{2,6},{3,5},{4}} generating graphics... => 16
{{1},{2,3},{4,6},{5}} generating graphics... => 15
{{1},{2,4},{3,6},{5}} generating graphics... => 16
{{1},{2,6},{3,4},{5}} generating graphics... => 16
{{1},{2,3},{4,5},{6}} generating graphics... => 15
{{1},{2,4},{3,5},{6}} generating graphics... => 16
{{1},{2,5},{3,4},{6}} generating graphics... => 16
{{1,4},{2},{3},{5,6}} generating graphics... => 15
{{1,5},{2},{3},{4,6}} generating graphics... => 16
{{1,6},{2},{3},{4,5}} generating graphics... => 16
{{1,3},{2},{4},{5,6}} generating graphics... => 15
{{1,5},{2},{3,6},{4}} generating graphics... => 17
{{1,6},{2},{3,5},{4}} generating graphics... => 17
{{1,3},{2},{4,6},{5}} generating graphics... => 16
{{1,4},{2},{3,6},{5}} generating graphics... => 17
{{1,6},{2},{3,4},{5}} generating graphics... => 17
{{1,3},{2},{4,5},{6}} generating graphics... => 16
{{1,4},{2},{3,5},{6}} generating graphics... => 17
{{1,5},{2},{3,4},{6}} generating graphics... => 17
{{1,2},{3},{4},{5,6}} generating graphics... => 15
{{1,5},{2,6},{3},{4}} generating graphics... => 18
{{1,6},{2,5},{3},{4}} generating graphics... => 18
{{1,2},{3},{4,6},{5}} generating graphics... => 16
{{1,4},{2,6},{3},{5}} generating graphics... => 18
{{1,6},{2,4},{3},{5}} generating graphics... => 18
{{1,2},{3},{4,5},{6}} generating graphics... => 16
{{1,4},{2,5},{3},{6}} generating graphics... => 18
{{1,5},{2,4},{3},{6}} generating graphics... => 18
{{1,2},{3,6},{4},{5}} generating graphics... => 17
{{1,3},{2,6},{4},{5}} generating graphics... => 18
{{1,6},{2,3},{4},{5}} generating graphics... => 18
{{1,2},{3,5},{4},{6}} generating graphics... => 17
{{1,3},{2,5},{4},{6}} generating graphics... => 18
{{1,5},{2,3},{4},{6}} generating graphics... => 18
{{1,2},{3,4},{5},{6}} generating graphics... => 17
{{1,3},{2,4},{5},{6}} generating graphics... => 18
{{1,4},{2,3},{5},{6}} generating graphics... => 18
{{1},{2},{3},{4},{5,6}} generating graphics... => 16
{{1},{2},{3},{4,6},{5}} generating graphics... => 17
{{1},{2},{3},{4,5},{6}} generating graphics... => 17
{{1},{2},{3,6},{4},{5}} generating graphics... => 18
{{1},{2},{3,5},{4},{6}} generating graphics... => 18
{{1},{2},{3,4},{5},{6}} generating graphics... => 18
{{1},{2,6},{3},{4},{5}} generating graphics... => 19
{{1},{2,5},{3},{4},{6}} generating graphics... => 19
{{1},{2,4},{3},{5},{6}} generating graphics... => 19
{{1},{2,3},{4},{5},{6}} generating graphics... => 19
{{1,6},{2},{3},{4},{5}} generating graphics... => 20
{{1,5},{2},{3},{4},{6}} generating graphics... => 20
{{1,4},{2},{3},{5},{6}} generating graphics... => 20
{{1,3},{2},{4},{5},{6}} generating graphics... => 20
{{1,2},{3},{4},{5},{6}} generating graphics... => 20
{{1},{2},{3},{4},{5},{6}} generating graphics... => 21
click to show generating function       
Description
Sum of the maximal elements of the blocks of a set partition.
References
[1] Chern, B., Diaconis, P., Kane, D. M., Rhoades, R. C. Central Limit Theorems for some Set Partition Statistics arXiv:1502.00938
Code
def statistic(x):
    return sum(max(y) for y in x)
Created
Feb 04, 2015 at 11:11 by Christian Stump
Updated
Oct 19, 2015 at 16:31 by Christian Stump