Identifier
Identifier
Values
[1] => 1
[1,2] => 1
[2,1] => 1
[1,2,3] => 1
[1,3,2] => 2
[2,1,3] => 1
[2,3,1] => 2
[3,1,2] => 1
[3,2,1] => 1
[1,2,3,4] => 1
[1,2,4,3] => 2
[1,3,2,4] => 2
[1,3,4,2] => 2
[1,4,2,3] => 2
[1,4,3,2] => 2
[2,1,3,4] => 1
[2,1,4,3] => 2
[2,3,1,4] => 2
[2,3,4,1] => 2
[2,4,1,3] => 2
[2,4,3,1] => 2
[3,1,2,4] => 1
[3,1,4,2] => 2
[3,2,1,4] => 1
[3,2,4,1] => 2
[3,4,1,2] => 2
[3,4,2,1] => 2
[4,1,2,3] => 1
[4,1,3,2] => 2
[4,2,1,3] => 1
[4,2,3,1] => 2
[4,3,1,2] => 1
[4,3,2,1] => 1
[1,2,3,4,5] => 1
[1,2,3,5,4] => 2
[1,2,4,3,5] => 2
[1,2,4,5,3] => 2
[1,2,5,3,4] => 2
[1,2,5,4,3] => 2
[1,3,2,4,5] => 2
[1,3,2,5,4] => 3
[1,3,4,2,5] => 2
[1,3,4,5,2] => 2
[1,3,5,2,4] => 2
[1,3,5,4,2] => 2
[1,4,2,3,5] => 2
[1,4,2,5,3] => 3
[1,4,3,2,5] => 2
[1,4,3,5,2] => 3
[1,4,5,2,3] => 2
[1,4,5,3,2] => 2
[1,5,2,3,4] => 2
[1,5,2,4,3] => 3
[1,5,3,2,4] => 2
[1,5,3,4,2] => 3
[1,5,4,2,3] => 2
[1,5,4,3,2] => 2
[2,1,3,4,5] => 1
[2,1,3,5,4] => 2
[2,1,4,3,5] => 2
[2,1,4,5,3] => 2
[2,1,5,3,4] => 2
[2,1,5,4,3] => 2
[2,3,1,4,5] => 2
[2,3,1,5,4] => 3
[2,3,4,1,5] => 2
[2,3,4,5,1] => 2
[2,3,5,1,4] => 2
[2,3,5,4,1] => 2
[2,4,1,3,5] => 2
[2,4,1,5,3] => 3
[2,4,3,1,5] => 2
[2,4,3,5,1] => 3
[2,4,5,1,3] => 2
[2,4,5,3,1] => 2
[2,5,1,3,4] => 2
[2,5,1,4,3] => 3
[2,5,3,1,4] => 2
[2,5,3,4,1] => 3
[2,5,4,1,3] => 2
[2,5,4,3,1] => 2
[3,1,2,4,5] => 1
[3,1,2,5,4] => 2
[3,1,4,2,5] => 2
[3,1,4,5,2] => 2
[3,1,5,2,4] => 2
[3,1,5,4,2] => 2
[3,2,1,4,5] => 1
[3,2,1,5,4] => 2
[3,2,4,1,5] => 2
[3,2,4,5,1] => 2
[3,2,5,1,4] => 2
[3,2,5,4,1] => 2
[3,4,1,2,5] => 2
[3,4,1,5,2] => 3
[3,4,2,1,5] => 2
[3,4,2,5,1] => 3
[3,4,5,1,2] => 2
[3,4,5,2,1] => 2
[3,5,1,2,4] => 2
[3,5,1,4,2] => 3
[3,5,2,1,4] => 2
[3,5,2,4,1] => 3
[3,5,4,1,2] => 2
[3,5,4,2,1] => 2
[4,1,2,3,5] => 1
[4,1,2,5,3] => 2
[4,1,3,2,5] => 2
[4,1,3,5,2] => 2
[4,1,5,2,3] => 2
[4,1,5,3,2] => 2
[4,2,1,3,5] => 1
[4,2,1,5,3] => 2
[4,2,3,1,5] => 2
[4,2,3,5,1] => 2
[4,2,5,1,3] => 2
[4,2,5,3,1] => 2
[4,3,1,2,5] => 1
[4,3,1,5,2] => 2
[4,3,2,1,5] => 1
[4,3,2,5,1] => 2
[4,3,5,1,2] => 2
[4,3,5,2,1] => 2
[4,5,1,2,3] => 2
[4,5,1,3,2] => 3
[4,5,2,1,3] => 2
[4,5,2,3,1] => 3
[4,5,3,1,2] => 2
[4,5,3,2,1] => 2
[5,1,2,3,4] => 1
[5,1,2,4,3] => 2
[5,1,3,2,4] => 2
[5,1,3,4,2] => 2
[5,1,4,2,3] => 2
[5,1,4,3,2] => 2
[5,2,1,3,4] => 1
[5,2,1,4,3] => 2
[5,2,3,1,4] => 2
[5,2,3,4,1] => 2
[5,2,4,1,3] => 2
[5,2,4,3,1] => 2
[5,3,1,2,4] => 1
[5,3,1,4,2] => 2
[5,3,2,1,4] => 1
[5,3,2,4,1] => 2
[5,3,4,1,2] => 2
[5,3,4,2,1] => 2
[5,4,1,2,3] => 1
[5,4,1,3,2] => 2
[5,4,2,1,3] => 1
[5,4,2,3,1] => 2
[5,4,3,1,2] => 1
[5,4,3,2,1] => 1
[1,2,3,4,5,6] => 1
[1,2,3,4,6,5] => 2
[1,2,3,5,4,6] => 2
[1,2,3,5,6,4] => 2
[1,2,3,6,4,5] => 2
[1,2,3,6,5,4] => 2
[1,2,4,3,5,6] => 2
[1,2,4,3,6,5] => 3
[1,2,4,5,3,6] => 2
[1,2,4,5,6,3] => 2
[1,2,4,6,3,5] => 2
[1,2,4,6,5,3] => 2
[1,2,5,3,4,6] => 2
[1,2,5,3,6,4] => 3
[1,2,5,4,3,6] => 2
[1,2,5,4,6,3] => 3
[1,2,5,6,3,4] => 2
[1,2,5,6,4,3] => 2
[1,2,6,3,4,5] => 2
[1,2,6,3,5,4] => 3
[1,2,6,4,3,5] => 2
[1,2,6,4,5,3] => 3
[1,2,6,5,3,4] => 2
[1,2,6,5,4,3] => 2
[1,3,2,4,5,6] => 2
[1,3,2,4,6,5] => 3
[1,3,2,5,4,6] => 3
[1,3,2,5,6,4] => 3
[1,3,2,6,4,5] => 3
[1,3,2,6,5,4] => 3
[1,3,4,2,5,6] => 2
[1,3,4,2,6,5] => 3
[1,3,4,5,2,6] => 2
[1,3,4,5,6,2] => 2
[1,3,4,6,2,5] => 2
[1,3,4,6,5,2] => 2
[1,3,5,2,4,6] => 2
[1,3,5,2,6,4] => 3
[1,3,5,4,2,6] => 2
[1,3,5,4,6,2] => 3
[1,3,5,6,2,4] => 2
[1,3,5,6,4,2] => 2
[1,3,6,2,4,5] => 2
[1,3,6,2,5,4] => 3
[1,3,6,4,2,5] => 2
[1,3,6,4,5,2] => 3
[1,3,6,5,2,4] => 2
[1,3,6,5,4,2] => 2
[1,4,2,3,5,6] => 2
[1,4,2,3,6,5] => 3
[1,4,2,5,3,6] => 3
[1,4,2,5,6,3] => 3
[1,4,2,6,3,5] => 3
[1,4,2,6,5,3] => 3
[1,4,3,2,5,6] => 2
[1,4,3,2,6,5] => 3
[1,4,3,5,2,6] => 3
[1,4,3,5,6,2] => 3
[1,4,3,6,2,5] => 3
[1,4,3,6,5,2] => 3
[1,4,5,2,3,6] => 2
[1,4,5,2,6,3] => 3
[1,4,5,3,2,6] => 2
[1,4,5,3,6,2] => 3
[1,4,5,6,2,3] => 2
[1,4,5,6,3,2] => 2
[1,4,6,2,3,5] => 2
[1,4,6,2,5,3] => 3
[1,4,6,3,2,5] => 2
[1,4,6,3,5,2] => 3
[1,4,6,5,2,3] => 2
[1,4,6,5,3,2] => 2
[1,5,2,3,4,6] => 2
[1,5,2,3,6,4] => 3
[1,5,2,4,3,6] => 3
[1,5,2,4,6,3] => 3
[1,5,2,6,3,4] => 3
[1,5,2,6,4,3] => 3
[1,5,3,2,4,6] => 2
[1,5,3,2,6,4] => 3
[1,5,3,4,2,6] => 3
[1,5,3,4,6,2] => 3
[1,5,3,6,2,4] => 3
[1,5,3,6,4,2] => 3
[1,5,4,2,3,6] => 2
[1,5,4,2,6,3] => 3
[1,5,4,3,2,6] => 2
[1,5,4,3,6,2] => 3
[1,5,4,6,2,3] => 3
[1,5,4,6,3,2] => 3
[1,5,6,2,3,4] => 2
[1,5,6,2,4,3] => 3
[1,5,6,3,2,4] => 2
[1,5,6,3,4,2] => 3
[1,5,6,4,2,3] => 2
[1,5,6,4,3,2] => 2
[1,6,2,3,4,5] => 2
[1,6,2,3,5,4] => 3
[1,6,2,4,3,5] => 3
[1,6,2,4,5,3] => 3
[1,6,2,5,3,4] => 3
[1,6,2,5,4,3] => 3
[1,6,3,2,4,5] => 2
[1,6,3,2,5,4] => 3
[1,6,3,4,2,5] => 3
[1,6,3,4,5,2] => 3
[1,6,3,5,2,4] => 3
[1,6,3,5,4,2] => 3
[1,6,4,2,3,5] => 2
[1,6,4,2,5,3] => 3
[1,6,4,3,2,5] => 2
[1,6,4,3,5,2] => 3
[1,6,4,5,2,3] => 3
[1,6,4,5,3,2] => 3
[1,6,5,2,3,4] => 2
[1,6,5,2,4,3] => 3
[1,6,5,3,2,4] => 2
[1,6,5,3,4,2] => 3
[1,6,5,4,2,3] => 2
[1,6,5,4,3,2] => 2
[2,1,3,4,5,6] => 1
[2,1,3,4,6,5] => 2
[2,1,3,5,4,6] => 2
[2,1,3,5,6,4] => 2
[2,1,3,6,4,5] => 2
[2,1,3,6,5,4] => 2
[2,1,4,3,5,6] => 2
[2,1,4,3,6,5] => 3
[2,1,4,5,3,6] => 2
[2,1,4,5,6,3] => 2
[2,1,4,6,3,5] => 2
[2,1,4,6,5,3] => 2
[2,1,5,3,4,6] => 2
[2,1,5,3,6,4] => 3
[2,1,5,4,3,6] => 2
[2,1,5,4,6,3] => 3
[2,1,5,6,3,4] => 2
[2,1,5,6,4,3] => 2
[2,1,6,3,4,5] => 2
[2,1,6,3,5,4] => 3
[2,1,6,4,3,5] => 2
[2,1,6,4,5,3] => 3
[2,1,6,5,3,4] => 2
[2,1,6,5,4,3] => 2
[2,3,1,4,5,6] => 2
[2,3,1,4,6,5] => 3
[2,3,1,5,4,6] => 3
[2,3,1,5,6,4] => 3
[2,3,1,6,4,5] => 3
[2,3,1,6,5,4] => 3
[2,3,4,1,5,6] => 2
[2,3,4,1,6,5] => 3
[2,3,4,5,1,6] => 2
[2,3,4,5,6,1] => 2
[2,3,4,6,1,5] => 2
[2,3,4,6,5,1] => 2
[2,3,5,1,4,6] => 2
[2,3,5,1,6,4] => 3
[2,3,5,4,1,6] => 2
[2,3,5,4,6,1] => 3
[2,3,5,6,1,4] => 2
[2,3,5,6,4,1] => 2
[2,3,6,1,4,5] => 2
[2,3,6,1,5,4] => 3
[2,3,6,4,1,5] => 2
[2,3,6,4,5,1] => 3
[2,3,6,5,1,4] => 2
[2,3,6,5,4,1] => 2
[2,4,1,3,5,6] => 2
[2,4,1,3,6,5] => 3
[2,4,1,5,3,6] => 3
[2,4,1,5,6,3] => 3
[2,4,1,6,3,5] => 3
[2,4,1,6,5,3] => 3
[2,4,3,1,5,6] => 2
[2,4,3,1,6,5] => 3
[2,4,3,5,1,6] => 3
[2,4,3,5,6,1] => 3
[2,4,3,6,1,5] => 3
[2,4,3,6,5,1] => 3
[2,4,5,1,3,6] => 2
[2,4,5,1,6,3] => 3
[2,4,5,3,1,6] => 2
[2,4,5,3,6,1] => 3
[2,4,5,6,1,3] => 2
[2,4,5,6,3,1] => 2
[2,4,6,1,3,5] => 2
[2,4,6,1,5,3] => 3
[2,4,6,3,1,5] => 2
[2,4,6,3,5,1] => 3
[2,4,6,5,1,3] => 2
[2,4,6,5,3,1] => 2
[2,5,1,3,4,6] => 2
[2,5,1,3,6,4] => 3
[2,5,1,4,3,6] => 3
[2,5,1,4,6,3] => 3
[2,5,1,6,3,4] => 3
[2,5,1,6,4,3] => 3
[2,5,3,1,4,6] => 2
[2,5,3,1,6,4] => 3
[2,5,3,4,1,6] => 3
[2,5,3,4,6,1] => 3
[2,5,3,6,1,4] => 3
[2,5,3,6,4,1] => 3
[2,5,4,1,3,6] => 2
[2,5,4,1,6,3] => 3
[2,5,4,3,1,6] => 2
[2,5,4,3,6,1] => 3
[2,5,4,6,1,3] => 3
[2,5,4,6,3,1] => 3
[2,5,6,1,3,4] => 2
[2,5,6,1,4,3] => 3
[2,5,6,3,1,4] => 2
[2,5,6,3,4,1] => 3
[2,5,6,4,1,3] => 2
[2,5,6,4,3,1] => 2
[2,6,1,3,4,5] => 2
[2,6,1,3,5,4] => 3
[2,6,1,4,3,5] => 3
[2,6,1,4,5,3] => 3
[2,6,1,5,3,4] => 3
[2,6,1,5,4,3] => 3
[2,6,3,1,4,5] => 2
[2,6,3,1,5,4] => 3
[2,6,3,4,1,5] => 3
[2,6,3,4,5,1] => 3
[2,6,3,5,1,4] => 3
[2,6,3,5,4,1] => 3
[2,6,4,1,3,5] => 2
[2,6,4,1,5,3] => 3
[2,6,4,3,1,5] => 2
[2,6,4,3,5,1] => 3
[2,6,4,5,1,3] => 3
[2,6,4,5,3,1] => 3
[2,6,5,1,3,4] => 2
[2,6,5,1,4,3] => 3
[2,6,5,3,1,4] => 2
[2,6,5,3,4,1] => 3
[2,6,5,4,1,3] => 2
[2,6,5,4,3,1] => 2
[3,1,2,4,5,6] => 1
[3,1,2,4,6,5] => 2
[3,1,2,5,4,6] => 2
[3,1,2,5,6,4] => 2
[3,1,2,6,4,5] => 2
[3,1,2,6,5,4] => 2
[3,1,4,2,5,6] => 2
[3,1,4,2,6,5] => 3
[3,1,4,5,2,6] => 2
[3,1,4,5,6,2] => 2
[3,1,4,6,2,5] => 2
[3,1,4,6,5,2] => 2
[3,1,5,2,4,6] => 2
[3,1,5,2,6,4] => 3
[3,1,5,4,2,6] => 2
[3,1,5,4,6,2] => 3
[3,1,5,6,2,4] => 2
[3,1,5,6,4,2] => 2
[3,1,6,2,4,5] => 2
[3,1,6,2,5,4] => 3
[3,1,6,4,2,5] => 2
[3,1,6,4,5,2] => 3
[3,1,6,5,2,4] => 2
[3,1,6,5,4,2] => 2
[3,2,1,4,5,6] => 1
[3,2,1,4,6,5] => 2
[3,2,1,5,4,6] => 2
[3,2,1,5,6,4] => 2
[3,2,1,6,4,5] => 2
[3,2,1,6,5,4] => 2
[3,2,4,1,5,6] => 2
[3,2,4,1,6,5] => 3
[3,2,4,5,1,6] => 2
[3,2,4,5,6,1] => 2
[3,2,4,6,1,5] => 2
[3,2,4,6,5,1] => 2
[3,2,5,1,4,6] => 2
[3,2,5,1,6,4] => 3
[3,2,5,4,1,6] => 2
[3,2,5,4,6,1] => 3
[3,2,5,6,1,4] => 2
[3,2,5,6,4,1] => 2
[3,2,6,1,4,5] => 2
[3,2,6,1,5,4] => 3
[3,2,6,4,1,5] => 2
[3,2,6,4,5,1] => 3
[3,2,6,5,1,4] => 2
[3,2,6,5,4,1] => 2
[3,4,1,2,5,6] => 2
[3,4,1,2,6,5] => 3
[3,4,1,5,2,6] => 3
[3,4,1,5,6,2] => 3
[3,4,1,6,2,5] => 3
[3,4,1,6,5,2] => 3
[3,4,2,1,5,6] => 2
[3,4,2,1,6,5] => 3
[3,4,2,5,1,6] => 3
[3,4,2,5,6,1] => 3
[3,4,2,6,1,5] => 3
[3,4,2,6,5,1] => 3
[3,4,5,1,2,6] => 2
[3,4,5,1,6,2] => 3
[3,4,5,2,1,6] => 2
[3,4,5,2,6,1] => 3
[3,4,5,6,1,2] => 2
[3,4,5,6,2,1] => 2
[3,4,6,1,2,5] => 2
[3,4,6,1,5,2] => 3
[3,4,6,2,1,5] => 2
[3,4,6,2,5,1] => 3
[3,4,6,5,1,2] => 2
[3,4,6,5,2,1] => 2
[3,5,1,2,4,6] => 2
[3,5,1,2,6,4] => 3
[3,5,1,4,2,6] => 3
[3,5,1,4,6,2] => 3
[3,5,1,6,2,4] => 3
[3,5,1,6,4,2] => 3
[3,5,2,1,4,6] => 2
[3,5,2,1,6,4] => 3
[3,5,2,4,1,6] => 3
[3,5,2,4,6,1] => 3
[3,5,2,6,1,4] => 3
[3,5,2,6,4,1] => 3
[3,5,4,1,2,6] => 2
[3,5,4,1,6,2] => 3
[3,5,4,2,1,6] => 2
[3,5,4,2,6,1] => 3
[3,5,4,6,1,2] => 3
[3,5,4,6,2,1] => 3
[3,5,6,1,2,4] => 2
[3,5,6,1,4,2] => 3
[3,5,6,2,1,4] => 2
[3,5,6,2,4,1] => 3
[3,5,6,4,1,2] => 2
[3,5,6,4,2,1] => 2
[3,6,1,2,4,5] => 2
[3,6,1,2,5,4] => 3
[3,6,1,4,2,5] => 3
[3,6,1,4,5,2] => 3
[3,6,1,5,2,4] => 3
[3,6,1,5,4,2] => 3
[3,6,2,1,4,5] => 2
[3,6,2,1,5,4] => 3
[3,6,2,4,1,5] => 3
[3,6,2,4,5,1] => 3
[3,6,2,5,1,4] => 3
[3,6,2,5,4,1] => 3
[3,6,4,1,2,5] => 2
[3,6,4,1,5,2] => 3
[3,6,4,2,1,5] => 2
[3,6,4,2,5,1] => 3
[3,6,4,5,1,2] => 3
[3,6,4,5,2,1] => 3
[3,6,5,1,2,4] => 2
[3,6,5,1,4,2] => 3
[3,6,5,2,1,4] => 2
[3,6,5,2,4,1] => 3
[3,6,5,4,1,2] => 2
[3,6,5,4,2,1] => 2
[4,1,2,3,5,6] => 1
[4,1,2,3,6,5] => 2
[4,1,2,5,3,6] => 2
[4,1,2,5,6,3] => 2
[4,1,2,6,3,5] => 2
[4,1,2,6,5,3] => 2
[4,1,3,2,5,6] => 2
[4,1,3,2,6,5] => 3
[4,1,3,5,2,6] => 2
[4,1,3,5,6,2] => 2
[4,1,3,6,2,5] => 2
[4,1,3,6,5,2] => 2
[4,1,5,2,3,6] => 2
[4,1,5,2,6,3] => 3
[4,1,5,3,2,6] => 2
[4,1,5,3,6,2] => 3
[4,1,5,6,2,3] => 2
[4,1,5,6,3,2] => 2
[4,1,6,2,3,5] => 2
[4,1,6,2,5,3] => 3
[4,1,6,3,2,5] => 2
[4,1,6,3,5,2] => 3
[4,1,6,5,2,3] => 2
[4,1,6,5,3,2] => 2
[4,2,1,3,5,6] => 1
[4,2,1,3,6,5] => 2
[4,2,1,5,3,6] => 2
[4,2,1,5,6,3] => 2
[4,2,1,6,3,5] => 2
[4,2,1,6,5,3] => 2
[4,2,3,1,5,6] => 2
[4,2,3,1,6,5] => 3
[4,2,3,5,1,6] => 2
[4,2,3,5,6,1] => 2
[4,2,3,6,1,5] => 2
[4,2,3,6,5,1] => 2
[4,2,5,1,3,6] => 2
[4,2,5,1,6,3] => 3
[4,2,5,3,1,6] => 2
[4,2,5,3,6,1] => 3
[4,2,5,6,1,3] => 2
[4,2,5,6,3,1] => 2
[4,2,6,1,3,5] => 2
[4,2,6,1,5,3] => 3
[4,2,6,3,1,5] => 2
[4,2,6,3,5,1] => 3
[4,2,6,5,1,3] => 2
[4,2,6,5,3,1] => 2
[4,3,1,2,5,6] => 1
[4,3,1,2,6,5] => 2
[4,3,1,5,2,6] => 2
[4,3,1,5,6,2] => 2
[4,3,1,6,2,5] => 2
[4,3,1,6,5,2] => 2
[4,3,2,1,5,6] => 1
[4,3,2,1,6,5] => 2
[4,3,2,5,1,6] => 2
[4,3,2,5,6,1] => 2
[4,3,2,6,1,5] => 2
[4,3,2,6,5,1] => 2
[4,3,5,1,2,6] => 2
[4,3,5,1,6,2] => 3
[4,3,5,2,1,6] => 2
[4,3,5,2,6,1] => 3
[4,3,5,6,1,2] => 2
[4,3,5,6,2,1] => 2
[4,3,6,1,2,5] => 2
[4,3,6,1,5,2] => 3
[4,3,6,2,1,5] => 2
[4,3,6,2,5,1] => 3
[4,3,6,5,1,2] => 2
[4,3,6,5,2,1] => 2
[4,5,1,2,3,6] => 2
[4,5,1,2,6,3] => 3
[4,5,1,3,2,6] => 3
[4,5,1,3,6,2] => 3
[4,5,1,6,2,3] => 3
[4,5,1,6,3,2] => 3
[4,5,2,1,3,6] => 2
[4,5,2,1,6,3] => 3
[4,5,2,3,1,6] => 3
[4,5,2,3,6,1] => 3
[4,5,2,6,1,3] => 3
[4,5,2,6,3,1] => 3
[4,5,3,1,2,6] => 2
[4,5,3,1,6,2] => 3
[4,5,3,2,1,6] => 2
[4,5,3,2,6,1] => 3
[4,5,3,6,1,2] => 3
[4,5,3,6,2,1] => 3
[4,5,6,1,2,3] => 2
[4,5,6,1,3,2] => 3
[4,5,6,2,1,3] => 2
[4,5,6,2,3,1] => 3
[4,5,6,3,1,2] => 2
[4,5,6,3,2,1] => 2
[4,6,1,2,3,5] => 2
[4,6,1,2,5,3] => 3
[4,6,1,3,2,5] => 3
[4,6,1,3,5,2] => 3
[4,6,1,5,2,3] => 3
[4,6,1,5,3,2] => 3
[4,6,2,1,3,5] => 2
[4,6,2,1,5,3] => 3
[4,6,2,3,1,5] => 3
[4,6,2,3,5,1] => 3
[4,6,2,5,1,3] => 3
[4,6,2,5,3,1] => 3
[4,6,3,1,2,5] => 2
[4,6,3,1,5,2] => 3
[4,6,3,2,1,5] => 2
[4,6,3,2,5,1] => 3
[4,6,3,5,1,2] => 3
[4,6,3,5,2,1] => 3
[4,6,5,1,2,3] => 2
[4,6,5,1,3,2] => 3
[4,6,5,2,1,3] => 2
[4,6,5,2,3,1] => 3
[4,6,5,3,1,2] => 2
[4,6,5,3,2,1] => 2
[5,1,2,3,4,6] => 1
[5,1,2,3,6,4] => 2
[5,1,2,4,3,6] => 2
[5,1,2,4,6,3] => 2
[5,1,2,6,3,4] => 2
[5,1,2,6,4,3] => 2
[5,1,3,2,4,6] => 2
[5,1,3,2,6,4] => 3
[5,1,3,4,2,6] => 2
[5,1,3,4,6,2] => 2
[5,1,3,6,2,4] => 2
[5,1,3,6,4,2] => 2
[5,1,4,2,3,6] => 2
[5,1,4,2,6,3] => 3
[5,1,4,3,2,6] => 2
[5,1,4,3,6,2] => 3
[5,1,4,6,2,3] => 2
[5,1,4,6,3,2] => 2
[5,1,6,2,3,4] => 2
[5,1,6,2,4,3] => 3
[5,1,6,3,2,4] => 2
[5,1,6,3,4,2] => 3
[5,1,6,4,2,3] => 2
[5,1,6,4,3,2] => 2
[5,2,1,3,4,6] => 1
[5,2,1,3,6,4] => 2
[5,2,1,4,3,6] => 2
[5,2,1,4,6,3] => 2
[5,2,1,6,3,4] => 2
[5,2,1,6,4,3] => 2
[5,2,3,1,4,6] => 2
[5,2,3,1,6,4] => 3
[5,2,3,4,1,6] => 2
[5,2,3,4,6,1] => 2
[5,2,3,6,1,4] => 2
[5,2,3,6,4,1] => 2
[5,2,4,1,3,6] => 2
[5,2,4,1,6,3] => 3
[5,2,4,3,1,6] => 2
[5,2,4,3,6,1] => 3
[5,2,4,6,1,3] => 2
[5,2,4,6,3,1] => 2
[5,2,6,1,3,4] => 2
[5,2,6,1,4,3] => 3
[5,2,6,3,1,4] => 2
[5,2,6,3,4,1] => 3
[5,2,6,4,1,3] => 2
[5,2,6,4,3,1] => 2
[5,3,1,2,4,6] => 1
[5,3,1,2,6,4] => 2
[5,3,1,4,2,6] => 2
[5,3,1,4,6,2] => 2
[5,3,1,6,2,4] => 2
[5,3,1,6,4,2] => 2
[5,3,2,1,4,6] => 1
[5,3,2,1,6,4] => 2
[5,3,2,4,1,6] => 2
[5,3,2,4,6,1] => 2
[5,3,2,6,1,4] => 2
[5,3,2,6,4,1] => 2
[5,3,4,1,2,6] => 2
[5,3,4,1,6,2] => 3
[5,3,4,2,1,6] => 2
[5,3,4,2,6,1] => 3
[5,3,4,6,1,2] => 2
[5,3,4,6,2,1] => 2
[5,3,6,1,2,4] => 2
[5,3,6,1,4,2] => 3
[5,3,6,2,1,4] => 2
[5,3,6,2,4,1] => 3
[5,3,6,4,1,2] => 2
[5,3,6,4,2,1] => 2
[5,4,1,2,3,6] => 1
[5,4,1,2,6,3] => 2
[5,4,1,3,2,6] => 2
[5,4,1,3,6,2] => 2
[5,4,1,6,2,3] => 2
[5,4,1,6,3,2] => 2
[5,4,2,1,3,6] => 1
[5,4,2,1,6,3] => 2
[5,4,2,3,1,6] => 2
[5,4,2,3,6,1] => 2
[5,4,2,6,1,3] => 2
[5,4,2,6,3,1] => 2
[5,4,3,1,2,6] => 1
[5,4,3,1,6,2] => 2
[5,4,3,2,1,6] => 1
[5,4,3,2,6,1] => 2
[5,4,3,6,1,2] => 2
[5,4,3,6,2,1] => 2
[5,4,6,1,2,3] => 2
[5,4,6,1,3,2] => 3
[5,4,6,2,1,3] => 2
[5,4,6,2,3,1] => 3
[5,4,6,3,1,2] => 2
[5,4,6,3,2,1] => 2
[5,6,1,2,3,4] => 2
[5,6,1,2,4,3] => 3
[5,6,1,3,2,4] => 3
[5,6,1,3,4,2] => 3
[5,6,1,4,2,3] => 3
[5,6,1,4,3,2] => 3
[5,6,2,1,3,4] => 2
[5,6,2,1,4,3] => 3
[5,6,2,3,1,4] => 3
[5,6,2,3,4,1] => 3
[5,6,2,4,1,3] => 3
[5,6,2,4,3,1] => 3
[5,6,3,1,2,4] => 2
[5,6,3,1,4,2] => 3
[5,6,3,2,1,4] => 2
[5,6,3,2,4,1] => 3
[5,6,3,4,1,2] => 3
[5,6,3,4,2,1] => 3
[5,6,4,1,2,3] => 2
[5,6,4,1,3,2] => 3
[5,6,4,2,1,3] => 2
[5,6,4,2,3,1] => 3
[5,6,4,3,1,2] => 2
[5,6,4,3,2,1] => 2
[6,1,2,3,4,5] => 1
[6,1,2,3,5,4] => 2
[6,1,2,4,3,5] => 2
[6,1,2,4,5,3] => 2
[6,1,2,5,3,4] => 2
[6,1,2,5,4,3] => 2
[6,1,3,2,4,5] => 2
[6,1,3,2,5,4] => 3
[6,1,3,4,2,5] => 2
[6,1,3,4,5,2] => 2
[6,1,3,5,2,4] => 2
[6,1,3,5,4,2] => 2
[6,1,4,2,3,5] => 2
[6,1,4,2,5,3] => 3
[6,1,4,3,2,5] => 2
[6,1,4,3,5,2] => 3
[6,1,4,5,2,3] => 2
[6,1,4,5,3,2] => 2
[6,1,5,2,3,4] => 2
[6,1,5,2,4,3] => 3
[6,1,5,3,2,4] => 2
[6,1,5,3,4,2] => 3
[6,1,5,4,2,3] => 2
[6,1,5,4,3,2] => 2
[6,2,1,3,4,5] => 1
[6,2,1,3,5,4] => 2
[6,2,1,4,3,5] => 2
[6,2,1,4,5,3] => 2
[6,2,1,5,3,4] => 2
[6,2,1,5,4,3] => 2
[6,2,3,1,4,5] => 2
[6,2,3,1,5,4] => 3
[6,2,3,4,1,5] => 2
[6,2,3,4,5,1] => 2
[6,2,3,5,1,4] => 2
[6,2,3,5,4,1] => 2
[6,2,4,1,3,5] => 2
[6,2,4,1,5,3] => 3
[6,2,4,3,1,5] => 2
[6,2,4,3,5,1] => 3
[6,2,4,5,1,3] => 2
[6,2,4,5,3,1] => 2
[6,2,5,1,3,4] => 2
[6,2,5,1,4,3] => 3
[6,2,5,3,1,4] => 2
[6,2,5,3,4,1] => 3
[6,2,5,4,1,3] => 2
[6,2,5,4,3,1] => 2
[6,3,1,2,4,5] => 1
[6,3,1,2,5,4] => 2
[6,3,1,4,2,5] => 2
[6,3,1,4,5,2] => 2
[6,3,1,5,2,4] => 2
[6,3,1,5,4,2] => 2
[6,3,2,1,4,5] => 1
[6,3,2,1,5,4] => 2
[6,3,2,4,1,5] => 2
[6,3,2,4,5,1] => 2
[6,3,2,5,1,4] => 2
[6,3,2,5,4,1] => 2
[6,3,4,1,2,5] => 2
[6,3,4,1,5,2] => 3
[6,3,4,2,1,5] => 2
[6,3,4,2,5,1] => 3
[6,3,4,5,1,2] => 2
[6,3,4,5,2,1] => 2
[6,3,5,1,2,4] => 2
[6,3,5,1,4,2] => 3
[6,3,5,2,1,4] => 2
[6,3,5,2,4,1] => 3
[6,3,5,4,1,2] => 2
[6,3,5,4,2,1] => 2
[6,4,1,2,3,5] => 1
[6,4,1,2,5,3] => 2
[6,4,1,3,2,5] => 2
[6,4,1,3,5,2] => 2
[6,4,1,5,2,3] => 2
[6,4,1,5,3,2] => 2
[6,4,2,1,3,5] => 1
[6,4,2,1,5,3] => 2
[6,4,2,3,1,5] => 2
[6,4,2,3,5,1] => 2
[6,4,2,5,1,3] => 2
[6,4,2,5,3,1] => 2
[6,4,3,1,2,5] => 1
[6,4,3,1,5,2] => 2
[6,4,3,2,1,5] => 1
[6,4,3,2,5,1] => 2
[6,4,3,5,1,2] => 2
[6,4,3,5,2,1] => 2
[6,4,5,1,2,3] => 2
[6,4,5,1,3,2] => 3
[6,4,5,2,1,3] => 2
[6,4,5,2,3,1] => 3
[6,4,5,3,1,2] => 2
[6,4,5,3,2,1] => 2
[6,5,1,2,3,4] => 1
[6,5,1,2,4,3] => 2
[6,5,1,3,2,4] => 2
[6,5,1,3,4,2] => 2
[6,5,1,4,2,3] => 2
[6,5,1,4,3,2] => 2
[6,5,2,1,3,4] => 1
[6,5,2,1,4,3] => 2
[6,5,2,3,1,4] => 2
[6,5,2,3,4,1] => 2
[6,5,2,4,1,3] => 2
[6,5,2,4,3,1] => 2
[6,5,3,1,2,4] => 1
[6,5,3,1,4,2] => 2
[6,5,3,2,1,4] => 1
[6,5,3,2,4,1] => 2
[6,5,3,4,1,2] => 2
[6,5,3,4,2,1] => 2
[6,5,4,1,2,3] => 1
[6,5,4,1,3,2] => 2
[6,5,4,2,1,3] => 1
[6,5,4,2,3,1] => 2
[6,5,4,3,1,2] => 1
[6,5,4,3,2,1] => 1
click to show generating function       
Description
The number of valleys of a permutation, including the boundary.
The number of valleys excluding the boundary is St000353The number of inner valleys of a permutation..
References
[1] Claesson, A., Kitaev, S. Classification of bijections between 321- and 132-avoiding permutations MathSciNet:2465405
Code
def statistic(pi):
    pi1 = [len(pi)+1] + list(pi) + [len(pi)+1]
    return len([i for i in range(1,len(pi1)-1) if pi1[i-1] > pi1[i] < pi1[i+1]])

Created
Jun 13, 2013 at 16:16 by Chris Berg
Updated
Jan 08, 2016 at 14:15 by Martin Rubey