Identifier
Identifier
Mp00022: Cores to partition Integer partitions
Images
([2],3) generating graphics... => [2] generating graphics...
([1,1],3) generating graphics... => [1,1] generating graphics...
([3,1],3) generating graphics... => [3,1] generating graphics...
([2,1,1],3) generating graphics... => [2,1,1] generating graphics...
([4,2],3) generating graphics... => [4,2] generating graphics...
([3,1,1],3) generating graphics... => [3,1,1] generating graphics...
([2,2,1,1],3) generating graphics... => [2,2,1,1] generating graphics...
([5,3,1],3) generating graphics... => [5,3,1] generating graphics...
([4,2,1,1],3) generating graphics... => [4,2,1,1] generating graphics...
([3,2,2,1,1],3) generating graphics... => [3,2,2,1,1] generating graphics...
([6,4,2],3) generating graphics... => [6,4,2] generating graphics...
([5,3,1,1],3) generating graphics... => [5,3,1,1] generating graphics...
([4,2,2,1,1],3) generating graphics... => [4,2,2,1,1] generating graphics...
([3,3,2,2,1,1],3) generating graphics... => [3,3,2,2,1,1] generating graphics...
([2],4) generating graphics... => [2] generating graphics...
([1,1],4) generating graphics... => [1,1] generating graphics...
([3],4) generating graphics... => [3] generating graphics...
([2,1],4) generating graphics... => [2,1] generating graphics...
([1,1,1],4) generating graphics... => [1,1,1] generating graphics...
([4,1],4) generating graphics... => [4,1] generating graphics...
([2,2],4) generating graphics... => [2,2] generating graphics...
([3,1,1],4) generating graphics... => [3,1,1] generating graphics...
([2,1,1,1],4) generating graphics... => [2,1,1,1] generating graphics...
([5,2],4) generating graphics... => [5,2] generating graphics...
([4,1,1],4) generating graphics... => [4,1,1] generating graphics...
([3,2,1],4) generating graphics... => [3,2,1] generating graphics...
([3,1,1,1],4) generating graphics... => [3,1,1,1] generating graphics...
([2,2,1,1,1],4) generating graphics... => [2,2,1,1,1] generating graphics...
([6,3],4) generating graphics... => [6,3] generating graphics...
([5,2,1],4) generating graphics... => [5,2,1] generating graphics...
([4,1,1,1],4) generating graphics... => [4,1,1,1] generating graphics...
([4,2,2],4) generating graphics... => [4,2,2] generating graphics...
([3,3,1,1],4) generating graphics... => [3,3,1,1] generating graphics...
([3,2,1,1,1],4) generating graphics... => [3,2,1,1,1] generating graphics...
([2,2,2,1,1,1],4) generating graphics... => [2,2,2,1,1,1] generating graphics...
([2],5) generating graphics... => [2] generating graphics...
([1,1],5) generating graphics... => [1,1] generating graphics...
([3],5) generating graphics... => [3] generating graphics...
([2,1],5) generating graphics... => [2,1] generating graphics...
([1,1,1],5) generating graphics... => [1,1,1] generating graphics...
([4],5) generating graphics... => [4] generating graphics...
([3,1],5) generating graphics... => [3,1] generating graphics...
([2,2],5) generating graphics... => [2,2] generating graphics...
([2,1,1],5) generating graphics... => [2,1,1] generating graphics...
([1,1,1,1],5) generating graphics... => [1,1,1,1] generating graphics...
([5,1],5) generating graphics... => [5,1] generating graphics...
([3,2],5) generating graphics... => [3,2] generating graphics...
([4,1,1],5) generating graphics... => [4,1,1] generating graphics...
([2,2,1],5) generating graphics... => [2,2,1] generating graphics...
([3,1,1,1],5) generating graphics... => [3,1,1,1] generating graphics...
([2,1,1,1,1],5) generating graphics... => [2,1,1,1,1] generating graphics...
([6,2],5) generating graphics... => [6,2] generating graphics...
([5,1,1],5) generating graphics... => [5,1,1] generating graphics...
([3,3],5) generating graphics... => [3,3] generating graphics...
([4,2,1],5) generating graphics... => [4,2,1] generating graphics...
([4,1,1,1],5) generating graphics... => [4,1,1,1] generating graphics...
([2,2,2],5) generating graphics... => [2,2,2] generating graphics...
([3,2,1,1],5) generating graphics... => [3,2,1,1] generating graphics...
([3,1,1,1,1],5) generating graphics... => [3,1,1,1,1] generating graphics...
([2,2,1,1,1,1],5) generating graphics... => [2,2,1,1,1,1] generating graphics...
([2],6) generating graphics... => [2] generating graphics...
([1,1],6) generating graphics... => [1,1] generating graphics...
([3],6) generating graphics... => [3] generating graphics...
([2,1],6) generating graphics... => [2,1] generating graphics...
([1,1,1],6) generating graphics... => [1,1,1] generating graphics...
([4],6) generating graphics... => [4] generating graphics...
([3,1],6) generating graphics... => [3,1] generating graphics...
([2,2],6) generating graphics... => [2,2] generating graphics...
([2,1,1],6) generating graphics... => [2,1,1] generating graphics...
([1,1,1,1],6) generating graphics... => [1,1,1,1] generating graphics...
([5],6) generating graphics... => [5] generating graphics...
([4,1],6) generating graphics... => [4,1] generating graphics...
([3,2],6) generating graphics... => [3,2] generating graphics...
([3,1,1],6) generating graphics... => [3,1,1] generating graphics...
([2,2,1],6) generating graphics... => [2,2,1] generating graphics...
([2,1,1,1],6) generating graphics... => [2,1,1,1] generating graphics...
([1,1,1,1,1],6) generating graphics... => [1,1,1,1,1] generating graphics...
([6,1],6) generating graphics... => [6,1] generating graphics...
([4,2],6) generating graphics... => [4,2] generating graphics...
([5,1,1],6) generating graphics... => [5,1,1] generating graphics...
([3,3],6) generating graphics... => [3,3] generating graphics...
([3,2,1],6) generating graphics... => [3,2,1] generating graphics...
([4,1,1,1],6) generating graphics... => [4,1,1,1] generating graphics...
([2,2,2],6) generating graphics... => [2,2,2] generating graphics...
([2,2,1,1],6) generating graphics... => [2,2,1,1] generating graphics...
([3,1,1,1,1],6) generating graphics... => [3,1,1,1,1] generating graphics...
([2,1,1,1,1,1],6) generating graphics... => [2,1,1,1,1,1] generating graphics...
([7,2],6) generating graphics... => [7,2] generating graphics...
([6,1,1],6) generating graphics... => [6,1,1] generating graphics...
([4,3],6) generating graphics... => [4,3] generating graphics...
([5,2,1],6) generating graphics... => [5,2,1] generating graphics...
([5,1,1,1],6) generating graphics... => [5,1,1,1] generating graphics...
([3,3,1],6) generating graphics... => [3,3,1] generating graphics...
([3,2,2],6) generating graphics... => [3,2,2] generating graphics...
([4,2,1,1],6) generating graphics... => [4,2,1,1] generating graphics...
([4,1,1,1,1],6) generating graphics... => [4,1,1,1,1] generating graphics...
([2,2,2,1],6) generating graphics... => [2,2,2,1] generating graphics...
([3,2,1,1,1],6) generating graphics... => [3,2,1,1,1] generating graphics...
([3,1,1,1,1,1],6) generating graphics... => [3,1,1,1,1,1] generating graphics...
([2,2,1,1,1,1,1],6) generating graphics... => [2,2,1,1,1,1,1] generating graphics...
Download as text // json // pdf
Description
Considers a core as a partition.
This embedding is graded and injective but not surjective on $k$-cores for a given parameter $k$, while it is surjective and neither graded nor injective on the collection of all cores.
Properties
surjectiveA map $\phi: A \rightarrow B$ is surjective if for any $b \in B$, there is an $a \in A$ such that $\phi(a) = b$.
Code
def to_partition(elt):
    return Partition(elt)

Updated
May 12, 2019 at 09:21 by Christian Stump