Identifier
Mp00231:
Integer compositions
—bounce path⟶
Dyck paths
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00061: Permutations —to increasing tree⟶ Binary trees
Mp00025: Dyck paths —to 132-avoiding permutation⟶ Permutations
Mp00061: Permutations —to increasing tree⟶ Binary trees
Images
=>
Cc0005;cc-rep-1Cc0010;cc-rep-3
[1]=>[1,0]=>[1]=>[.,.]
[1,1]=>[1,0,1,0]=>[2,1]=>[[.,.],.]
[2]=>[1,1,0,0]=>[1,2]=>[.,[.,.]]
[1,1,1]=>[1,0,1,0,1,0]=>[3,2,1]=>[[[.,.],.],.]
[1,2]=>[1,0,1,1,0,0]=>[2,3,1]=>[[.,[.,.]],.]
[2,1]=>[1,1,0,0,1,0]=>[3,1,2]=>[[.,.],[.,.]]
[3]=>[1,1,1,0,0,0]=>[1,2,3]=>[.,[.,[.,.]]]
[1,1,1,1]=>[1,0,1,0,1,0,1,0]=>[4,3,2,1]=>[[[[.,.],.],.],.]
[1,1,2]=>[1,0,1,0,1,1,0,0]=>[3,4,2,1]=>[[[.,[.,.]],.],.]
[1,2,1]=>[1,0,1,1,0,0,1,0]=>[4,2,3,1]=>[[[.,.],[.,.]],.]
[1,3]=>[1,0,1,1,1,0,0,0]=>[2,3,4,1]=>[[.,[.,[.,.]]],.]
[2,1,1]=>[1,1,0,0,1,0,1,0]=>[4,3,1,2]=>[[[.,.],.],[.,.]]
[2,2]=>[1,1,0,0,1,1,0,0]=>[3,4,1,2]=>[[.,[.,.]],[.,.]]
[3,1]=>[1,1,1,0,0,0,1,0]=>[4,1,2,3]=>[[.,.],[.,[.,.]]]
[4]=>[1,1,1,1,0,0,0,0]=>[1,2,3,4]=>[.,[.,[.,[.,.]]]]
[1,1,1,1,1]=>[1,0,1,0,1,0,1,0,1,0]=>[5,4,3,2,1]=>[[[[[.,.],.],.],.],.]
[1,1,1,2]=>[1,0,1,0,1,0,1,1,0,0]=>[4,5,3,2,1]=>[[[[.,[.,.]],.],.],.]
[1,1,2,1]=>[1,0,1,0,1,1,0,0,1,0]=>[5,3,4,2,1]=>[[[[.,.],[.,.]],.],.]
[1,1,3]=>[1,0,1,0,1,1,1,0,0,0]=>[3,4,5,2,1]=>[[[.,[.,[.,.]]],.],.]
[1,2,1,1]=>[1,0,1,1,0,0,1,0,1,0]=>[5,4,2,3,1]=>[[[[.,.],.],[.,.]],.]
[1,2,2]=>[1,0,1,1,0,0,1,1,0,0]=>[4,5,2,3,1]=>[[[.,[.,.]],[.,.]],.]
[1,3,1]=>[1,0,1,1,1,0,0,0,1,0]=>[5,2,3,4,1]=>[[[.,.],[.,[.,.]]],.]
[1,4]=>[1,0,1,1,1,1,0,0,0,0]=>[2,3,4,5,1]=>[[.,[.,[.,[.,.]]]],.]
[2,1,1,1]=>[1,1,0,0,1,0,1,0,1,0]=>[5,4,3,1,2]=>[[[[.,.],.],.],[.,.]]
[2,1,2]=>[1,1,0,0,1,0,1,1,0,0]=>[4,5,3,1,2]=>[[[.,[.,.]],.],[.,.]]
[2,2,1]=>[1,1,0,0,1,1,0,0,1,0]=>[5,3,4,1,2]=>[[[.,.],[.,.]],[.,.]]
[2,3]=>[1,1,0,0,1,1,1,0,0,0]=>[3,4,5,1,2]=>[[.,[.,[.,.]]],[.,.]]
[3,1,1]=>[1,1,1,0,0,0,1,0,1,0]=>[5,4,1,2,3]=>[[[.,.],.],[.,[.,.]]]
[3,2]=>[1,1,1,0,0,0,1,1,0,0]=>[4,5,1,2,3]=>[[.,[.,.]],[.,[.,.]]]
[4,1]=>[1,1,1,1,0,0,0,0,1,0]=>[5,1,2,3,4]=>[[.,.],[.,[.,[.,.]]]]
[5]=>[1,1,1,1,1,0,0,0,0,0]=>[1,2,3,4,5]=>[.,[.,[.,[.,[.,.]]]]]
[1,1,1,1,1,1]=>[1,0,1,0,1,0,1,0,1,0,1,0]=>[6,5,4,3,2,1]=>[[[[[[.,.],.],.],.],.],.]
[1,1,1,1,2]=>[1,0,1,0,1,0,1,0,1,1,0,0]=>[5,6,4,3,2,1]=>[[[[[.,[.,.]],.],.],.],.]
[1,1,1,2,1]=>[1,0,1,0,1,0,1,1,0,0,1,0]=>[6,4,5,3,2,1]=>[[[[[.,.],[.,.]],.],.],.]
[1,1,1,3]=>[1,0,1,0,1,0,1,1,1,0,0,0]=>[4,5,6,3,2,1]=>[[[[.,[.,[.,.]]],.],.],.]
[1,1,2,1,1]=>[1,0,1,0,1,1,0,0,1,0,1,0]=>[6,5,3,4,2,1]=>[[[[[.,.],.],[.,.]],.],.]
[1,1,2,2]=>[1,0,1,0,1,1,0,0,1,1,0,0]=>[5,6,3,4,2,1]=>[[[[.,[.,.]],[.,.]],.],.]
[1,1,3,1]=>[1,0,1,0,1,1,1,0,0,0,1,0]=>[6,3,4,5,2,1]=>[[[[.,.],[.,[.,.]]],.],.]
[1,1,4]=>[1,0,1,0,1,1,1,1,0,0,0,0]=>[3,4,5,6,2,1]=>[[[.,[.,[.,[.,.]]]],.],.]
[1,2,1,1,1]=>[1,0,1,1,0,0,1,0,1,0,1,0]=>[6,5,4,2,3,1]=>[[[[[.,.],.],.],[.,.]],.]
[1,2,1,2]=>[1,0,1,1,0,0,1,0,1,1,0,0]=>[5,6,4,2,3,1]=>[[[[.,[.,.]],.],[.,.]],.]
[1,2,2,1]=>[1,0,1,1,0,0,1,1,0,0,1,0]=>[6,4,5,2,3,1]=>[[[[.,.],[.,.]],[.,.]],.]
[1,2,3]=>[1,0,1,1,0,0,1,1,1,0,0,0]=>[4,5,6,2,3,1]=>[[[.,[.,[.,.]]],[.,.]],.]
[1,3,1,1]=>[1,0,1,1,1,0,0,0,1,0,1,0]=>[6,5,2,3,4,1]=>[[[[.,.],.],[.,[.,.]]],.]
[1,3,2]=>[1,0,1,1,1,0,0,0,1,1,0,0]=>[5,6,2,3,4,1]=>[[[.,[.,.]],[.,[.,.]]],.]
[1,4,1]=>[1,0,1,1,1,1,0,0,0,0,1,0]=>[6,2,3,4,5,1]=>[[[.,.],[.,[.,[.,.]]]],.]
[1,5]=>[1,0,1,1,1,1,1,0,0,0,0,0]=>[2,3,4,5,6,1]=>[[.,[.,[.,[.,[.,.]]]]],.]
[2,1,1,1,1]=>[1,1,0,0,1,0,1,0,1,0,1,0]=>[6,5,4,3,1,2]=>[[[[[.,.],.],.],.],[.,.]]
[2,1,1,2]=>[1,1,0,0,1,0,1,0,1,1,0,0]=>[5,6,4,3,1,2]=>[[[[.,[.,.]],.],.],[.,.]]
[2,1,2,1]=>[1,1,0,0,1,0,1,1,0,0,1,0]=>[6,4,5,3,1,2]=>[[[[.,.],[.,.]],.],[.,.]]
[2,1,3]=>[1,1,0,0,1,0,1,1,1,0,0,0]=>[4,5,6,3,1,2]=>[[[.,[.,[.,.]]],.],[.,.]]
[2,2,1,1]=>[1,1,0,0,1,1,0,0,1,0,1,0]=>[6,5,3,4,1,2]=>[[[[.,.],.],[.,.]],[.,.]]
[2,2,2]=>[1,1,0,0,1,1,0,0,1,1,0,0]=>[5,6,3,4,1,2]=>[[[.,[.,.]],[.,.]],[.,.]]
[2,3,1]=>[1,1,0,0,1,1,1,0,0,0,1,0]=>[6,3,4,5,1,2]=>[[[.,.],[.,[.,.]]],[.,.]]
[2,4]=>[1,1,0,0,1,1,1,1,0,0,0,0]=>[3,4,5,6,1,2]=>[[.,[.,[.,[.,.]]]],[.,.]]
[3,1,1,1]=>[1,1,1,0,0,0,1,0,1,0,1,0]=>[6,5,4,1,2,3]=>[[[[.,.],.],.],[.,[.,.]]]
[3,1,2]=>[1,1,1,0,0,0,1,0,1,1,0,0]=>[5,6,4,1,2,3]=>[[[.,[.,.]],.],[.,[.,.]]]
[3,2,1]=>[1,1,1,0,0,0,1,1,0,0,1,0]=>[6,4,5,1,2,3]=>[[[.,.],[.,.]],[.,[.,.]]]
[3,3]=>[1,1,1,0,0,0,1,1,1,0,0,0]=>[4,5,6,1,2,3]=>[[.,[.,[.,.]]],[.,[.,.]]]
[4,1,1]=>[1,1,1,1,0,0,0,0,1,0,1,0]=>[6,5,1,2,3,4]=>[[[.,.],.],[.,[.,[.,.]]]]
[4,2]=>[1,1,1,1,0,0,0,0,1,1,0,0]=>[5,6,1,2,3,4]=>[[.,[.,.]],[.,[.,[.,.]]]]
[5,1]=>[1,1,1,1,1,0,0,0,0,0,1,0]=>[6,1,2,3,4,5]=>[[.,.],[.,[.,[.,[.,.]]]]]
[6]=>[1,1,1,1,1,1,0,0,0,0,0,0]=>[1,2,3,4,5,6]=>[.,[.,[.,[.,[.,[.,.]]]]]]
[1,1,1,1,1,1,1]=>[1,0,1,0,1,0,1,0,1,0,1,0,1,0]=>[7,6,5,4,3,2,1]=>[[[[[[[.,.],.],.],.],.],.],.]
[1,1,1,1,1,2]=>[1,0,1,0,1,0,1,0,1,0,1,1,0,0]=>[6,7,5,4,3,2,1]=>[[[[[[.,[.,.]],.],.],.],.],.]
[1,1,1,1,2,1]=>[1,0,1,0,1,0,1,0,1,1,0,0,1,0]=>[7,5,6,4,3,2,1]=>[[[[[[.,.],[.,.]],.],.],.],.]
[1,1,1,1,3]=>[1,0,1,0,1,0,1,0,1,1,1,0,0,0]=>[5,6,7,4,3,2,1]=>[[[[[.,[.,[.,.]]],.],.],.],.]
[1,1,1,2,1,1]=>[1,0,1,0,1,0,1,1,0,0,1,0,1,0]=>[7,6,4,5,3,2,1]=>[[[[[[.,.],.],[.,.]],.],.],.]
[1,1,1,2,2]=>[1,0,1,0,1,0,1,1,0,0,1,1,0,0]=>[6,7,4,5,3,2,1]=>[[[[[.,[.,.]],[.,.]],.],.],.]
[1,1,1,3,1]=>[1,0,1,0,1,0,1,1,1,0,0,0,1,0]=>[7,4,5,6,3,2,1]=>[[[[[.,.],[.,[.,.]]],.],.],.]
[1,1,1,4]=>[1,0,1,0,1,0,1,1,1,1,0,0,0,0]=>[4,5,6,7,3,2,1]=>[[[[.,[.,[.,[.,.]]]],.],.],.]
[1,1,2,1,1,1]=>[1,0,1,0,1,1,0,0,1,0,1,0,1,0]=>[7,6,5,3,4,2,1]=>[[[[[[.,.],.],.],[.,.]],.],.]
[1,1,2,1,2]=>[1,0,1,0,1,1,0,0,1,0,1,1,0,0]=>[6,7,5,3,4,2,1]=>[[[[[.,[.,.]],.],[.,.]],.],.]
[1,1,2,2,1]=>[1,0,1,0,1,1,0,0,1,1,0,0,1,0]=>[7,5,6,3,4,2,1]=>[[[[[.,.],[.,.]],[.,.]],.],.]
[1,1,2,3]=>[1,0,1,0,1,1,0,0,1,1,1,0,0,0]=>[5,6,7,3,4,2,1]=>[[[[.,[.,[.,.]]],[.,.]],.],.]
[1,1,3,1,1]=>[1,0,1,0,1,1,1,0,0,0,1,0,1,0]=>[7,6,3,4,5,2,1]=>[[[[[.,.],.],[.,[.,.]]],.],.]
[1,1,3,2]=>[1,0,1,0,1,1,1,0,0,0,1,1,0,0]=>[6,7,3,4,5,2,1]=>[[[[.,[.,.]],[.,[.,.]]],.],.]
[1,1,4,1]=>[1,0,1,0,1,1,1,1,0,0,0,0,1,0]=>[7,3,4,5,6,2,1]=>[[[[.,.],[.,[.,[.,.]]]],.],.]
[1,1,5]=>[1,0,1,0,1,1,1,1,1,0,0,0,0,0]=>[3,4,5,6,7,2,1]=>[[[.,[.,[.,[.,[.,.]]]]],.],.]
[1,2,1,1,1,1]=>[1,0,1,1,0,0,1,0,1,0,1,0,1,0]=>[7,6,5,4,2,3,1]=>[[[[[[.,.],.],.],.],[.,.]],.]
[1,2,1,1,2]=>[1,0,1,1,0,0,1,0,1,0,1,1,0,0]=>[6,7,5,4,2,3,1]=>[[[[[.,[.,.]],.],.],[.,.]],.]
[1,2,1,2,1]=>[1,0,1,1,0,0,1,0,1,1,0,0,1,0]=>[7,5,6,4,2,3,1]=>[[[[[.,.],[.,.]],.],[.,.]],.]
[1,2,1,3]=>[1,0,1,1,0,0,1,0,1,1,1,0,0,0]=>[5,6,7,4,2,3,1]=>[[[[.,[.,[.,.]]],.],[.,.]],.]
[1,2,2,1,1]=>[1,0,1,1,0,0,1,1,0,0,1,0,1,0]=>[7,6,4,5,2,3,1]=>[[[[[.,.],.],[.,.]],[.,.]],.]
[1,2,2,2]=>[1,0,1,1,0,0,1,1,0,0,1,1,0,0]=>[6,7,4,5,2,3,1]=>[[[[.,[.,.]],[.,.]],[.,.]],.]
[1,2,3,1]=>[1,0,1,1,0,0,1,1,1,0,0,0,1,0]=>[7,4,5,6,2,3,1]=>[[[[.,.],[.,[.,.]]],[.,.]],.]
[1,2,4]=>[1,0,1,1,0,0,1,1,1,1,0,0,0,0]=>[4,5,6,7,2,3,1]=>[[[.,[.,[.,[.,.]]]],[.,.]],.]
[1,3,1,1,1]=>[1,0,1,1,1,0,0,0,1,0,1,0,1,0]=>[7,6,5,2,3,4,1]=>[[[[[.,.],.],.],[.,[.,.]]],.]
[1,3,1,2]=>[1,0,1,1,1,0,0,0,1,0,1,1,0,0]=>[6,7,5,2,3,4,1]=>[[[[.,[.,.]],.],[.,[.,.]]],.]
[1,3,2,1]=>[1,0,1,1,1,0,0,0,1,1,0,0,1,0]=>[7,5,6,2,3,4,1]=>[[[[.,.],[.,.]],[.,[.,.]]],.]
[1,3,3]=>[1,0,1,1,1,0,0,0,1,1,1,0,0,0]=>[5,6,7,2,3,4,1]=>[[[.,[.,[.,.]]],[.,[.,.]]],.]
[1,4,1,1]=>[1,0,1,1,1,1,0,0,0,0,1,0,1,0]=>[7,6,2,3,4,5,1]=>[[[[.,.],.],[.,[.,[.,.]]]],.]
[1,4,2]=>[1,0,1,1,1,1,0,0,0,0,1,1,0,0]=>[6,7,2,3,4,5,1]=>[[[.,[.,.]],[.,[.,[.,.]]]],.]
[1,5,1]=>[1,0,1,1,1,1,1,0,0,0,0,0,1,0]=>[7,2,3,4,5,6,1]=>[[[.,.],[.,[.,[.,[.,.]]]]],.]
[1,6]=>[1,0,1,1,1,1,1,1,0,0,0,0,0,0]=>[2,3,4,5,6,7,1]=>[[.,[.,[.,[.,[.,[.,.]]]]]],.]
[2,1,1,1,1,1]=>[1,1,0,0,1,0,1,0,1,0,1,0,1,0]=>[7,6,5,4,3,1,2]=>[[[[[[.,.],.],.],.],.],[.,.]]
[2,1,1,1,2]=>[1,1,0,0,1,0,1,0,1,0,1,1,0,0]=>[6,7,5,4,3,1,2]=>[[[[[.,[.,.]],.],.],.],[.,.]]
[2,1,1,2,1]=>[1,1,0,0,1,0,1,0,1,1,0,0,1,0]=>[7,5,6,4,3,1,2]=>[[[[[.,.],[.,.]],.],.],[.,.]]
[2,1,1,3]=>[1,1,0,0,1,0,1,0,1,1,1,0,0,0]=>[5,6,7,4,3,1,2]=>[[[[.,[.,[.,.]]],.],.],[.,.]]
[2,1,2,1,1]=>[1,1,0,0,1,0,1,1,0,0,1,0,1,0]=>[7,6,4,5,3,1,2]=>[[[[[.,.],.],[.,.]],.],[.,.]]
[2,1,2,2]=>[1,1,0,0,1,0,1,1,0,0,1,1,0,0]=>[6,7,4,5,3,1,2]=>[[[[.,[.,.]],[.,.]],.],[.,.]]
[2,1,3,1]=>[1,1,0,0,1,0,1,1,1,0,0,0,1,0]=>[7,4,5,6,3,1,2]=>[[[[.,.],[.,[.,.]]],.],[.,.]]
[2,1,4]=>[1,1,0,0,1,0,1,1,1,1,0,0,0,0]=>[4,5,6,7,3,1,2]=>[[[.,[.,[.,[.,.]]]],.],[.,.]]
[2,2,1,1,1]=>[1,1,0,0,1,1,0,0,1,0,1,0,1,0]=>[7,6,5,3,4,1,2]=>[[[[[.,.],.],.],[.,.]],[.,.]]
[2,2,1,2]=>[1,1,0,0,1,1,0,0,1,0,1,1,0,0]=>[6,7,5,3,4,1,2]=>[[[[.,[.,.]],.],[.,.]],[.,.]]
[2,2,2,1]=>[1,1,0,0,1,1,0,0,1,1,0,0,1,0]=>[7,5,6,3,4,1,2]=>[[[[.,.],[.,.]],[.,.]],[.,.]]
[2,2,3]=>[1,1,0,0,1,1,0,0,1,1,1,0,0,0]=>[5,6,7,3,4,1,2]=>[[[.,[.,[.,.]]],[.,.]],[.,.]]
[2,3,1,1]=>[1,1,0,0,1,1,1,0,0,0,1,0,1,0]=>[7,6,3,4,5,1,2]=>[[[[.,.],.],[.,[.,.]]],[.,.]]
[2,3,2]=>[1,1,0,0,1,1,1,0,0,0,1,1,0,0]=>[6,7,3,4,5,1,2]=>[[[.,[.,.]],[.,[.,.]]],[.,.]]
[2,4,1]=>[1,1,0,0,1,1,1,1,0,0,0,0,1,0]=>[7,3,4,5,6,1,2]=>[[[.,.],[.,[.,[.,.]]]],[.,.]]
[2,5]=>[1,1,0,0,1,1,1,1,1,0,0,0,0,0]=>[3,4,5,6,7,1,2]=>[[.,[.,[.,[.,[.,.]]]]],[.,.]]
[3,1,1,1,1]=>[1,1,1,0,0,0,1,0,1,0,1,0,1,0]=>[7,6,5,4,1,2,3]=>[[[[[.,.],.],.],.],[.,[.,.]]]
[3,1,1,2]=>[1,1,1,0,0,0,1,0,1,0,1,1,0,0]=>[6,7,5,4,1,2,3]=>[[[[.,[.,.]],.],.],[.,[.,.]]]
[3,1,2,1]=>[1,1,1,0,0,0,1,0,1,1,0,0,1,0]=>[7,5,6,4,1,2,3]=>[[[[.,.],[.,.]],.],[.,[.,.]]]
[3,1,3]=>[1,1,1,0,0,0,1,0,1,1,1,0,0,0]=>[5,6,7,4,1,2,3]=>[[[.,[.,[.,.]]],.],[.,[.,.]]]
[3,2,1,1]=>[1,1,1,0,0,0,1,1,0,0,1,0,1,0]=>[7,6,4,5,1,2,3]=>[[[[.,.],.],[.,.]],[.,[.,.]]]
[3,2,2]=>[1,1,1,0,0,0,1,1,0,0,1,1,0,0]=>[6,7,4,5,1,2,3]=>[[[.,[.,.]],[.,.]],[.,[.,.]]]
[3,3,1]=>[1,1,1,0,0,0,1,1,1,0,0,0,1,0]=>[7,4,5,6,1,2,3]=>[[[.,.],[.,[.,.]]],[.,[.,.]]]
[3,4]=>[1,1,1,0,0,0,1,1,1,1,0,0,0,0]=>[4,5,6,7,1,2,3]=>[[.,[.,[.,[.,.]]]],[.,[.,.]]]
[4,1,1,1]=>[1,1,1,1,0,0,0,0,1,0,1,0,1,0]=>[7,6,5,1,2,3,4]=>[[[[.,.],.],.],[.,[.,[.,.]]]]
[4,1,2]=>[1,1,1,1,0,0,0,0,1,0,1,1,0,0]=>[6,7,5,1,2,3,4]=>[[[.,[.,.]],.],[.,[.,[.,.]]]]
[4,2,1]=>[1,1,1,1,0,0,0,0,1,1,0,0,1,0]=>[7,5,6,1,2,3,4]=>[[[.,.],[.,.]],[.,[.,[.,.]]]]
[4,3]=>[1,1,1,1,0,0,0,0,1,1,1,0,0,0]=>[5,6,7,1,2,3,4]=>[[.,[.,[.,.]]],[.,[.,[.,.]]]]
[5,1,1]=>[1,1,1,1,1,0,0,0,0,0,1,0,1,0]=>[7,6,1,2,3,4,5]=>[[[.,.],.],[.,[.,[.,[.,.]]]]]
[5,2]=>[1,1,1,1,1,0,0,0,0,0,1,1,0,0]=>[6,7,1,2,3,4,5]=>[[.,[.,.]],[.,[.,[.,[.,.]]]]]
[6,1]=>[1,1,1,1,1,1,0,0,0,0,0,0,1,0]=>[7,1,2,3,4,5,6]=>[[.,.],[.,[.,[.,[.,[.,.]]]]]]
[7]=>[1,1,1,1,1,1,1,0,0,0,0,0,0,0]=>[1,2,3,4,5,6,7]=>[.,[.,[.,[.,[.,[.,[.,.]]]]]]]
[1,1,1,1,1,1,1,1]=>[1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0]=>[8,7,6,5,4,3,2,1]=>[[[[[[[[.,.],.],.],.],.],.],.],.]
[1,1,2,2,1,1]=>[1,0,1,0,1,1,0,0,1,1,0,0,1,0,1,0]=>[8,7,5,6,3,4,2,1]=>[[[[[[.,.],.],[.,.]],[.,.]],.],.]
[1,2,1,1,2,1]=>[1,0,1,1,0,0,1,0,1,0,1,1,0,0,1,0]=>[8,6,7,5,4,2,3,1]=>[[[[[[.,.],[.,.]],.],.],[.,.]],.]
[1,3,3,1]=>[1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,0]=>[8,5,6,7,2,3,4,1]=>[[[[.,.],[.,[.,.]]],[.,[.,.]]],.]
[2,1,1,1,1,2]=>[1,1,0,0,1,0,1,0,1,0,1,0,1,1,0,0]=>[7,8,6,5,4,3,1,2]=>[[[[[[.,[.,.]],.],.],.],.],[.,.]]
[2,2,2,2]=>[1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0]=>[7,8,5,6,3,4,1,2]=>[[[[.,[.,.]],[.,.]],[.,.]],[.,.]]
[2,2,4]=>[1,1,0,0,1,1,0,0,1,1,1,1,0,0,0,0]=>[5,6,7,8,3,4,1,2]=>[[[.,[.,[.,[.,.]]]],[.,.]],[.,.]]
[2,4,2]=>[1,1,0,0,1,1,1,1,0,0,0,0,1,1,0,0]=>[7,8,3,4,5,6,1,2]=>[[[.,[.,.]],[.,[.,[.,.]]]],[.,.]]
[2,6]=>[1,1,0,0,1,1,1,1,1,1,0,0,0,0,0,0]=>[3,4,5,6,7,8,1,2]=>[[.,[.,[.,[.,[.,[.,.]]]]]],[.,.]]
[3,1,1,3]=>[1,1,1,0,0,0,1,0,1,0,1,1,1,0,0,0]=>[6,7,8,5,4,1,2,3]=>[[[[.,[.,[.,.]]],.],.],[.,[.,.]]]
[4,2,2]=>[1,1,1,1,0,0,0,0,1,1,0,0,1,1,0,0]=>[7,8,5,6,1,2,3,4]=>[[[.,[.,.]],[.,.]],[.,[.,[.,.]]]]
[4,4]=>[1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0]=>[5,6,7,8,1,2,3,4]=>[[.,[.,[.,[.,.]]]],[.,[.,[.,.]]]]
[6,2]=>[1,1,1,1,1,1,0,0,0,0,0,0,1,1,0,0]=>[7,8,1,2,3,4,5,6]=>[[.,[.,.]],[.,[.,[.,[.,[.,.]]]]]]
[8]=>[1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0]=>[1,2,3,4,5,6,7,8]=>[.,[.,[.,[.,[.,[.,[.,[.,.]]]]]]]]
Map
bounce path
Description
The bounce path determined by an integer composition.
Map
to 132-avoiding permutation
Description
Sends a Dyck path to a 132-avoiding permutation.
This bijection is defined in [1, Section 2].
This bijection is defined in [1, Section 2].
Map
to increasing tree
Description
Sends a permutation to its associated increasing tree.
This tree is recursively obtained by sending the unique permutation of length $0$ to the empty tree, and sending a permutation $\sigma$ of length $n \geq 1$ to a root node with two subtrees $L$ and $R$ by splitting $\sigma$ at the index $\sigma^{-1}(1)$, normalizing both sides again to permutations and sending the permutations on the left and on the right of $\sigma^{-1}(1)$ to the trees $L$ and $R$, respectively.
This tree is recursively obtained by sending the unique permutation of length $0$ to the empty tree, and sending a permutation $\sigma$ of length $n \geq 1$ to a root node with two subtrees $L$ and $R$ by splitting $\sigma$ at the index $\sigma^{-1}(1)$, normalizing both sides again to permutations and sending the permutations on the left and on the right of $\sigma^{-1}(1)$ to the trees $L$ and $R$, respectively.
searching the database
Sorry, this map was not found in the database.