Identifier
Identifier
Values
[(1,2)] generating graphics... => 0
[(1,2),(3,4)] generating graphics... => 0
[(1,3),(2,4)] generating graphics... => 0
[(1,4),(2,3)] generating graphics... => 1
[(1,2),(3,4),(5,6)] generating graphics... => 0
[(1,2),(3,5),(4,6)] generating graphics... => 0
[(1,2),(3,6),(4,5)] generating graphics... => 1
[(1,3),(2,4),(5,6)] generating graphics... => 0
[(1,3),(2,5),(4,6)] generating graphics... => 0
[(1,3),(2,6),(4,5)] generating graphics... => 1
[(1,4),(2,3),(5,6)] generating graphics... => 1
[(1,4),(2,5),(3,6)] generating graphics... => 0
[(1,4),(2,6),(3,5)] generating graphics... => 1
[(1,5),(2,3),(4,6)] generating graphics... => 1
[(1,5),(2,4),(3,6)] generating graphics... => 1
[(1,5),(2,6),(3,4)] generating graphics... => 2
[(1,6),(2,3),(4,5)] generating graphics... => 2
[(1,6),(2,4),(3,5)] generating graphics... => 2
[(1,6),(2,5),(3,4)] generating graphics... => 3
[(1,2),(3,4),(5,8),(6,7)] generating graphics... => 1
[(1,2),(3,4),(5,7),(6,8)] generating graphics... => 0
[(1,2),(3,4),(5,6),(7,8)] generating graphics... => 0
[(1,2),(3,5),(4,8),(6,7)] generating graphics... => 1
[(1,2),(3,5),(4,7),(6,8)] generating graphics... => 0
[(1,2),(3,5),(4,6),(7,8)] generating graphics... => 0
[(1,2),(3,6),(4,8),(5,7)] generating graphics... => 1
[(1,2),(3,6),(4,7),(5,8)] generating graphics... => 0
[(1,2),(3,6),(4,5),(7,8)] generating graphics... => 1
[(1,2),(3,7),(4,8),(5,6)] generating graphics... => 2
[(1,2),(3,7),(4,6),(5,8)] generating graphics... => 1
[(1,2),(3,7),(4,5),(6,8)] generating graphics... => 1
[(1,2),(3,8),(4,5),(6,7)] generating graphics... => 2
[(1,2),(3,8),(4,6),(5,7)] generating graphics... => 2
[(1,2),(3,8),(4,7),(5,6)] generating graphics... => 3
[(1,3),(2,4),(5,8),(6,7)] generating graphics... => 1
[(1,3),(2,4),(5,7),(6,8)] generating graphics... => 0
[(1,3),(2,4),(5,6),(7,8)] generating graphics... => 0
[(1,3),(2,5),(4,8),(6,7)] generating graphics... => 1
[(1,3),(2,5),(4,7),(6,8)] generating graphics... => 0
[(1,3),(2,5),(4,6),(7,8)] generating graphics... => 0
[(1,3),(2,6),(4,8),(5,7)] generating graphics... => 1
[(1,3),(2,6),(4,7),(5,8)] generating graphics... => 0
[(1,3),(2,6),(4,5),(7,8)] generating graphics... => 1
[(1,3),(2,7),(4,8),(5,6)] generating graphics... => 2
[(1,3),(2,7),(4,6),(5,8)] generating graphics... => 1
[(1,3),(2,7),(4,5),(6,8)] generating graphics... => 1
[(1,3),(2,8),(4,5),(6,7)] generating graphics... => 2
[(1,3),(2,8),(4,6),(5,7)] generating graphics... => 2
[(1,3),(2,8),(4,7),(5,6)] generating graphics... => 3
[(1,4),(2,3),(5,8),(6,7)] generating graphics... => 2
[(1,4),(2,3),(5,7),(6,8)] generating graphics... => 1
[(1,4),(2,3),(5,6),(7,8)] generating graphics... => 1
[(1,4),(2,5),(3,8),(6,7)] generating graphics... => 1
[(1,4),(2,5),(3,7),(6,8)] generating graphics... => 0
[(1,4),(2,5),(3,6),(7,8)] generating graphics... => 0
[(1,4),(2,6),(3,8),(5,7)] generating graphics... => 1
[(1,4),(2,6),(3,7),(5,8)] generating graphics... => 0
[(1,4),(2,6),(3,5),(7,8)] generating graphics... => 1
[(1,4),(2,7),(3,8),(5,6)] generating graphics... => 2
[(1,4),(2,7),(3,6),(5,8)] generating graphics... => 1
[(1,4),(2,7),(3,5),(6,8)] generating graphics... => 1
[(1,4),(2,8),(3,5),(6,7)] generating graphics... => 2
[(1,4),(2,8),(3,6),(5,7)] generating graphics... => 2
[(1,4),(2,8),(3,7),(5,6)] generating graphics... => 3
[(1,5),(2,3),(4,8),(6,7)] generating graphics... => 2
[(1,5),(2,3),(4,7),(6,8)] generating graphics... => 1
[(1,5),(2,3),(4,6),(7,8)] generating graphics... => 1
[(1,5),(2,4),(3,8),(6,7)] generating graphics... => 2
[(1,5),(2,4),(3,7),(6,8)] generating graphics... => 1
[(1,5),(2,4),(3,6),(7,8)] generating graphics... => 1
[(1,5),(2,6),(3,8),(4,7)] generating graphics... => 1
[(1,5),(2,6),(3,7),(4,8)] generating graphics... => 0
[(1,5),(2,6),(3,4),(7,8)] generating graphics... => 2
[(1,5),(2,7),(3,8),(4,6)] generating graphics... => 2
[(1,5),(2,7),(3,6),(4,8)] generating graphics... => 1
[(1,5),(2,7),(3,4),(6,8)] generating graphics... => 2
[(1,5),(2,8),(3,4),(6,7)] generating graphics... => 3
[(1,5),(2,8),(3,6),(4,7)] generating graphics... => 2
[(1,5),(2,8),(3,7),(4,6)] generating graphics... => 3
[(1,6),(2,3),(4,8),(5,7)] generating graphics... => 2
[(1,6),(2,3),(4,7),(5,8)] generating graphics... => 1
[(1,6),(2,3),(4,5),(7,8)] generating graphics... => 2
[(1,6),(2,4),(3,8),(5,7)] generating graphics... => 2
[(1,6),(2,4),(3,7),(5,8)] generating graphics... => 1
[(1,6),(2,4),(3,5),(7,8)] generating graphics... => 2
[(1,6),(2,5),(3,8),(4,7)] generating graphics... => 2
[(1,6),(2,5),(3,7),(4,8)] generating graphics... => 1
[(1,6),(2,5),(3,4),(7,8)] generating graphics... => 3
[(1,6),(2,7),(3,8),(4,5)] generating graphics... => 3
[(1,6),(2,7),(3,5),(4,8)] generating graphics... => 2
[(1,6),(2,7),(3,4),(5,8)] generating graphics... => 2
[(1,6),(2,8),(3,4),(5,7)] generating graphics... => 3
[(1,6),(2,8),(3,5),(4,7)] generating graphics... => 3
[(1,6),(2,8),(3,7),(4,5)] generating graphics... => 4
[(1,7),(2,3),(4,8),(5,6)] generating graphics... => 3
[(1,7),(2,3),(4,6),(5,8)] generating graphics... => 2
[(1,7),(2,3),(4,5),(6,8)] generating graphics... => 2
[(1,7),(2,4),(3,8),(5,6)] generating graphics... => 3
[(1,7),(2,4),(3,6),(5,8)] generating graphics... => 2
[(1,7),(2,4),(3,5),(6,8)] generating graphics... => 2
[(1,7),(2,5),(3,8),(4,6)] generating graphics... => 3
[(1,7),(2,5),(3,6),(4,8)] generating graphics... => 2
[(1,7),(2,5),(3,4),(6,8)] generating graphics... => 3
[(1,7),(2,6),(3,8),(4,5)] generating graphics... => 4
[(1,7),(2,6),(3,5),(4,8)] generating graphics... => 3
[(1,7),(2,6),(3,4),(5,8)] generating graphics... => 3
[(1,7),(2,8),(3,4),(5,6)] generating graphics... => 4
[(1,7),(2,8),(3,5),(4,6)] generating graphics... => 4
[(1,7),(2,8),(3,6),(4,5)] generating graphics... => 5
[(1,8),(2,3),(4,5),(6,7)] generating graphics... => 3
[(1,8),(2,3),(4,6),(5,7)] generating graphics... => 3
[(1,8),(2,3),(4,7),(5,6)] generating graphics... => 4
[(1,8),(2,4),(3,5),(6,7)] generating graphics... => 3
[(1,8),(2,4),(3,6),(5,7)] generating graphics... => 3
[(1,8),(2,4),(3,7),(5,6)] generating graphics... => 4
[(1,8),(2,5),(3,4),(6,7)] generating graphics... => 4
[(1,8),(2,5),(3,6),(4,7)] generating graphics... => 3
[(1,8),(2,5),(3,7),(4,6)] generating graphics... => 4
[(1,8),(2,6),(3,4),(5,7)] generating graphics... => 4
[(1,8),(2,6),(3,5),(4,7)] generating graphics... => 4
[(1,8),(2,6),(3,7),(4,5)] generating graphics... => 5
[(1,8),(2,7),(3,4),(5,6)] generating graphics... => 5
[(1,8),(2,7),(3,5),(4,6)] generating graphics... => 5
[(1,8),(2,7),(3,6),(4,5)] generating graphics... => 6
[(1,2),(3,4),(5,6),(7,10),(8,9)] generating graphics... => 1
[(1,2),(3,4),(5,6),(7,9),(8,10)] generating graphics... => 0
[(1,2),(3,4),(5,6),(7,8),(9,10)] generating graphics... => 0
[(1,2),(3,4),(5,7),(6,9),(8,10)] generating graphics... => 0
[(1,2),(3,4),(5,7),(6,8),(9,10)] generating graphics... => 0
[(1,2),(3,4),(5,8),(6,7),(9,10)] generating graphics... => 1
[(1,2),(3,4),(5,8),(6,9),(7,10)] generating graphics... => 0
[(1,2),(3,4),(5,10),(6,7),(8,9)] generating graphics... => 2
[(1,2),(3,4),(5,10),(6,9),(7,8)] generating graphics... => 3
[(1,2),(3,5),(4,6),(7,9),(8,10)] generating graphics... => 0
[(1,2),(3,5),(4,6),(7,8),(9,10)] generating graphics... => 0
[(1,2),(3,5),(4,7),(6,9),(8,10)] generating graphics... => 0
[(1,2),(3,5),(4,7),(6,8),(9,10)] generating graphics... => 0
[(1,2),(3,5),(4,8),(6,9),(7,10)] generating graphics... => 0
[(1,2),(3,6),(4,5),(7,10),(8,9)] generating graphics... => 2
[(1,2),(3,6),(4,5),(7,8),(9,10)] generating graphics... => 1
[(1,2),(3,6),(4,7),(5,9),(8,10)] generating graphics... => 0
[(1,2),(3,6),(4,7),(5,8),(9,10)] generating graphics... => 0
[(1,2),(3,6),(4,8),(5,9),(7,10)] generating graphics... => 0
[(1,2),(3,7),(4,8),(5,9),(6,10)] generating graphics... => 0
[(1,2),(3,8),(4,5),(6,7),(9,10)] generating graphics... => 2
[(1,2),(3,8),(4,7),(5,6),(9,10)] generating graphics... => 3
[(1,2),(3,10),(4,5),(6,7),(8,9)] generating graphics... => 3
[(1,2),(3,10),(4,5),(6,9),(7,8)] generating graphics... => 4
[(1,2),(3,10),(4,7),(5,6),(8,9)] generating graphics... => 4
[(1,2),(3,10),(4,9),(5,8),(6,7)] generating graphics... => 6
[(1,2),(3,10),(4,9),(5,6),(7,8)] generating graphics... => 5
[(1,3),(2,4),(5,6),(7,9),(8,10)] generating graphics... => 0
[(1,3),(2,4),(5,6),(7,8),(9,10)] generating graphics... => 0
[(1,3),(2,4),(5,7),(6,9),(8,10)] generating graphics... => 0
[(1,3),(2,4),(5,7),(6,8),(9,10)] generating graphics... => 0
[(1,3),(2,4),(5,8),(6,9),(7,10)] generating graphics... => 0
[(1,3),(2,5),(4,6),(7,9),(8,10)] generating graphics... => 0
[(1,3),(2,5),(4,6),(7,8),(9,10)] generating graphics... => 0
[(1,3),(2,5),(4,7),(6,9),(8,10)] generating graphics... => 0
[(1,3),(2,5),(4,7),(6,8),(9,10)] generating graphics... => 0
[(1,3),(2,5),(4,8),(6,9),(7,10)] generating graphics... => 0
[(1,3),(2,6),(4,7),(5,9),(8,10)] generating graphics... => 0
[(1,3),(2,6),(4,7),(5,8),(9,10)] generating graphics... => 0
[(1,3),(2,6),(4,8),(5,9),(7,10)] generating graphics... => 0
[(1,3),(2,7),(4,8),(5,9),(6,10)] generating graphics... => 0
[(1,4),(2,3),(5,6),(7,10),(8,9)] generating graphics... => 2
[(1,4),(2,3),(5,6),(7,8),(9,10)] generating graphics... => 1
[(1,4),(2,3),(5,8),(6,7),(9,10)] generating graphics... => 2
[(1,4),(2,3),(5,10),(6,7),(8,9)] generating graphics... => 3
[(1,4),(2,3),(5,10),(6,9),(7,8)] generating graphics... => 4
[(1,4),(2,5),(3,6),(7,9),(8,10)] generating graphics... => 0
[(1,4),(2,5),(3,6),(7,8),(9,10)] generating graphics... => 0
[(1,4),(2,5),(3,7),(6,9),(8,10)] generating graphics... => 0
[(1,4),(2,5),(3,7),(6,8),(9,10)] generating graphics... => 0
[(1,4),(2,5),(3,8),(6,9),(7,10)] generating graphics... => 0
[(1,4),(2,6),(3,7),(5,9),(8,10)] generating graphics... => 0
[(1,4),(2,6),(3,7),(5,8),(9,10)] generating graphics... => 0
[(1,4),(2,6),(3,8),(5,9),(7,10)] generating graphics... => 0
[(1,4),(2,7),(3,8),(5,9),(6,10)] generating graphics... => 0
[(1,5),(2,6),(3,7),(4,9),(8,10)] generating graphics... => 0
[(1,5),(2,6),(3,7),(4,8),(9,10)] generating graphics... => 0
[(1,5),(2,6),(3,8),(4,9),(7,10)] generating graphics... => 0
[(1,5),(2,7),(3,8),(4,9),(6,10)] generating graphics... => 0
[(1,6),(2,3),(4,5),(7,10),(8,9)] generating graphics... => 3
[(1,6),(2,3),(4,5),(7,8),(9,10)] generating graphics... => 2
[(1,6),(2,5),(3,4),(7,10),(8,9)] generating graphics... => 4
[(1,6),(2,5),(3,4),(7,8),(9,10)] generating graphics... => 3
[(1,6),(2,7),(3,8),(4,9),(5,10)] generating graphics... => 0
[(1,8),(2,3),(4,5),(6,7),(9,10)] generating graphics... => 3
[(1,8),(2,3),(4,7),(5,6),(9,10)] generating graphics... => 4
[(1,8),(2,5),(3,4),(6,7),(9,10)] generating graphics... => 4
[(1,8),(2,7),(3,4),(5,6),(9,10)] generating graphics... => 5
[(1,8),(2,7),(3,6),(4,5),(9,10)] generating graphics... => 6
[(1,10),(2,3),(4,5),(6,7),(8,9)] generating graphics... => 4
[(1,10),(2,3),(4,5),(6,9),(7,8)] generating graphics... => 5
[(1,10),(2,3),(4,7),(5,6),(8,9)] generating graphics... => 5
[(1,10),(2,3),(4,9),(5,8),(6,7)] generating graphics... => 7
[(1,10),(2,3),(4,9),(5,6),(7,8)] generating graphics... => 6
[(1,10),(2,5),(3,4),(6,7),(8,9)] generating graphics... => 5
[(1,10),(2,5),(3,4),(6,9),(7,8)] generating graphics... => 6
[(1,10),(2,7),(3,4),(5,6),(8,9)] generating graphics... => 6
[(1,10),(2,7),(3,6),(4,5),(8,9)] generating graphics... => 7
[(1,10),(2,9),(3,4),(5,8),(6,7)] generating graphics... => 8
[(1,10),(2,9),(3,4),(5,6),(7,8)] generating graphics... => 7
[(1,10),(2,9),(3,6),(4,5),(7,8)] generating graphics... => 8
[(1,10),(2,9),(3,8),(4,5),(6,7)] generating graphics... => 9
[(1,10),(2,9),(3,8),(4,7),(5,6)] generating graphics... => 10
[(1,12),(2,11),(3,10),(4,9),(5,8),(6,7)] generating graphics... => 15
[(1,2),(3,10),(4,9),(5,8),(6,7),(11,12)] generating graphics... => 6
[(1,12),(2,3),(4,9),(5,8),(6,7),(10,11)] generating graphics... => 8
[(1,2),(3,12),(4,9),(5,8),(6,7),(10,11)] generating graphics... => 7
[(1,10),(2,3),(4,9),(5,8),(6,7),(11,12)] generating graphics... => 7
[(1,12),(2,11),(3,4),(5,8),(6,7),(9,10)] generating graphics... => 10
[(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)] generating graphics... => 1
[(1,12),(2,3),(4,11),(5,8),(6,7),(9,10)] generating graphics... => 9
[(1,2),(3,12),(4,11),(5,8),(6,7),(9,10)] generating graphics... => 8
[(1,4),(2,3),(5,8),(6,7),(9,10),(11,12)] generating graphics... => 2
[(1,12),(2,9),(3,4),(5,8),(6,7),(10,11)] generating graphics... => 9
[(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)] generating graphics... => 2
[(1,10),(2,9),(3,4),(5,8),(6,7),(11,12)] generating graphics... => 8
[(1,4),(2,3),(5,8),(6,7),(9,12),(10,11)] generating graphics... => 3
[(1,12),(2,11),(3,10),(4,5),(6,7),(8,9)] generating graphics... => 12
[(1,2),(3,10),(4,5),(6,7),(8,9),(11,12)] generating graphics... => 3
[(1,12),(2,3),(4,5),(6,7),(8,9),(10,11)] generating graphics... => 5
[(1,2),(3,12),(4,5),(6,7),(8,9),(10,11)] generating graphics... => 4
[(1,10),(2,3),(4,5),(6,7),(8,9),(11,12)] generating graphics... => 4
[(1,12),(2,11),(3,4),(5,10),(6,7),(8,9)] generating graphics... => 11
[(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)] generating graphics... => 2
[(1,12),(2,3),(4,11),(5,10),(6,7),(8,9)] generating graphics... => 10
[(1,2),(3,12),(4,11),(5,10),(6,7),(8,9)] generating graphics... => 9
[(1,4),(2,3),(5,10),(6,7),(8,9),(11,12)] generating graphics... => 3
[(1,12),(2,5),(3,4),(6,7),(8,9),(10,11)] generating graphics... => 6
[(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)] generating graphics... => 3
[(1,10),(2,5),(3,4),(6,7),(8,9),(11,12)] generating graphics... => 5
[(1,4),(2,3),(5,12),(6,7),(8,9),(10,11)] generating graphics... => 4
[(1,12),(2,11),(3,8),(4,5),(6,7),(9,10)] generating graphics... => 11
[(1,2),(3,8),(4,5),(6,7),(9,10),(11,12)] generating graphics... => 2
[(1,12),(2,3),(4,5),(6,7),(8,11),(9,10)] generating graphics... => 6
[(1,2),(3,12),(4,5),(6,7),(8,11),(9,10)] generating graphics... => 5
[(1,8),(2,3),(4,5),(6,7),(9,10),(11,12)] generating graphics... => 3
[(1,12),(2,9),(3,8),(4,5),(6,7),(10,11)] generating graphics... => 10
[(1,2),(3,8),(4,5),(6,7),(9,12),(10,11)] generating graphics... => 3
[(1,10),(2,9),(3,8),(4,5),(6,7),(11,12)] generating graphics... => 9
[(1,8),(2,3),(4,5),(6,7),(9,12),(10,11)] generating graphics... => 4
[(1,12),(2,5),(3,4),(6,7),(8,11),(9,10)] generating graphics... => 7
[(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)] generating graphics... => 4
[(1,8),(2,5),(3,4),(6,7),(9,10),(11,12)] generating graphics... => 4
[(1,4),(2,3),(5,12),(6,7),(8,11),(9,10)] generating graphics... => 5
[(1,8),(2,5),(3,4),(6,7),(9,12),(10,11)] generating graphics... => 5
[(1,12),(2,11),(3,10),(4,9),(5,6),(7,8)] generating graphics... => 14
[(1,2),(3,10),(4,9),(5,6),(7,8),(11,12)] generating graphics... => 5
[(1,12),(2,3),(4,9),(5,6),(7,8),(10,11)] generating graphics... => 7
[(1,2),(3,12),(4,9),(5,6),(7,8),(10,11)] generating graphics... => 6
[(1,10),(2,3),(4,9),(5,6),(7,8),(11,12)] generating graphics... => 6
[(1,12),(2,11),(3,4),(5,6),(7,8),(9,10)] generating graphics... => 9
[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] generating graphics... => 0
[(1,12),(2,3),(4,11),(5,6),(7,8),(9,10)] generating graphics... => 8
[(1,2),(3,12),(4,11),(5,6),(7,8),(9,10)] generating graphics... => 7
[(1,4),(2,3),(5,6),(7,8),(9,10),(11,12)] generating graphics... => 1
[(1,12),(2,9),(3,4),(5,6),(7,8),(10,11)] generating graphics... => 8
[(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)] generating graphics... => 1
[(1,10),(2,9),(3,4),(5,6),(7,8),(11,12)] generating graphics... => 7
[(1,4),(2,3),(5,6),(7,8),(9,12),(10,11)] generating graphics... => 2
[(1,12),(2,11),(3,10),(4,5),(6,9),(7,8)] generating graphics... => 13
[(1,2),(3,10),(4,5),(6,9),(7,8),(11,12)] generating graphics... => 4
[(1,12),(2,3),(4,5),(6,9),(7,8),(10,11)] generating graphics... => 6
[(1,2),(3,12),(4,5),(6,9),(7,8),(10,11)] generating graphics... => 5
[(1,10),(2,3),(4,5),(6,9),(7,8),(11,12)] generating graphics... => 5
[(1,12),(2,11),(3,4),(5,10),(6,9),(7,8)] generating graphics... => 12
[(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)] generating graphics... => 3
[(1,12),(2,3),(4,11),(5,10),(6,9),(7,8)] generating graphics... => 11
[(1,2),(3,12),(4,11),(5,10),(6,9),(7,8)] generating graphics... => 10
[(1,4),(2,3),(5,10),(6,9),(7,8),(11,12)] generating graphics... => 4
[(1,12),(2,5),(3,4),(6,9),(7,8),(10,11)] generating graphics... => 7
[(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)] generating graphics... => 4
[(1,10),(2,5),(3,4),(6,9),(7,8),(11,12)] generating graphics... => 6
[(1,4),(2,3),(5,12),(6,9),(7,8),(10,11)] generating graphics... => 5
[(1,12),(2,11),(3,6),(4,5),(7,8),(9,10)] generating graphics... => 10
[(1,2),(3,6),(4,5),(7,8),(9,10),(11,12)] generating graphics... => 1
[(1,12),(2,3),(4,5),(6,11),(7,8),(9,10)] generating graphics... => 7
[(1,2),(3,12),(4,5),(6,11),(7,8),(9,10)] generating graphics... => 6
[(1,6),(2,3),(4,5),(7,8),(9,10),(11,12)] generating graphics... => 2
[(1,12),(2,9),(3,6),(4,5),(7,8),(10,11)] generating graphics... => 9
[(1,2),(3,6),(4,5),(7,8),(9,12),(10,11)] generating graphics... => 2
[(1,10),(2,9),(3,6),(4,5),(7,8),(11,12)] generating graphics... => 8
[(1,6),(2,3),(4,5),(7,8),(9,12),(10,11)] generating graphics... => 3
[(1,12),(2,5),(3,4),(6,11),(7,8),(9,10)] generating graphics... => 8
[(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)] generating graphics... => 5
[(1,6),(2,5),(3,4),(7,8),(9,10),(11,12)] generating graphics... => 3
[(1,4),(2,3),(5,12),(6,11),(7,8),(9,10)] generating graphics... => 6
[(1,6),(2,5),(3,4),(7,8),(9,12),(10,11)] generating graphics... => 4
[(1,12),(2,11),(3,10),(4,7),(5,6),(8,9)] generating graphics... => 13
[(1,2),(3,10),(4,7),(5,6),(8,9),(11,12)] generating graphics... => 4
[(1,12),(2,3),(4,7),(5,6),(8,9),(10,11)] generating graphics... => 6
[(1,2),(3,12),(4,7),(5,6),(8,9),(10,11)] generating graphics... => 5
[(1,10),(2,3),(4,7),(5,6),(8,9),(11,12)] generating graphics... => 5
[(1,12),(2,11),(3,4),(5,6),(7,10),(8,9)] generating graphics... => 10
[(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)] generating graphics... => 1
[(1,12),(2,3),(4,11),(5,6),(7,10),(8,9)] generating graphics... => 9
[(1,2),(3,12),(4,11),(5,6),(7,10),(8,9)] generating graphics... => 8
[(1,4),(2,3),(5,6),(7,10),(8,9),(11,12)] generating graphics... => 2
[(1,12),(2,7),(3,4),(5,6),(8,9),(10,11)] generating graphics... => 7
[(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)] generating graphics... => 2
[(1,10),(2,7),(3,4),(5,6),(8,9),(11,12)] generating graphics... => 6
[(1,4),(2,3),(5,6),(7,12),(8,9),(10,11)] generating graphics... => 3
[(1,12),(2,11),(3,8),(4,7),(5,6),(9,10)] generating graphics... => 12
[(1,2),(3,8),(4,7),(5,6),(9,10),(11,12)] generating graphics... => 3
[(1,12),(2,3),(4,7),(5,6),(8,11),(9,10)] generating graphics... => 7
[(1,2),(3,12),(4,7),(5,6),(8,11),(9,10)] generating graphics... => 6
[(1,8),(2,3),(4,7),(5,6),(9,10),(11,12)] generating graphics... => 4
[(1,12),(2,9),(3,8),(4,7),(5,6),(10,11)] generating graphics... => 11
[(1,2),(3,8),(4,7),(5,6),(9,12),(10,11)] generating graphics... => 4
[(1,10),(2,9),(3,8),(4,7),(5,6),(11,12)] generating graphics... => 10
[(1,8),(2,3),(4,7),(5,6),(9,12),(10,11)] generating graphics... => 5
[(1,12),(2,7),(3,4),(5,6),(8,11),(9,10)] generating graphics... => 8
[(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)] generating graphics... => 3
[(1,8),(2,7),(3,4),(5,6),(9,10),(11,12)] generating graphics... => 5
[(1,4),(2,3),(5,6),(7,12),(8,11),(9,10)] generating graphics... => 4
[(1,8),(2,7),(3,4),(5,6),(9,12),(10,11)] generating graphics... => 6
[(1,12),(2,11),(3,6),(4,5),(7,10),(8,9)] generating graphics... => 11
[(1,2),(3,6),(4,5),(7,10),(8,9),(11,12)] generating graphics... => 2
[(1,12),(2,3),(4,5),(6,11),(7,10),(8,9)] generating graphics... => 8
[(1,2),(3,12),(4,5),(6,11),(7,10),(8,9)] generating graphics... => 7
[(1,6),(2,3),(4,5),(7,10),(8,9),(11,12)] generating graphics... => 3
[(1,12),(2,7),(3,6),(4,5),(8,9),(10,11)] generating graphics... => 8
[(1,2),(3,6),(4,5),(7,12),(8,9),(10,11)] generating graphics... => 3
[(1,10),(2,7),(3,6),(4,5),(8,9),(11,12)] generating graphics... => 7
[(1,6),(2,3),(4,5),(7,12),(8,9),(10,11)] generating graphics... => 4
[(1,12),(2,5),(3,4),(6,11),(7,10),(8,9)] generating graphics... => 9
[(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)] generating graphics... => 6
[(1,6),(2,5),(3,4),(7,10),(8,9),(11,12)] generating graphics... => 4
[(1,4),(2,3),(5,12),(6,11),(7,10),(8,9)] generating graphics... => 7
[(1,6),(2,5),(3,4),(7,12),(8,9),(10,11)] generating graphics... => 5
[(1,12),(2,7),(3,6),(4,5),(8,11),(9,10)] generating graphics... => 9
[(1,2),(3,6),(4,5),(7,12),(8,11),(9,10)] generating graphics... => 4
[(1,8),(2,7),(3,6),(4,5),(9,10),(11,12)] generating graphics... => 6
[(1,6),(2,3),(4,5),(7,12),(8,11),(9,10)] generating graphics... => 5
[(1,8),(2,7),(3,6),(4,5),(9,12),(10,11)] generating graphics... => 7
[(1,6),(2,5),(3,4),(7,12),(8,11),(9,10)] generating graphics... => 6
[(1,6),(2,7),(3,8),(4,9),(5,10),(11,12)] generating graphics... => 0
[(1,2),(3,8),(4,9),(5,10),(6,11),(7,12)] generating graphics... => 0
[(1,2),(3,7),(4,9),(5,10),(6,11),(8,12)] generating graphics... => 0
[(1,5),(2,7),(3,8),(4,9),(6,10),(11,12)] generating graphics... => 0
[(1,2),(3,6),(4,9),(5,10),(7,11),(8,12)] generating graphics... => 0
[(1,2),(3,7),(4,8),(5,10),(6,11),(9,12)] generating graphics... => 0
[(1,4),(2,7),(3,8),(5,9),(6,10),(11,12)] generating graphics... => 0
[(1,5),(2,6),(3,8),(4,9),(7,10),(11,12)] generating graphics... => 0
[(1,2),(3,5),(4,9),(6,10),(7,11),(8,12)] generating graphics... => 0
[(1,2),(3,6),(4,8),(5,10),(7,11),(9,12)] generating graphics... => 0
[(1,2),(3,7),(4,8),(5,9),(6,11),(10,12)] generating graphics... => 0
[(1,3),(2,4),(5,9),(6,10),(7,11),(8,12)] generating graphics... => 0
[(1,3),(2,7),(4,8),(5,9),(6,10),(11,12)] generating graphics... => 0
[(1,4),(2,6),(3,8),(5,9),(7,10),(11,12)] generating graphics... => 0
[(1,5),(2,6),(3,7),(4,8),(9,11),(10,12)] generating graphics... => 0
[(1,5),(2,6),(3,7),(4,9),(8,10),(11,12)] generating graphics... => 0
[(1,2),(3,4),(5,9),(6,10),(7,11),(8,12)] generating graphics... => 0
[(1,2),(3,5),(4,8),(6,10),(7,11),(9,12)] generating graphics... => 0
[(1,2),(3,6),(4,7),(5,10),(8,11),(9,12)] generating graphics... => 0
[(1,2),(3,6),(4,8),(5,9),(7,11),(10,12)] generating graphics... => 0
[(1,2),(3,7),(4,8),(5,9),(6,10),(11,12)] generating graphics... => 0
[(1,3),(2,4),(5,8),(6,10),(7,11),(9,12)] generating graphics... => 0
[(1,3),(2,6),(4,8),(5,9),(7,10),(11,12)] generating graphics... => 0
[(1,4),(2,5),(3,6),(7,10),(8,11),(9,12)] generating graphics... => 0
[(1,4),(2,5),(3,8),(6,9),(7,10),(11,12)] generating graphics... => 0
[(1,4),(2,6),(3,7),(5,8),(9,11),(10,12)] generating graphics... => 0
[(1,4),(2,6),(3,7),(5,9),(8,10),(11,12)] generating graphics... => 0
[(1,5),(2,6),(3,7),(4,8),(9,10),(11,12)] generating graphics... => 0
[(1,2),(3,4),(5,8),(6,10),(7,11),(9,12)] generating graphics... => 0
[(1,2),(3,5),(4,7),(6,10),(8,11),(9,12)] generating graphics... => 0
[(1,2),(3,5),(4,8),(6,9),(7,11),(10,12)] generating graphics... => 0
[(1,2),(3,6),(4,7),(5,9),(8,11),(10,12)] generating graphics... => 0
[(1,2),(3,6),(4,8),(5,9),(7,10),(11,12)] generating graphics... => 0
[(1,3),(2,4),(5,7),(6,10),(8,11),(9,12)] generating graphics... => 0
[(1,3),(2,4),(5,8),(6,9),(7,11),(10,12)] generating graphics... => 0
[(1,3),(2,5),(4,6),(7,10),(8,11),(9,12)] generating graphics... => 0
[(1,3),(2,5),(4,8),(6,9),(7,10),(11,12)] generating graphics... => 0
[(1,3),(2,6),(4,7),(5,8),(9,11),(10,12)] generating graphics... => 0
[(1,3),(2,6),(4,7),(5,9),(8,10),(11,12)] generating graphics... => 0
[(1,4),(2,5),(3,6),(7,9),(8,11),(10,12)] generating graphics... => 0
[(1,4),(2,5),(3,7),(6,8),(9,11),(10,12)] generating graphics... => 0
[(1,4),(2,5),(3,7),(6,9),(8,10),(11,12)] generating graphics... => 0
[(1,4),(2,6),(3,7),(5,8),(9,10),(11,12)] generating graphics... => 0
[(1,2),(3,4),(5,6),(7,9),(8,11),(10,12)] generating graphics... => 0
[(1,2),(3,4),(5,6),(7,8),(9,11),(10,12)] generating graphics... => 0
[(1,3),(2,4),(5,6),(7,9),(8,11),(10,12)] generating graphics... => 0
[(1,3),(2,4),(5,6),(7,8),(9,11),(10,12)] generating graphics... => 0
[(1,3),(2,5),(4,6),(7,9),(8,11),(10,12)] generating graphics... => 0
[(1,2),(3,5),(4,6),(7,9),(8,11),(10,12)] generating graphics... => 0
[(1,3),(2,5),(4,6),(7,8),(9,11),(10,12)] generating graphics... => 0
[(1,2),(3,5),(4,6),(7,8),(9,11),(10,12)] generating graphics... => 0
[(1,2),(3,4),(5,8),(6,9),(7,11),(10,12)] generating graphics... => 0
[(1,2),(3,5),(4,7),(6,9),(8,11),(10,12)] generating graphics... => 0
[(1,2),(3,5),(4,7),(6,8),(9,11),(10,12)] generating graphics... => 0
[(1,4),(2,5),(3,6),(7,8),(9,11),(10,12)] generating graphics... => 0
[(1,2),(3,4),(5,7),(6,9),(8,11),(10,12)] generating graphics... => 0
[(1,2),(3,4),(5,7),(6,8),(9,11),(10,12)] generating graphics... => 0
[(1,4),(2,5),(3,8),(6,9),(7,11),(10,12)] generating graphics... => 0
[(1,3),(2,5),(4,8),(6,9),(7,11),(10,12)] generating graphics... => 0
[(1,2),(3,4),(5,7),(6,10),(8,11),(9,12)] generating graphics... => 0
[(1,4),(2,5),(3,7),(6,9),(8,11),(10,12)] generating graphics... => 0
[(1,3),(2,5),(4,7),(6,9),(8,11),(10,12)] generating graphics... => 0
[(1,3),(2,5),(4,7),(6,8),(9,11),(10,12)] generating graphics... => 0
[(1,3),(2,4),(5,7),(6,9),(8,11),(10,12)] generating graphics... => 0
[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12)] generating graphics... => 0
[(1,2),(3,4),(5,6),(7,10),(8,11),(9,12)] generating graphics... => 0
[(1,4),(2,7),(3,8),(5,9),(6,11),(10,12)] generating graphics... => 0
[(1,3),(2,7),(4,8),(5,9),(6,11),(10,12)] generating graphics... => 0
[(1,4),(2,6),(3,8),(5,9),(7,11),(10,12)] generating graphics... => 0
[(1,3),(2,6),(4,8),(5,9),(7,11),(10,12)] generating graphics... => 0
[(1,4),(2,6),(3,7),(5,9),(8,11),(10,12)] generating graphics... => 0
[(1,3),(2,6),(4,7),(5,9),(8,11),(10,12)] generating graphics... => 0
[(1,2),(3,6),(4,7),(5,8),(9,11),(10,12)] generating graphics... => 0
[(1,3),(2,4),(5,6),(7,10),(8,11),(9,12)] generating graphics... => 0
[(1,4),(2,5),(3,6),(7,8),(9,10),(11,12)] generating graphics... => 0
[(1,3),(2,6),(4,7),(5,8),(9,10),(11,12)] generating graphics... => 0
[(1,2),(3,6),(4,7),(5,8),(9,10),(11,12)] generating graphics... => 0
[(1,3),(2,4),(5,8),(6,9),(7,10),(11,12)] generating graphics... => 0
[(1,2),(3,4),(5,8),(6,9),(7,10),(11,12)] generating graphics... => 0
[(1,4),(2,6),(3,8),(5,10),(7,11),(9,12)] generating graphics... => 0
[(1,4),(2,6),(3,7),(5,10),(8,11),(9,12)] generating graphics... => 0
[(1,4),(2,5),(3,7),(6,10),(8,11),(9,12)] generating graphics... => 0
[(1,3),(2,5),(4,7),(6,10),(8,11),(9,12)] generating graphics... => 0
[(1,2),(3,5),(4,8),(6,9),(7,10),(11,12)] generating graphics... => 0
[(1,5),(2,6),(3,8),(4,10),(7,11),(9,12)] generating graphics... => 0
[(1,4),(2,5),(3,8),(6,10),(7,11),(9,12)] generating graphics... => 0
[(1,5),(2,6),(3,8),(4,9),(7,11),(10,12)] generating graphics... => 0
[(1,3),(2,6),(4,7),(5,10),(8,11),(9,12)] generating graphics... => 0
[(1,5),(2,6),(3,7),(4,9),(8,11),(10,12)] generating graphics... => 0
[(1,2),(3,5),(4,6),(7,10),(8,11),(9,12)] generating graphics... => 0
[(1,4),(2,5),(3,6),(7,9),(8,10),(11,12)] generating graphics... => 0
[(1,2),(3,5),(4,6),(7,9),(8,10),(11,12)] generating graphics... => 0
[(1,3),(2,4),(5,6),(7,8),(9,10),(11,12)] generating graphics... => 0
[(1,3),(2,4),(5,6),(7,9),(8,10),(11,12)] generating graphics... => 0
[(1,3),(2,5),(4,8),(6,10),(7,11),(9,12)] generating graphics... => 0
[(1,3),(2,4),(5,7),(6,8),(9,10),(11,12)] generating graphics... => 0
[(1,3),(2,5),(4,6),(7,8),(9,10),(11,12)] generating graphics... => 0
[(1,3),(2,5),(4,9),(6,10),(7,11),(8,12)] generating graphics... => 0
[(1,3),(2,5),(4,7),(6,9),(8,10),(11,12)] generating graphics... => 0
[(1,3),(2,6),(4,8),(5,10),(7,11),(9,12)] generating graphics... => 0
[(1,3),(2,4),(5,7),(6,9),(8,10),(11,12)] generating graphics... => 0
[(1,3),(2,5),(4,7),(6,8),(9,10),(11,12)] generating graphics... => 0
[(1,3),(2,6),(4,9),(5,10),(7,11),(8,12)] generating graphics... => 0
[(1,3),(2,5),(4,6),(7,9),(8,10),(11,12)] generating graphics... => 0
[(1,3),(2,7),(4,8),(5,10),(6,11),(9,12)] generating graphics... => 0
[(1,3),(2,7),(4,9),(5,10),(6,11),(8,12)] generating graphics... => 0
[(1,4),(2,6),(3,9),(5,10),(7,11),(8,12)] generating graphics... => 0
[(1,2),(3,5),(4,7),(6,8),(9,10),(11,12)] generating graphics... => 0
[(1,2),(3,4),(5,7),(6,9),(8,10),(11,12)] generating graphics... => 0
[(1,2),(3,5),(4,6),(7,8),(9,10),(11,12)] generating graphics... => 0
[(1,2),(3,4),(5,7),(6,8),(9,10),(11,12)] generating graphics... => 0
[(1,2),(3,4),(5,6),(7,9),(8,10),(11,12)] generating graphics... => 0
[(1,6),(2,7),(3,8),(4,9),(5,11),(10,12)] generating graphics... => 0
[(1,5),(2,7),(3,8),(4,9),(6,11),(10,12)] generating graphics... => 0
[(1,5),(2,6),(3,7),(4,10),(8,11),(9,12)] generating graphics... => 0
[(1,6),(2,7),(3,8),(4,10),(5,11),(9,12)] generating graphics... => 0
[(1,5),(2,7),(3,8),(4,10),(6,11),(9,12)] generating graphics... => 0
[(1,4),(2,5),(3,7),(6,8),(9,10),(11,12)] generating graphics... => 0
[(1,2),(3,6),(4,7),(5,9),(8,10),(11,12)] generating graphics... => 0
[(1,6),(2,7),(3,9),(4,10),(5,11),(8,12)] generating graphics... => 0
[(1,6),(2,8),(3,9),(4,10),(5,11),(7,12)] generating graphics... => 0
[(1,4),(2,7),(3,8),(5,10),(6,11),(9,12)] generating graphics... => 0
[(1,5),(2,6),(3,9),(4,10),(7,11),(8,12)] generating graphics... => 0
[(1,4),(2,7),(3,9),(5,10),(6,11),(8,12)] generating graphics... => 0
[(1,5),(2,7),(3,9),(4,10),(6,11),(8,12)] generating graphics... => 0
[(1,4),(2,8),(3,9),(5,10),(6,11),(7,12)] generating graphics... => 0
[(1,7),(2,8),(3,9),(4,10),(5,11),(6,12)] generating graphics... => 0
[(1,5),(2,8),(3,9),(4,10),(6,11),(7,12)] generating graphics... => 0
[(1,3),(2,8),(4,9),(5,10),(6,11),(7,12)] generating graphics... => 0
[(1,4),(2,5),(3,9),(6,10),(7,11),(8,12)] generating graphics... => 0
[(1,2),(3,5),(4,7),(6,9),(8,10),(11,12)] generating graphics... => 0
[(1,2),(3,14),(4,5),(6,13),(7,12),(8,11),(9,10)] generating graphics... => 11
[(1,2),(3,14),(4,13),(5,6),(7,12),(8,9),(10,11)] generating graphics... => 11
[(1,2),(3,14),(4,13),(5,6),(7,12),(8,11),(9,10)] generating graphics... => 12
[(1,2),(3,14),(4,13),(5,8),(6,7),(9,12),(10,11)] generating graphics... => 11
[(1,2),(3,14),(4,13),(5,10),(6,7),(8,9),(11,12)] generating graphics... => 11
[(1,2),(3,14),(4,13),(5,12),(6,7),(8,9),(10,11)] generating graphics... => 12
[(1,2),(3,14),(4,13),(5,12),(6,7),(8,11),(9,10)] generating graphics... => 13
[(1,2),(3,14),(4,11),(5,10),(6,9),(7,8),(12,13)] generating graphics... => 11
[(1,2),(3,14),(4,13),(5,10),(6,9),(7,8),(11,12)] generating graphics... => 12
[(1,2),(3,14),(4,13),(5,12),(6,9),(7,8),(10,11)] generating graphics... => 13
[(1,2),(3,14),(4,13),(5,12),(6,11),(7,8),(9,10)] generating graphics... => 14
[(1,2),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9)] generating graphics... => 15
[(1,4),(2,3),(5,14),(6,13),(7,12),(8,11),(9,10)] generating graphics... => 11
[(1,12),(2,3),(4,11),(5,10),(6,9),(7,8),(13,14)] generating graphics... => 11
[(1,12),(2,11),(3,4),(5,10),(6,7),(8,9),(13,14)] generating graphics... => 11
[(1,12),(2,11),(3,4),(5,10),(6,9),(7,8),(13,14)] generating graphics... => 12
[(1,12),(2,11),(3,6),(4,5),(7,10),(8,9),(13,14)] generating graphics... => 11
[(1,12),(2,11),(3,8),(4,5),(6,7),(9,10),(13,14)] generating graphics... => 11
[(1,12),(2,11),(3,10),(4,5),(6,7),(8,9),(13,14)] generating graphics... => 12
[(1,12),(2,11),(3,10),(4,5),(6,9),(7,8),(13,14)] generating graphics... => 13
[(1,10),(2,9),(3,8),(4,7),(5,6),(11,14),(12,13)] generating graphics... => 11
[(1,12),(2,9),(3,8),(4,7),(5,6),(10,11),(13,14)] generating graphics... => 11
[(1,12),(2,11),(3,8),(4,7),(5,6),(9,10),(13,14)] generating graphics... => 12
[(1,12),(2,11),(3,10),(4,7),(5,6),(8,9),(13,14)] generating graphics... => 13
[(1,12),(2,11),(3,10),(4,9),(5,6),(7,8),(13,14)] generating graphics... => 14
[(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,14)] generating graphics... => 15
[(1,2),(3,16),(4,15),(5,14),(6,7),(8,13),(9,12),(10,11)] generating graphics... => 18
[(1,2),(3,16),(4,15),(5,14),(6,13),(7,8),(9,10),(11,12)] generating graphics... => 18
[(1,2),(3,16),(4,15),(5,14),(6,13),(7,8),(9,12),(10,11)] generating graphics... => 19
[(1,2),(3,16),(4,15),(5,14),(6,11),(7,10),(8,9),(12,13)] generating graphics... => 18
[(1,2),(3,16),(4,15),(5,14),(6,13),(7,10),(8,9),(11,12)] generating graphics... => 19
[(1,2),(3,16),(4,15),(5,14),(6,13),(7,12),(8,9),(10,11)] generating graphics... => 20
[(1,2),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10)] generating graphics... => 21
[(1,14),(2,13),(3,12),(4,5),(6,11),(7,10),(8,9),(15,16)] generating graphics... => 18
[(1,14),(2,13),(3,12),(4,11),(5,6),(7,8),(9,10),(15,16)] generating graphics... => 18
[(1,14),(2,13),(3,12),(4,11),(5,6),(7,10),(8,9),(15,16)] generating graphics... => 19
[(1,14),(2,13),(3,12),(4,9),(5,8),(6,7),(10,11),(15,16)] generating graphics... => 18
[(1,14),(2,13),(3,12),(4,11),(5,8),(6,7),(9,10),(15,16)] generating graphics... => 19
[(1,14),(2,13),(3,12),(4,11),(5,10),(6,7),(8,9),(15,16)] generating graphics... => 20
[(1,14),(2,13),(3,12),(4,11),(5,10),(6,9),(7,8),(15,16)] generating graphics... => 21
[(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9),(17,18)] generating graphics... => 28
[(1,2),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11)] generating graphics... => 28
[(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,8),(9,10),(17,18)] generating graphics... => 27
[(1,2),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,10),(11,12)] generating graphics... => 27
[(1,16),(2,15),(3,14),(4,13),(5,12),(6,9),(7,8),(10,11),(17,18)] generating graphics... => 26
[(1,16),(2,15),(3,14),(4,13),(5,12),(6,7),(8,11),(9,10),(17,18)] generating graphics... => 26
[(1,2),(3,18),(4,17),(5,16),(6,15),(7,14),(8,11),(9,10),(12,13)] generating graphics... => 26
[(1,2),(3,18),(4,17),(5,16),(6,15),(7,14),(8,9),(10,13),(11,12)] generating graphics... => 26
[(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10),(19,20)] generating graphics... => 36
[(1,2),(3,20),(4,19),(5,18),(6,17),(7,16),(8,15),(9,14),(10,13),(11,12)] generating graphics... => 36
[(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,9),(10,11),(19,20)] generating graphics... => 35
[(1,2),(3,20),(4,19),(5,18),(6,17),(7,16),(8,15),(9,14),(10,11),(12,13)] generating graphics... => 35
[(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,22)] generating graphics... => 45
[(1,2),(3,22),(4,21),(5,20),(6,19),(7,18),(8,17),(9,16),(10,15),(11,14),(12,13)] generating graphics... => 45
click to show generating function       
Description
The number of nestings of a perfect matching.
This is the number of pairs of edges $((a,b), (c,d))$ such that $a\le c\le d\le b$. i.e., the edge $(c,d)$ is nested inside $(a,b)$.
References
[1] de Médicis, A., Viennot, X. G. Moments des $q$-polynômes de Laguerre et la bijection de Foata-Zeilberger MathSciNet:1288802
[2] Simion, R., Stanton, D. Octabasic Laguerre polynomials and permutation statistics MathSciNet:1418763
Code
def statistic(x):
    return len(x.nestings())
Created
Mar 01, 2013 at 02:34 by Alejandro Morales
Updated
Dec 25, 2017 at 17:15 by Martin Rubey