Identifier
Identifier
Values
[[1]] generating graphics... => 1
[[1,2]] generating graphics... => 1
[[1],[2]] generating graphics... => 1
[[1,2,3]] generating graphics... => 1
[[1,3],[2]] generating graphics... => 2
[[1,2],[3]] generating graphics... => 2
[[1],[2],[3]] generating graphics... => 1
[[1,2,3,4]] generating graphics... => 1
[[1,3,4],[2]] generating graphics... => 3
[[1,2,4],[3]] generating graphics... => 3
[[1,2,3],[4]] generating graphics... => 3
[[1,3],[2,4]] generating graphics... => 2
[[1,2],[3,4]] generating graphics... => 2
[[1,4],[2],[3]] generating graphics... => 3
[[1,3],[2],[4]] generating graphics... => 3
[[1,2],[3],[4]] generating graphics... => 3
[[1],[2],[3],[4]] generating graphics... => 1
[[1,2,3,4,5]] generating graphics... => 1
[[1,3,4,5],[2]] generating graphics... => 4
[[1,2,4,5],[3]] generating graphics... => 4
[[1,2,3,5],[4]] generating graphics... => 4
[[1,2,3,4],[5]] generating graphics... => 4
[[1,3,5],[2,4]] generating graphics... => 2
[[1,2,5],[3,4]] generating graphics... => 3
[[1,3,4],[2,5]] generating graphics... => 3
[[1,2,4],[3,5]] generating graphics... => 2
[[1,2,3],[4,5]] generating graphics... => 3
[[1,4,5],[2],[3]] generating graphics... => 4
[[1,3,5],[2],[4]] generating graphics... => 2
[[1,2,5],[3],[4]] generating graphics... => 4
[[1,3,4],[2],[5]] generating graphics... => 4
[[1,2,4],[3],[5]] generating graphics... => 2
[[1,2,3],[4],[5]] generating graphics... => 4
[[1,4],[2,5],[3]] generating graphics... => 3
[[1,3],[2,5],[4]] generating graphics... => 2
[[1,2],[3,5],[4]] generating graphics... => 3
[[1,3],[2,4],[5]] generating graphics... => 3
[[1,2],[3,4],[5]] generating graphics... => 2
[[1,5],[2],[3],[4]] generating graphics... => 4
[[1,4],[2],[3],[5]] generating graphics... => 4
[[1,3],[2],[4],[5]] generating graphics... => 4
[[1,2],[3],[4],[5]] generating graphics... => 4
[[1],[2],[3],[4],[5]] generating graphics... => 1
[[1,2,3,4,5,6]] generating graphics... => 1
[[1,3,4,5,6],[2]] generating graphics... => 5
[[1,2,4,5,6],[3]] generating graphics... => 5
[[1,2,3,5,6],[4]] generating graphics... => 5
[[1,2,3,4,6],[5]] generating graphics... => 5
[[1,2,3,4,5],[6]] generating graphics... => 5
[[1,3,5,6],[2,4]] generating graphics... => 5
[[1,2,5,6],[3,4]] generating graphics... => 4
[[1,3,4,6],[2,5]] generating graphics... => 5
[[1,2,4,6],[3,5]] generating graphics... => 5
[[1,2,3,6],[4,5]] generating graphics... => 4
[[1,3,4,5],[2,6]] generating graphics... => 4
[[1,2,4,5],[3,6]] generating graphics... => 5
[[1,2,3,5],[4,6]] generating graphics... => 5
[[1,2,3,4],[5,6]] generating graphics... => 4
[[1,4,5,6],[2],[3]] generating graphics... => 5
[[1,3,5,6],[2],[4]] generating graphics... => 5
[[1,2,5,6],[3],[4]] generating graphics... => 5
[[1,3,4,6],[2],[5]] generating graphics... => 5
[[1,2,4,6],[3],[5]] generating graphics... => 5
[[1,2,3,6],[4],[5]] generating graphics... => 5
[[1,3,4,5],[2],[6]] generating graphics... => 5
[[1,2,4,5],[3],[6]] generating graphics... => 5
[[1,2,3,5],[4],[6]] generating graphics... => 5
[[1,2,3,4],[5],[6]] generating graphics... => 5
[[1,3,5],[2,4,6]] generating graphics... => 2
[[1,2,5],[3,4,6]] generating graphics... => 3
[[1,3,4],[2,5,6]] generating graphics... => 3
[[1,2,4],[3,5,6]] generating graphics... => 2
[[1,2,3],[4,5,6]] generating graphics... => 3
[[1,4,6],[2,5],[3]] generating graphics... => 12
[[1,3,6],[2,5],[4]] generating graphics... => 12
[[1,2,6],[3,5],[4]] generating graphics... => 4
[[1,3,6],[2,4],[5]] generating graphics... => 12
[[1,2,6],[3,4],[5]] generating graphics... => 12
[[1,4,5],[2,6],[3]] generating graphics... => 4
[[1,3,5],[2,6],[4]] generating graphics... => 12
[[1,2,5],[3,6],[4]] generating graphics... => 12
[[1,3,4],[2,6],[5]] generating graphics... => 12
[[1,2,4],[3,6],[5]] generating graphics... => 12
[[1,2,3],[4,6],[5]] generating graphics... => 4
[[1,3,5],[2,4],[6]] generating graphics... => 12
[[1,2,5],[3,4],[6]] generating graphics... => 12
[[1,3,4],[2,5],[6]] generating graphics... => 4
[[1,2,4],[3,5],[6]] generating graphics... => 12
[[1,2,3],[4,5],[6]] generating graphics... => 12
[[1,5,6],[2],[3],[4]] generating graphics... => 5
[[1,4,6],[2],[3],[5]] generating graphics... => 5
[[1,3,6],[2],[4],[5]] generating graphics... => 5
[[1,2,6],[3],[4],[5]] generating graphics... => 5
[[1,4,5],[2],[3],[6]] generating graphics... => 5
[[1,3,5],[2],[4],[6]] generating graphics... => 5
[[1,2,5],[3],[4],[6]] generating graphics... => 5
[[1,3,4],[2],[5],[6]] generating graphics... => 5
[[1,2,4],[3],[5],[6]] generating graphics... => 5
[[1,2,3],[4],[5],[6]] generating graphics... => 5
[[1,4],[2,5],[3,6]] generating graphics... => 3
[[1,3],[2,5],[4,6]] generating graphics... => 2
[[1,2],[3,5],[4,6]] generating graphics... => 3
[[1,3],[2,4],[5,6]] generating graphics... => 3
[[1,2],[3,4],[5,6]] generating graphics... => 2
[[1,5],[2,6],[3],[4]] generating graphics... => 4
[[1,4],[2,6],[3],[5]] generating graphics... => 5
[[1,3],[2,6],[4],[5]] generating graphics... => 5
[[1,2],[3,6],[4],[5]] generating graphics... => 4
[[1,4],[2,5],[3],[6]] generating graphics... => 4
[[1,3],[2,5],[4],[6]] generating graphics... => 5
[[1,2],[3,5],[4],[6]] generating graphics... => 5
[[1,3],[2,4],[5],[6]] generating graphics... => 4
[[1,2],[3,4],[5],[6]] generating graphics... => 5
[[1,6],[2],[3],[4],[5]] generating graphics... => 5
[[1,5],[2],[3],[4],[6]] generating graphics... => 5
[[1,4],[2],[3],[5],[6]] generating graphics... => 5
[[1,3],[2],[4],[5],[6]] generating graphics... => 5
[[1,2],[3],[4],[5],[6]] generating graphics... => 5
[[1],[2],[3],[4],[5],[6]] generating graphics... => 1
[[1,2,3,4,5,6,7]] generating graphics... => 1
click to show generating function       
Description
The orbit size of a standard tableau under promotion.
References
[1] Schützenberger, M. P. Promotion des morphismes d'ensembles ordonnés MathSciNet:0299539
[2] Stanley, R. P. Promotion and evacuation MathSciNet:2515772
Code
def statistic(self):
    n = self.size() -1
    new = self.promotion(n)
    i = 1
    while new != self:
        new = new.promotion(n)
        i = i+1
    else:
        return i
Created
Jun 11, 2013 at 15:46 by Jessica Striker
Updated
Oct 16, 2015 at 11:54 by Christian Stump