Identifier
Identifier
Values
[1] generating graphics... => 1
[2] generating graphics... => 2
[1,1] generating graphics... => 1
[3] generating graphics... => 4
[2,1] generating graphics... => 3
[1,1,1] generating graphics... => 1
[4] generating graphics... => 8
[3,1] generating graphics... => 7
[2,2] generating graphics... => 5
[2,1,1] generating graphics... => 4
[1,1,1,1] generating graphics... => 1
[5] generating graphics... => 16
[4,1] generating graphics... => 15
[3,2] generating graphics... => 12
[3,1,1] generating graphics... => 11
[2,2,1] generating graphics... => 7
[2,1,1,1] generating graphics... => 5
[1,1,1,1,1] generating graphics... => 1
[6] generating graphics... => 32
[5,1] generating graphics... => 31
[4,2] generating graphics... => 26
[4,1,1] generating graphics... => 26
[3,3] generating graphics... => 23
[3,2,1] generating graphics... => 17
[3,1,1,1] generating graphics... => 16
[2,2,2] generating graphics... => 12
[2,2,1,1] generating graphics... => 11
[2,1,1,1,1] generating graphics... => 6
[1,1,1,1,1,1] generating graphics... => 1
[7] generating graphics... => 64
[6,1] generating graphics... => 63
[5,2] generating graphics... => 54
[5,1,1] generating graphics... => 57
[4,3] generating graphics... => 45
[4,2,1] generating graphics... => 38
[4,1,1,1] generating graphics... => 42
[3,3,1] generating graphics... => 27
[3,2,2] generating graphics... => 33
[3,2,1,1] generating graphics... => 30
[3,1,1,1,1] generating graphics... => 22
[2,2,2,1] generating graphics... => 14
[2,2,1,1,1] generating graphics... => 16
[2,1,1,1,1,1] generating graphics... => 7
[1,1,1,1,1,1,1] generating graphics... => 1
[8] generating graphics... => 128
[7,1] generating graphics... => 127
[6,2] generating graphics... => 110
[6,1,1] generating graphics... => 120
[5,3] generating graphics... => 89
[5,2,1] generating graphics... => 74
[5,1,1,1] generating graphics... => 99
[4,4] generating graphics... => 94
[4,3,1] generating graphics... => 54
[4,2,2] generating graphics... => 73
[4,2,1,1] generating graphics... => 64
[4,1,1,1,1] generating graphics... => 64
[3,3,2] generating graphics... => 42
[3,3,1,1] generating graphics... => 54
[3,2,2,1] generating graphics... => 42
[3,2,1,1,1] generating graphics... => 48
[3,1,1,1,1,1] generating graphics... => 29
[2,2,2,2] generating graphics... => 26
[2,2,2,1,1] generating graphics... => 25
[2,2,1,1,1,1] generating graphics... => 22
[2,1,1,1,1,1,1] generating graphics... => 8
[1,1,1,1,1,1,1,1] generating graphics... => 1
click to show generating function       
Description
Number of integral Gelfand-Tsetlin polytopes with prescribed top row and integer composition weight.
Given $\lambda$ count how many integer compositions $w$ (weight) there are, such that
$P_{\lambda,w}$ is integral, i.e., $w$ such that the Gelfand-Tsetlin polytope $P_{\lambda,w}$ has all vertices in integer lattice points.
References
[1] De Loera, Jesús A., McAllister, T. B. Vertices of Gelfand-Tsetlin polytopes MathSciNet:2096742
Created
May 19, 2014 at 11:32 by Per Alexandersson
Updated
May 29, 2015 at 17:10 by Martin Rubey