Identifier
Identifier
Values
[] generating graphics... => 0
[1] generating graphics... => 0
[2] generating graphics... => 1
[1,1] generating graphics... => 0
[3] generating graphics... => 1
[2,1] generating graphics... => 0
[1,1,1] generating graphics... => 0
[4] generating graphics... => 2
[3,1] generating graphics... => 1
[2,2] generating graphics... => 1
[2,1,1] generating graphics... => 0
[1,1,1,1] generating graphics... => 0
[5] generating graphics... => 2
[4,1] generating graphics... => 1
[3,2] generating graphics... => 1
[3,1,1] generating graphics... => 1
[2,2,1] generating graphics... => 0
[2,1,1,1] generating graphics... => 0
[1,1,1,1,1] generating graphics... => 0
[6] generating graphics... => 3
[5,1] generating graphics... => 2
[4,2] generating graphics... => 2
[4,1,1] generating graphics... => 1
[3,3] generating graphics... => 1
[3,2,1] generating graphics... => 0
[3,1,1,1] generating graphics... => 1
[2,2,2] generating graphics... => 1
[2,2,1,1] generating graphics... => 0
[2,1,1,1,1] generating graphics... => 0
[1,1,1,1,1,1] generating graphics... => 0
[7] generating graphics... => 3
[6,1] generating graphics... => 2
[5,2] generating graphics... => 2
[5,1,1] generating graphics... => 2
[4,3] generating graphics... => 1
[4,2,1] generating graphics... => 1
[4,1,1,1] generating graphics... => 1
[3,3,1] generating graphics... => 1
[3,2,2] generating graphics... => 1
[3,2,1,1] generating graphics... => 0
[3,1,1,1,1] generating graphics... => 1
[2,2,2,1] generating graphics... => 0
[2,2,1,1,1] generating graphics... => 0
[2,1,1,1,1,1] generating graphics... => 0
[1,1,1,1,1,1,1] generating graphics... => 0
[8] generating graphics... => 4
[7,1] generating graphics... => 3
[6,2] generating graphics... => 3
[6,1,1] generating graphics... => 2
[5,3] generating graphics... => 2
[5,2,1] generating graphics... => 1
[5,1,1,1] generating graphics... => 2
[4,4] generating graphics... => 2
[4,3,1] generating graphics... => 1
[4,2,2] generating graphics... => 2
[4,2,1,1] generating graphics... => 1
[4,1,1,1,1] generating graphics... => 1
[3,3,2] generating graphics... => 1
[3,3,1,1] generating graphics... => 1
[3,2,2,1] generating graphics... => 0
[3,2,1,1,1] generating graphics... => 0
[3,1,1,1,1,1] generating graphics... => 1
[2,2,2,2] generating graphics... => 1
[2,2,2,1,1] generating graphics... => 0
[2,2,1,1,1,1] generating graphics... => 0
[2,1,1,1,1,1,1] generating graphics... => 0
[1,1,1,1,1,1,1,1] generating graphics... => 0
[9] generating graphics... => 4
[8,1] generating graphics... => 3
[7,2] generating graphics... => 3
[7,1,1] generating graphics... => 3
[6,3] generating graphics... => 2
[6,2,1] generating graphics... => 2
[6,1,1,1] generating graphics... => 2
[5,4] generating graphics... => 2
[5,3,1] generating graphics... => 2
[5,2,2] generating graphics... => 2
[5,2,1,1] generating graphics... => 1
[5,1,1,1,1] generating graphics... => 2
[4,4,1] generating graphics... => 1
[4,3,2] generating graphics... => 1
[4,3,1,1] generating graphics... => 1
[4,2,2,1] generating graphics... => 1
[4,2,1,1,1] generating graphics... => 1
[4,1,1,1,1,1] generating graphics... => 1
[3,3,3] generating graphics... => 1
[3,3,2,1] generating graphics... => 0
[3,3,1,1,1] generating graphics... => 1
[3,2,2,2] generating graphics... => 1
[3,2,2,1,1] generating graphics... => 0
[3,2,1,1,1,1] generating graphics... => 0
[3,1,1,1,1,1,1] generating graphics... => 1
[2,2,2,2,1] generating graphics... => 0
[2,2,2,1,1,1] generating graphics... => 0
[2,2,1,1,1,1,1] generating graphics... => 0
[2,1,1,1,1,1,1,1] generating graphics... => 0
[1,1,1,1,1,1,1,1,1] generating graphics... => 0
[10] generating graphics... => 5
[9,1] generating graphics... => 4
[8,2] generating graphics... => 4
[8,1,1] generating graphics... => 3
[7,3] generating graphics... => 3
[7,2,1] generating graphics... => 2
[7,1,1,1] generating graphics... => 3
[6,4] generating graphics... => 3
[6,3,1] generating graphics... => 2
[6,2,2] generating graphics... => 3
[6,2,1,1] generating graphics... => 2
[6,1,1,1,1] generating graphics... => 2
[5,5] generating graphics... => 2
[5,4,1] generating graphics... => 1
[5,3,2] generating graphics... => 2
[5,3,1,1] generating graphics... => 2
[5,2,2,1] generating graphics... => 1
[5,2,1,1,1] generating graphics... => 1
[5,1,1,1,1,1] generating graphics... => 2
[4,4,2] generating graphics... => 2
[4,4,1,1] generating graphics... => 1
[4,3,3] generating graphics... => 1
[4,3,2,1] generating graphics... => 0
[4,3,1,1,1] generating graphics... => 1
[4,2,2,2] generating graphics... => 2
[4,2,2,1,1] generating graphics... => 1
[4,2,1,1,1,1] generating graphics... => 1
[4,1,1,1,1,1,1] generating graphics... => 1
[3,3,3,1] generating graphics... => 1
[3,3,2,2] generating graphics... => 1
[3,3,2,1,1] generating graphics... => 0
[3,3,1,1,1,1] generating graphics... => 1
[3,2,2,2,1] generating graphics... => 0
[3,2,2,1,1,1] generating graphics... => 0
[3,2,1,1,1,1,1] generating graphics... => 0
[3,1,1,1,1,1,1,1] generating graphics... => 1
[2,2,2,2,2] generating graphics... => 1
[2,2,2,2,1,1] generating graphics... => 0
[2,2,2,1,1,1,1] generating graphics... => 0
[2,2,1,1,1,1,1,1] generating graphics... => 0
[2,1,1,1,1,1,1,1,1] generating graphics... => 0
[1,1,1,1,1,1,1,1,1,1] generating graphics... => 0
click to show generating function       
Description
The number of cells of the partition whose leg is zero and arm is odd.
This statistic is equidistributed with St000143The largest repeated part of a partition., see [1].
References
[1] Tim Statistics on partitions equidistributed with number of even parts MathOverflow:134577
Code
def good_cells(L):
    return [ c for c in L.cells() if L.leg_length(*c) == 0 and L.arm_length(*c) % 2 == 1 ]

def statistic(x):
    return len(good_cells(x))
Created
Jul 08, 2013 at 13:27 by Christian Stump
Updated
Oct 29, 2017 at 16:06 by Martin Rubey