Identifier
Identifier
Values
([],1) generating graphics... => 1
([],2) generating graphics... => 0
([(0,1)],2) generating graphics... => 1
([],3) generating graphics... => 0
([(1,2)],3) generating graphics... => 0
([(0,2),(1,2)],3) generating graphics... => 1
([(0,1),(0,2),(1,2)],3) generating graphics... => 3
([],4) generating graphics... => 0
([(2,3)],4) generating graphics... => 0
([(1,3),(2,3)],4) generating graphics... => 0
([(1,2),(1,3),(2,3)],4) generating graphics... => 0
([(0,3),(1,3),(2,3)],4) generating graphics... => 1
([(0,3),(1,2)],4) generating graphics... => 0
([(0,3),(1,2),(2,3)],4) generating graphics... => 1
([(0,3),(1,2),(1,3),(2,3)],4) generating graphics... => 3
([(0,2),(0,3),(1,2),(1,3)],4) generating graphics... => 4
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) generating graphics... => 8
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) generating graphics... => 16
([],5) generating graphics... => 0
([(3,4)],5) generating graphics... => 0
([(2,4),(3,4)],5) generating graphics... => 0
([(2,3),(2,4),(3,4)],5) generating graphics... => 0
([(1,4),(2,4),(3,4)],5) generating graphics... => 0
([(0,4),(1,4),(2,4),(3,4)],5) generating graphics... => 1
([(1,4),(2,3)],5) generating graphics... => 0
([(1,4),(2,3),(3,4)],5) generating graphics... => 0
([(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 0
([(1,3),(1,4),(2,3),(2,4)],5) generating graphics... => 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 0
([(0,1),(2,4),(3,4)],5) generating graphics... => 0
([(0,4),(1,4),(2,3),(3,4)],5) generating graphics... => 1
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 3
([(0,4),(1,3),(2,3),(2,4)],5) generating graphics... => 1
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) generating graphics... => 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) generating graphics... => 4
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 8
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) generating graphics... => 12
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 20
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) generating graphics... => 5
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) generating graphics... => 11
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 21
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) generating graphics... => 24
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 40
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) generating graphics... => 45
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 75
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 125
([(0,1),(2,3),(2,4),(3,4)],5) generating graphics... => 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) generating graphics... => 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) generating graphics... => 8
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) generating graphics... => 16
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) generating graphics... => 9
([],6) generating graphics... => 0
([(4,5)],6) generating graphics... => 0
([(3,5),(4,5)],6) generating graphics... => 0
([(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(2,5),(3,5),(4,5)],6) generating graphics... => 0
([(1,5),(2,5),(3,5),(4,5)],6) generating graphics... => 0
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) generating graphics... => 1
([(2,5),(3,4)],6) generating graphics... => 0
([(2,5),(3,4),(4,5)],6) generating graphics... => 0
([(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 0
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,2),(3,5),(4,5)],6) generating graphics... => 0
([(1,5),(2,5),(3,4),(4,5)],6) generating graphics... => 0
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,5),(2,4),(3,4),(3,5)],6) generating graphics... => 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) generating graphics... => 0
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 0
([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 0
([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,2),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 0
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 0
([(0,1),(2,5),(3,5),(4,5)],6) generating graphics... => 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) generating graphics... => 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,5),(2,4),(3,4)],6) generating graphics... => 0
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) generating graphics... => 1
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) generating graphics... => 1
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 4
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 8
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 12
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 20
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 32
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 48
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 8
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) generating graphics... => 0
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 8
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 16
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) generating graphics... => 3
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 9
([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 11
([(0,5),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 21
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 24
([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 40
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) generating graphics... => 12
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 24
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) generating graphics... => 0
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) generating graphics... => 9
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 24
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 48
([(0,5),(1,4),(2,3)],6) generating graphics... => 0
([(0,1),(2,5),(3,4),(4,5)],6) generating graphics... => 0
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 9
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 0
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 0
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) generating graphics... => 4
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) generating graphics... => 8
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 16
([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 21
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 40
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 24
([(0,3),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 40
([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 75
([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 125
([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 45
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 75
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 8
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) generating graphics... => 11
([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 24
([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 45
([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 12
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 20
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) generating graphics... => 1
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) generating graphics... => 1
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 3
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 8
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 16
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 4
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 8
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) generating graphics... => 5
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 11
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 21
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 16
([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6) generating graphics... => 32
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 52
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 64
([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 96
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 28
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) generating graphics... => 6
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 14
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 32
([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 56
([(0,3),(0,4),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 66
([(0,2),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 115
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 200
([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 300
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 185
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 114
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 121
([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6) generating graphics... => 64
([(0,3),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 104
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 128
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 192
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,5),(3,4),(4,5)],6) generating graphics... => 30
([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 55
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) generating graphics... => 30
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) generating graphics... => 54
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) generating graphics... => 15
([(0,1),(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 29
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 55
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6) generating graphics... => 35
([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 61
([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 99
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 69
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 120
([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 180
([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 111
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) generating graphics... => 75
([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 130
([(0,1),(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 209
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 224
([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 336
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 384
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 576
([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 864
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 1296
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) generating graphics... => 36
([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 60
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 100
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) generating graphics... => 81
([(0,1),(0,2),(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 135
([(0,1),(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 225
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 360
([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 540
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) generating graphics... => 216
([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) generating graphics... => 324
click to show generating function       
Description
The number of spanning trees of a graph.
A subgraph $H \subseteq G$ is a spanning tree if $V(H)=V(G)$ and $H$ is a tree (i.e. $H$ is connected and contains no cycles).
Code
def statistic(g):
    return g.spanning_trees_count()
Created
Jun 13, 2013 at 16:35 by Chris Berg
Updated
Dec 17, 2015 at 19:10 by Matthew Donahue