Identifier
Identifier
Values
[] generating graphics... => 1
[1] generating graphics... => 1
[2] generating graphics... => 2
[1,1] generating graphics... => 2
[3] generating graphics... => 3
[2,1] generating graphics... => 2
[1,1,1] generating graphics... => 6
[4] generating graphics... => 4
[3,1] generating graphics... => 3
[2,2] generating graphics... => 8
[2,1,1] generating graphics... => 4
[1,1,1,1] generating graphics... => 24
[5] generating graphics... => 5
[4,1] generating graphics... => 4
[3,2] generating graphics... => 6
[3,1,1] generating graphics... => 6
[2,2,1] generating graphics... => 8
[2,1,1,1] generating graphics... => 12
[1,1,1,1,1] generating graphics... => 120
[6] generating graphics... => 6
[5,1] generating graphics... => 5
[4,2] generating graphics... => 8
[4,1,1] generating graphics... => 8
[3,3] generating graphics... => 18
[3,2,1] generating graphics... => 6
[3,1,1,1] generating graphics... => 18
[2,2,2] generating graphics... => 48
[2,2,1,1] generating graphics... => 16
[2,1,1,1,1] generating graphics... => 48
[1,1,1,1,1,1] generating graphics... => 720
[7] generating graphics... => 7
[6,1] generating graphics... => 6
[5,2] generating graphics... => 10
[5,1,1] generating graphics... => 10
[4,3] generating graphics... => 12
[4,2,1] generating graphics... => 8
[4,1,1,1] generating graphics... => 24
[3,3,1] generating graphics... => 18
[3,2,2] generating graphics... => 24
[3,2,1,1] generating graphics... => 12
[3,1,1,1,1] generating graphics... => 72
[2,2,2,1] generating graphics... => 48
[2,2,1,1,1] generating graphics... => 48
[2,1,1,1,1,1] generating graphics... => 240
[1,1,1,1,1,1,1] generating graphics... => 5040
[8] generating graphics... => 8
[7,1] generating graphics... => 7
[6,2] generating graphics... => 12
[6,1,1] generating graphics... => 12
[5,3] generating graphics... => 15
[5,2,1] generating graphics... => 10
[5,1,1,1] generating graphics... => 30
[4,4] generating graphics... => 32
[4,3,1] generating graphics... => 12
[4,2,2] generating graphics... => 32
[4,2,1,1] generating graphics... => 16
[4,1,1,1,1] generating graphics... => 96
[3,3,2] generating graphics... => 36
[3,3,1,1] generating graphics... => 36
[3,2,2,1] generating graphics... => 24
[3,2,1,1,1] generating graphics... => 36
[3,1,1,1,1,1] generating graphics... => 360
[2,2,2,2] generating graphics... => 384
[2,2,2,1,1] generating graphics... => 96
[2,2,1,1,1,1] generating graphics... => 192
[2,1,1,1,1,1,1] generating graphics... => 1440
[1,1,1,1,1,1,1,1] generating graphics... => 40320
[9] generating graphics... => 9
[8,1] generating graphics... => 8
[7,2] generating graphics... => 14
[7,1,1] generating graphics... => 14
[6,3] generating graphics... => 18
[6,2,1] generating graphics... => 12
[6,1,1,1] generating graphics... => 36
[5,4] generating graphics... => 20
[5,3,1] generating graphics... => 15
[5,2,2] generating graphics... => 40
[5,2,1,1] generating graphics... => 20
[5,1,1,1,1] generating graphics... => 120
[4,4,1] generating graphics... => 32
[4,3,2] generating graphics... => 24
[4,3,1,1] generating graphics... => 24
[4,2,2,1] generating graphics... => 32
[4,2,1,1,1] generating graphics... => 48
[4,1,1,1,1,1] generating graphics... => 480
[3,3,3] generating graphics... => 162
[3,3,2,1] generating graphics... => 36
[3,3,1,1,1] generating graphics... => 108
[3,2,2,2] generating graphics... => 144
[3,2,2,1,1] generating graphics... => 48
[3,2,1,1,1,1] generating graphics... => 144
[3,1,1,1,1,1,1] generating graphics... => 2160
[2,2,2,2,1] generating graphics... => 384
[2,2,2,1,1,1] generating graphics... => 288
[2,2,1,1,1,1,1] generating graphics... => 960
[2,1,1,1,1,1,1,1] generating graphics... => 10080
[1,1,1,1,1,1,1,1,1] generating graphics... => 362880
[10] generating graphics... => 10
[9,1] generating graphics... => 9
[8,2] generating graphics... => 16
[8,1,1] generating graphics... => 16
[7,3] generating graphics... => 21
[7,2,1] generating graphics... => 14
[7,1,1,1] generating graphics... => 42
[6,4] generating graphics... => 24
[6,3,1] generating graphics... => 18
[6,2,2] generating graphics... => 48
[6,2,1,1] generating graphics... => 24
[6,1,1,1,1] generating graphics... => 144
[5,5] generating graphics... => 50
[5,4,1] generating graphics... => 20
[5,3,2] generating graphics... => 30
[5,3,1,1] generating graphics... => 30
[5,2,2,1] generating graphics... => 40
[5,2,1,1,1] generating graphics... => 60
[5,1,1,1,1,1] generating graphics... => 600
[4,4,2] generating graphics... => 64
[4,4,1,1] generating graphics... => 64
[4,3,3] generating graphics... => 72
[4,3,2,1] generating graphics... => 24
[4,3,1,1,1] generating graphics... => 72
[4,2,2,2] generating graphics... => 192
[4,2,2,1,1] generating graphics... => 64
[4,2,1,1,1,1] generating graphics... => 192
[4,1,1,1,1,1,1] generating graphics... => 2880
[3,3,3,1] generating graphics... => 162
[3,3,2,2] generating graphics... => 144
[3,3,2,1,1] generating graphics... => 72
[3,3,1,1,1,1] generating graphics... => 432
[3,2,2,2,1] generating graphics... => 144
[3,2,2,1,1,1] generating graphics... => 144
[3,2,1,1,1,1,1] generating graphics... => 720
[3,1,1,1,1,1,1,1] generating graphics... => 15120
[2,2,2,2,2] generating graphics... => 3840
[2,2,2,2,1,1] generating graphics... => 768
[2,2,2,1,1,1,1] generating graphics... => 1152
[2,2,1,1,1,1,1,1] generating graphics... => 5760
[2,1,1,1,1,1,1,1,1] generating graphics... => 80640
[1,1,1,1,1,1,1,1,1,1] generating graphics... => 3628800
click to show generating function       
Description
The size of the centralizer of any permutation of given cycle type.
The centralizer (or commutant, equivalently normalizer) of an element $g$ of a group $G$ is the set of elements of $G$ that commute with $g$:
$$C_g = \{h \in G : hgh^{-1} = g\}.$$
Its size thus depends only on the conjugacy class of $g$.
The conjugacy classes of a permutation is determined by its cycle type, and the size of the centralizer of a permutation with cycle type $\lambda = (1^{a_1},2^{a_2},\dots)$ is
$$|C| = \Pi j^{a_j} a_j!$$
For example, for any permutation with cycle type $\lambda = (3,2,2,1)$,
$$|C| = (3^1 \cdot 1!)(2^2 \cdot 2!)(1^1 \cdot 1!) = 24.$$
There is exactly one permutation of the empty set, the identity, so the statistic on the empty partition is $1$.
Code
def statistic(p):
    return p.centralizer_size()

Created
May 04, 2014 at 23:41 by Lahiru Kariyawasam
Updated
Oct 29, 2017 at 16:33 by Martin Rubey