Identifier
Mp00231: Integer compositions bounce pathDyck paths
Mp00025: Dyck paths to 132-avoiding permutationPermutations
Mp00061: Permutations to increasing tree Binary trees
Images
=>
Cc0005;cc-rep-1Cc0010;cc-rep-3
[1]=>[1,0]=>[1]=>[.,.] [1,1]=>[1,0,1,0]=>[2,1]=>[[.,.],.] [2]=>[1,1,0,0]=>[1,2]=>[.,[.,.]] [1,1,1]=>[1,0,1,0,1,0]=>[3,2,1]=>[[[.,.],.],.] [1,2]=>[1,0,1,1,0,0]=>[2,3,1]=>[[.,[.,.]],.] [2,1]=>[1,1,0,0,1,0]=>[3,1,2]=>[[.,.],[.,.]] [3]=>[1,1,1,0,0,0]=>[1,2,3]=>[.,[.,[.,.]]] [1,1,1,1]=>[1,0,1,0,1,0,1,0]=>[4,3,2,1]=>[[[[.,.],.],.],.] [1,1,2]=>[1,0,1,0,1,1,0,0]=>[3,4,2,1]=>[[[.,[.,.]],.],.] [1,2,1]=>[1,0,1,1,0,0,1,0]=>[4,2,3,1]=>[[[.,.],[.,.]],.] [1,3]=>[1,0,1,1,1,0,0,0]=>[2,3,4,1]=>[[.,[.,[.,.]]],.] [2,1,1]=>[1,1,0,0,1,0,1,0]=>[4,3,1,2]=>[[[.,.],.],[.,.]] [2,2]=>[1,1,0,0,1,1,0,0]=>[3,4,1,2]=>[[.,[.,.]],[.,.]] [3,1]=>[1,1,1,0,0,0,1,0]=>[4,1,2,3]=>[[.,.],[.,[.,.]]] [4]=>[1,1,1,1,0,0,0,0]=>[1,2,3,4]=>[.,[.,[.,[.,.]]]] [1,1,1,1,1]=>[1,0,1,0,1,0,1,0,1,0]=>[5,4,3,2,1]=>[[[[[.,.],.],.],.],.] [1,1,1,2]=>[1,0,1,0,1,0,1,1,0,0]=>[4,5,3,2,1]=>[[[[.,[.,.]],.],.],.] [1,1,2,1]=>[1,0,1,0,1,1,0,0,1,0]=>[5,3,4,2,1]=>[[[[.,.],[.,.]],.],.] [1,1,3]=>[1,0,1,0,1,1,1,0,0,0]=>[3,4,5,2,1]=>[[[.,[.,[.,.]]],.],.] [1,2,1,1]=>[1,0,1,1,0,0,1,0,1,0]=>[5,4,2,3,1]=>[[[[.,.],.],[.,.]],.] [1,2,2]=>[1,0,1,1,0,0,1,1,0,0]=>[4,5,2,3,1]=>[[[.,[.,.]],[.,.]],.] [1,3,1]=>[1,0,1,1,1,0,0,0,1,0]=>[5,2,3,4,1]=>[[[.,.],[.,[.,.]]],.] [1,4]=>[1,0,1,1,1,1,0,0,0,0]=>[2,3,4,5,1]=>[[.,[.,[.,[.,.]]]],.] [2,1,1,1]=>[1,1,0,0,1,0,1,0,1,0]=>[5,4,3,1,2]=>[[[[.,.],.],.],[.,.]] [2,1,2]=>[1,1,0,0,1,0,1,1,0,0]=>[4,5,3,1,2]=>[[[.,[.,.]],.],[.,.]] [2,2,1]=>[1,1,0,0,1,1,0,0,1,0]=>[5,3,4,1,2]=>[[[.,.],[.,.]],[.,.]] [2,3]=>[1,1,0,0,1,1,1,0,0,0]=>[3,4,5,1,2]=>[[.,[.,[.,.]]],[.,.]] [3,1,1]=>[1,1,1,0,0,0,1,0,1,0]=>[5,4,1,2,3]=>[[[.,.],.],[.,[.,.]]] [3,2]=>[1,1,1,0,0,0,1,1,0,0]=>[4,5,1,2,3]=>[[.,[.,.]],[.,[.,.]]] [4,1]=>[1,1,1,1,0,0,0,0,1,0]=>[5,1,2,3,4]=>[[.,.],[.,[.,[.,.]]]] [5]=>[1,1,1,1,1,0,0,0,0,0]=>[1,2,3,4,5]=>[.,[.,[.,[.,[.,.]]]]] [1,1,1,1,1,1]=>[1,0,1,0,1,0,1,0,1,0,1,0]=>[6,5,4,3,2,1]=>[[[[[[.,.],.],.],.],.],.] [1,1,1,1,2]=>[1,0,1,0,1,0,1,0,1,1,0,0]=>[5,6,4,3,2,1]=>[[[[[.,[.,.]],.],.],.],.] [1,1,1,2,1]=>[1,0,1,0,1,0,1,1,0,0,1,0]=>[6,4,5,3,2,1]=>[[[[[.,.],[.,.]],.],.],.] [1,1,1,3]=>[1,0,1,0,1,0,1,1,1,0,0,0]=>[4,5,6,3,2,1]=>[[[[.,[.,[.,.]]],.],.],.] [1,1,2,1,1]=>[1,0,1,0,1,1,0,0,1,0,1,0]=>[6,5,3,4,2,1]=>[[[[[.,.],.],[.,.]],.],.] [1,1,2,2]=>[1,0,1,0,1,1,0,0,1,1,0,0]=>[5,6,3,4,2,1]=>[[[[.,[.,.]],[.,.]],.],.] [1,1,3,1]=>[1,0,1,0,1,1,1,0,0,0,1,0]=>[6,3,4,5,2,1]=>[[[[.,.],[.,[.,.]]],.],.] [1,1,4]=>[1,0,1,0,1,1,1,1,0,0,0,0]=>[3,4,5,6,2,1]=>[[[.,[.,[.,[.,.]]]],.],.] [1,2,1,1,1]=>[1,0,1,1,0,0,1,0,1,0,1,0]=>[6,5,4,2,3,1]=>[[[[[.,.],.],.],[.,.]],.] [1,2,1,2]=>[1,0,1,1,0,0,1,0,1,1,0,0]=>[5,6,4,2,3,1]=>[[[[.,[.,.]],.],[.,.]],.] [1,2,2,1]=>[1,0,1,1,0,0,1,1,0,0,1,0]=>[6,4,5,2,3,1]=>[[[[.,.],[.,.]],[.,.]],.] [1,2,3]=>[1,0,1,1,0,0,1,1,1,0,0,0]=>[4,5,6,2,3,1]=>[[[.,[.,[.,.]]],[.,.]],.] [1,3,1,1]=>[1,0,1,1,1,0,0,0,1,0,1,0]=>[6,5,2,3,4,1]=>[[[[.,.],.],[.,[.,.]]],.] [1,3,2]=>[1,0,1,1,1,0,0,0,1,1,0,0]=>[5,6,2,3,4,1]=>[[[.,[.,.]],[.,[.,.]]],.] [1,4,1]=>[1,0,1,1,1,1,0,0,0,0,1,0]=>[6,2,3,4,5,1]=>[[[.,.],[.,[.,[.,.]]]],.] [1,5]=>[1,0,1,1,1,1,1,0,0,0,0,0]=>[2,3,4,5,6,1]=>[[.,[.,[.,[.,[.,.]]]]],.] [2,1,1,1,1]=>[1,1,0,0,1,0,1,0,1,0,1,0]=>[6,5,4,3,1,2]=>[[[[[.,.],.],.],.],[.,.]] [2,1,1,2]=>[1,1,0,0,1,0,1,0,1,1,0,0]=>[5,6,4,3,1,2]=>[[[[.,[.,.]],.],.],[.,.]] [2,1,2,1]=>[1,1,0,0,1,0,1,1,0,0,1,0]=>[6,4,5,3,1,2]=>[[[[.,.],[.,.]],.],[.,.]] [2,1,3]=>[1,1,0,0,1,0,1,1,1,0,0,0]=>[4,5,6,3,1,2]=>[[[.,[.,[.,.]]],.],[.,.]] [2,2,1,1]=>[1,1,0,0,1,1,0,0,1,0,1,0]=>[6,5,3,4,1,2]=>[[[[.,.],.],[.,.]],[.,.]] [2,2,2]=>[1,1,0,0,1,1,0,0,1,1,0,0]=>[5,6,3,4,1,2]=>[[[.,[.,.]],[.,.]],[.,.]] [2,3,1]=>[1,1,0,0,1,1,1,0,0,0,1,0]=>[6,3,4,5,1,2]=>[[[.,.],[.,[.,.]]],[.,.]] [2,4]=>[1,1,0,0,1,1,1,1,0,0,0,0]=>[3,4,5,6,1,2]=>[[.,[.,[.,[.,.]]]],[.,.]] [3,1,1,1]=>[1,1,1,0,0,0,1,0,1,0,1,0]=>[6,5,4,1,2,3]=>[[[[.,.],.],.],[.,[.,.]]] [3,1,2]=>[1,1,1,0,0,0,1,0,1,1,0,0]=>[5,6,4,1,2,3]=>[[[.,[.,.]],.],[.,[.,.]]] [3,2,1]=>[1,1,1,0,0,0,1,1,0,0,1,0]=>[6,4,5,1,2,3]=>[[[.,.],[.,.]],[.,[.,.]]] [3,3]=>[1,1,1,0,0,0,1,1,1,0,0,0]=>[4,5,6,1,2,3]=>[[.,[.,[.,.]]],[.,[.,.]]] [4,1,1]=>[1,1,1,1,0,0,0,0,1,0,1,0]=>[6,5,1,2,3,4]=>[[[.,.],.],[.,[.,[.,.]]]] [4,2]=>[1,1,1,1,0,0,0,0,1,1,0,0]=>[5,6,1,2,3,4]=>[[.,[.,.]],[.,[.,[.,.]]]] [5,1]=>[1,1,1,1,1,0,0,0,0,0,1,0]=>[6,1,2,3,4,5]=>[[.,.],[.,[.,[.,[.,.]]]]] [6]=>[1,1,1,1,1,1,0,0,0,0,0,0]=>[1,2,3,4,5,6]=>[.,[.,[.,[.,[.,[.,.]]]]]] [1,1,1,1,1,1,1]=>[1,0,1,0,1,0,1,0,1,0,1,0,1,0]=>[7,6,5,4,3,2,1]=>[[[[[[[.,.],.],.],.],.],.],.] [1,1,1,1,1,2]=>[1,0,1,0,1,0,1,0,1,0,1,1,0,0]=>[6,7,5,4,3,2,1]=>[[[[[[.,[.,.]],.],.],.],.],.] [1,1,1,1,2,1]=>[1,0,1,0,1,0,1,0,1,1,0,0,1,0]=>[7,5,6,4,3,2,1]=>[[[[[[.,.],[.,.]],.],.],.],.] [1,1,1,1,3]=>[1,0,1,0,1,0,1,0,1,1,1,0,0,0]=>[5,6,7,4,3,2,1]=>[[[[[.,[.,[.,.]]],.],.],.],.] [1,1,1,2,1,1]=>[1,0,1,0,1,0,1,1,0,0,1,0,1,0]=>[7,6,4,5,3,2,1]=>[[[[[[.,.],.],[.,.]],.],.],.] [1,1,1,2,2]=>[1,0,1,0,1,0,1,1,0,0,1,1,0,0]=>[6,7,4,5,3,2,1]=>[[[[[.,[.,.]],[.,.]],.],.],.] [1,1,1,3,1]=>[1,0,1,0,1,0,1,1,1,0,0,0,1,0]=>[7,4,5,6,3,2,1]=>[[[[[.,.],[.,[.,.]]],.],.],.] [1,1,1,4]=>[1,0,1,0,1,0,1,1,1,1,0,0,0,0]=>[4,5,6,7,3,2,1]=>[[[[.,[.,[.,[.,.]]]],.],.],.] [1,1,2,1,1,1]=>[1,0,1,0,1,1,0,0,1,0,1,0,1,0]=>[7,6,5,3,4,2,1]=>[[[[[[.,.],.],.],[.,.]],.],.] [1,1,2,1,2]=>[1,0,1,0,1,1,0,0,1,0,1,1,0,0]=>[6,7,5,3,4,2,1]=>[[[[[.,[.,.]],.],[.,.]],.],.] [1,1,2,2,1]=>[1,0,1,0,1,1,0,0,1,1,0,0,1,0]=>[7,5,6,3,4,2,1]=>[[[[[.,.],[.,.]],[.,.]],.],.] [1,1,2,3]=>[1,0,1,0,1,1,0,0,1,1,1,0,0,0]=>[5,6,7,3,4,2,1]=>[[[[.,[.,[.,.]]],[.,.]],.],.] [1,1,3,1,1]=>[1,0,1,0,1,1,1,0,0,0,1,0,1,0]=>[7,6,3,4,5,2,1]=>[[[[[.,.],.],[.,[.,.]]],.],.] [1,1,3,2]=>[1,0,1,0,1,1,1,0,0,0,1,1,0,0]=>[6,7,3,4,5,2,1]=>[[[[.,[.,.]],[.,[.,.]]],.],.] [1,1,4,1]=>[1,0,1,0,1,1,1,1,0,0,0,0,1,0]=>[7,3,4,5,6,2,1]=>[[[[.,.],[.,[.,[.,.]]]],.],.] [1,1,5]=>[1,0,1,0,1,1,1,1,1,0,0,0,0,0]=>[3,4,5,6,7,2,1]=>[[[.,[.,[.,[.,[.,.]]]]],.],.] [1,2,1,1,1,1]=>[1,0,1,1,0,0,1,0,1,0,1,0,1,0]=>[7,6,5,4,2,3,1]=>[[[[[[.,.],.],.],.],[.,.]],.] [1,2,1,1,2]=>[1,0,1,1,0,0,1,0,1,0,1,1,0,0]=>[6,7,5,4,2,3,1]=>[[[[[.,[.,.]],.],.],[.,.]],.] [1,2,1,2,1]=>[1,0,1,1,0,0,1,0,1,1,0,0,1,0]=>[7,5,6,4,2,3,1]=>[[[[[.,.],[.,.]],.],[.,.]],.] [1,2,1,3]=>[1,0,1,1,0,0,1,0,1,1,1,0,0,0]=>[5,6,7,4,2,3,1]=>[[[[.,[.,[.,.]]],.],[.,.]],.] [1,2,2,1,1]=>[1,0,1,1,0,0,1,1,0,0,1,0,1,0]=>[7,6,4,5,2,3,1]=>[[[[[.,.],.],[.,.]],[.,.]],.] [1,2,2,2]=>[1,0,1,1,0,0,1,1,0,0,1,1,0,0]=>[6,7,4,5,2,3,1]=>[[[[.,[.,.]],[.,.]],[.,.]],.] [1,2,3,1]=>[1,0,1,1,0,0,1,1,1,0,0,0,1,0]=>[7,4,5,6,2,3,1]=>[[[[.,.],[.,[.,.]]],[.,.]],.] [1,2,4]=>[1,0,1,1,0,0,1,1,1,1,0,0,0,0]=>[4,5,6,7,2,3,1]=>[[[.,[.,[.,[.,.]]]],[.,.]],.] [1,3,1,1,1]=>[1,0,1,1,1,0,0,0,1,0,1,0,1,0]=>[7,6,5,2,3,4,1]=>[[[[[.,.],.],.],[.,[.,.]]],.] [1,3,1,2]=>[1,0,1,1,1,0,0,0,1,0,1,1,0,0]=>[6,7,5,2,3,4,1]=>[[[[.,[.,.]],.],[.,[.,.]]],.] [1,3,2,1]=>[1,0,1,1,1,0,0,0,1,1,0,0,1,0]=>[7,5,6,2,3,4,1]=>[[[[.,.],[.,.]],[.,[.,.]]],.] [1,3,3]=>[1,0,1,1,1,0,0,0,1,1,1,0,0,0]=>[5,6,7,2,3,4,1]=>[[[.,[.,[.,.]]],[.,[.,.]]],.] [1,4,1,1]=>[1,0,1,1,1,1,0,0,0,0,1,0,1,0]=>[7,6,2,3,4,5,1]=>[[[[.,.],.],[.,[.,[.,.]]]],.] [1,4,2]=>[1,0,1,1,1,1,0,0,0,0,1,1,0,0]=>[6,7,2,3,4,5,1]=>[[[.,[.,.]],[.,[.,[.,.]]]],.] [1,5,1]=>[1,0,1,1,1,1,1,0,0,0,0,0,1,0]=>[7,2,3,4,5,6,1]=>[[[.,.],[.,[.,[.,[.,.]]]]],.] [1,6]=>[1,0,1,1,1,1,1,1,0,0,0,0,0,0]=>[2,3,4,5,6,7,1]=>[[.,[.,[.,[.,[.,[.,.]]]]]],.] [2,1,1,1,1,1]=>[1,1,0,0,1,0,1,0,1,0,1,0,1,0]=>[7,6,5,4,3,1,2]=>[[[[[[.,.],.],.],.],.],[.,.]] [2,1,1,1,2]=>[1,1,0,0,1,0,1,0,1,0,1,1,0,0]=>[6,7,5,4,3,1,2]=>[[[[[.,[.,.]],.],.],.],[.,.]] [2,1,1,2,1]=>[1,1,0,0,1,0,1,0,1,1,0,0,1,0]=>[7,5,6,4,3,1,2]=>[[[[[.,.],[.,.]],.],.],[.,.]] [2,1,1,3]=>[1,1,0,0,1,0,1,0,1,1,1,0,0,0]=>[5,6,7,4,3,1,2]=>[[[[.,[.,[.,.]]],.],.],[.,.]] [2,1,2,1,1]=>[1,1,0,0,1,0,1,1,0,0,1,0,1,0]=>[7,6,4,5,3,1,2]=>[[[[[.,.],.],[.,.]],.],[.,.]] [2,1,2,2]=>[1,1,0,0,1,0,1,1,0,0,1,1,0,0]=>[6,7,4,5,3,1,2]=>[[[[.,[.,.]],[.,.]],.],[.,.]] [2,1,3,1]=>[1,1,0,0,1,0,1,1,1,0,0,0,1,0]=>[7,4,5,6,3,1,2]=>[[[[.,.],[.,[.,.]]],.],[.,.]] [2,1,4]=>[1,1,0,0,1,0,1,1,1,1,0,0,0,0]=>[4,5,6,7,3,1,2]=>[[[.,[.,[.,[.,.]]]],.],[.,.]] [2,2,1,1,1]=>[1,1,0,0,1,1,0,0,1,0,1,0,1,0]=>[7,6,5,3,4,1,2]=>[[[[[.,.],.],.],[.,.]],[.,.]] [2,2,1,2]=>[1,1,0,0,1,1,0,0,1,0,1,1,0,0]=>[6,7,5,3,4,1,2]=>[[[[.,[.,.]],.],[.,.]],[.,.]] [2,2,2,1]=>[1,1,0,0,1,1,0,0,1,1,0,0,1,0]=>[7,5,6,3,4,1,2]=>[[[[.,.],[.,.]],[.,.]],[.,.]] [2,2,3]=>[1,1,0,0,1,1,0,0,1,1,1,0,0,0]=>[5,6,7,3,4,1,2]=>[[[.,[.,[.,.]]],[.,.]],[.,.]] [2,3,1,1]=>[1,1,0,0,1,1,1,0,0,0,1,0,1,0]=>[7,6,3,4,5,1,2]=>[[[[.,.],.],[.,[.,.]]],[.,.]] [2,3,2]=>[1,1,0,0,1,1,1,0,0,0,1,1,0,0]=>[6,7,3,4,5,1,2]=>[[[.,[.,.]],[.,[.,.]]],[.,.]] [2,4,1]=>[1,1,0,0,1,1,1,1,0,0,0,0,1,0]=>[7,3,4,5,6,1,2]=>[[[.,.],[.,[.,[.,.]]]],[.,.]] [2,5]=>[1,1,0,0,1,1,1,1,1,0,0,0,0,0]=>[3,4,5,6,7,1,2]=>[[.,[.,[.,[.,[.,.]]]]],[.,.]] [3,1,1,1,1]=>[1,1,1,0,0,0,1,0,1,0,1,0,1,0]=>[7,6,5,4,1,2,3]=>[[[[[.,.],.],.],.],[.,[.,.]]] [3,1,1,2]=>[1,1,1,0,0,0,1,0,1,0,1,1,0,0]=>[6,7,5,4,1,2,3]=>[[[[.,[.,.]],.],.],[.,[.,.]]] [3,1,2,1]=>[1,1,1,0,0,0,1,0,1,1,0,0,1,0]=>[7,5,6,4,1,2,3]=>[[[[.,.],[.,.]],.],[.,[.,.]]] [3,1,3]=>[1,1,1,0,0,0,1,0,1,1,1,0,0,0]=>[5,6,7,4,1,2,3]=>[[[.,[.,[.,.]]],.],[.,[.,.]]] [3,2,1,1]=>[1,1,1,0,0,0,1,1,0,0,1,0,1,0]=>[7,6,4,5,1,2,3]=>[[[[.,.],.],[.,.]],[.,[.,.]]] [3,2,2]=>[1,1,1,0,0,0,1,1,0,0,1,1,0,0]=>[6,7,4,5,1,2,3]=>[[[.,[.,.]],[.,.]],[.,[.,.]]] [3,3,1]=>[1,1,1,0,0,0,1,1,1,0,0,0,1,0]=>[7,4,5,6,1,2,3]=>[[[.,.],[.,[.,.]]],[.,[.,.]]] [3,4]=>[1,1,1,0,0,0,1,1,1,1,0,0,0,0]=>[4,5,6,7,1,2,3]=>[[.,[.,[.,[.,.]]]],[.,[.,.]]] [4,1,1,1]=>[1,1,1,1,0,0,0,0,1,0,1,0,1,0]=>[7,6,5,1,2,3,4]=>[[[[.,.],.],.],[.,[.,[.,.]]]] [4,1,2]=>[1,1,1,1,0,0,0,0,1,0,1,1,0,0]=>[6,7,5,1,2,3,4]=>[[[.,[.,.]],.],[.,[.,[.,.]]]] [4,2,1]=>[1,1,1,1,0,0,0,0,1,1,0,0,1,0]=>[7,5,6,1,2,3,4]=>[[[.,.],[.,.]],[.,[.,[.,.]]]] [4,3]=>[1,1,1,1,0,0,0,0,1,1,1,0,0,0]=>[5,6,7,1,2,3,4]=>[[.,[.,[.,.]]],[.,[.,[.,.]]]] [5,1,1]=>[1,1,1,1,1,0,0,0,0,0,1,0,1,0]=>[7,6,1,2,3,4,5]=>[[[.,.],.],[.,[.,[.,[.,.]]]]] [5,2]=>[1,1,1,1,1,0,0,0,0,0,1,1,0,0]=>[6,7,1,2,3,4,5]=>[[.,[.,.]],[.,[.,[.,[.,.]]]]] [6,1]=>[1,1,1,1,1,1,0,0,0,0,0,0,1,0]=>[7,1,2,3,4,5,6]=>[[.,.],[.,[.,[.,[.,[.,.]]]]]] [7]=>[1,1,1,1,1,1,1,0,0,0,0,0,0,0]=>[1,2,3,4,5,6,7]=>[.,[.,[.,[.,[.,[.,[.,.]]]]]]] [1,1,1,1,1,1,1,1]=>[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]=>[8,7,6,5,4,3,2,1]=>[[[[[[[[.,.],.],.],.],.],.],.],.] [1,1,2,2,1,1]=>[1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]=>[8,7,5,6,3,4,2,1]=>[[[[[[.,.],.],[.,.]],[.,.]],.],.] [1,2,1,1,2,1]=>[1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]=>[8,6,7,5,4,2,3,1]=>[[[[[[.,.],[.,.]],.],.],[.,.]],.] [1,3,3,1]=>[1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]=>[8,5,6,7,2,3,4,1]=>[[[[.,.],[.,[.,.]]],[.,[.,.]]],.] [2,1,1,1,1,2]=>[1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]=>[7,8,6,5,4,3,1,2]=>[[[[[[.,[.,.]],.],.],.],.],[.,.]] [2,2,2,2]=>[1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]=>[7,8,5,6,3,4,1,2]=>[[[[.,[.,.]],[.,.]],[.,.]],[.,.]] [2,2,4]=>[1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]=>[5,6,7,8,3,4,1,2]=>[[[.,[.,[.,[.,.]]]],[.,.]],[.,.]] [2,4,2]=>[1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]=>[7,8,3,4,5,6,1,2]=>[[[.,[.,.]],[.,[.,[.,.]]]],[.,.]] [2,6]=>[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]=>[3,4,5,6,7,8,1,2]=>[[.,[.,[.,[.,[.,[.,.]]]]]],[.,.]] [3,1,1,3]=>[1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]=>[6,7,8,5,4,1,2,3]=>[[[[.,[.,[.,.]]],.],.],[.,[.,.]]] [4,2,2]=>[1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]=>[7,8,5,6,1,2,3,4]=>[[[.,[.,.]],[.,.]],[.,[.,[.,.]]]] [4,4]=>[1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]=>[5,6,7,8,1,2,3,4]=>[[.,[.,[.,[.,.]]]],[.,[.,[.,.]]]] [6,2]=>[1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]=>[7,8,1,2,3,4,5,6]=>[[.,[.,.]],[.,[.,[.,[.,[.,.]]]]]] [8]=>[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]=>[1,2,3,4,5,6,7,8]=>[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
Map
bounce path
Description
The bounce path determined by an integer composition.
Map
to 132-avoiding permutation
Description
Sends a Dyck path to a 132-avoiding permutation.
This bijection is defined in [1, Section 2].
Map
to increasing tree
Description
Sends a permutation to its associated increasing tree.
This tree is recursively obtained by sending the unique permutation of length $0$ to the empty tree, and sending a permutation $\sigma$ of length $n \geq 1$ to a root node with two subtrees $L$ and $R$ by splitting $\sigma$ at the index $\sigma^{-1}(1)$, normalizing both sides again to permutations and sending the permutations on the left and on the right of $\sigma^{-1}(1)$ to the trees $L$ and $R$, respectively.