Identifier
Values
[1,0] => [1,1,0,0] => [2,1] => ([],2) => 0
[1,1,0,0] => [1,1,1,0,0,0] => [3,2,1] => ([],3) => 0
[1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [2,3,4,1] => ([(1,2),(2,3)],4) => 0
[1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [3,2,4,1] => ([(1,3),(2,3)],4) => 0
[1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [4,3,2,1] => ([],4) => 0
[1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [2,3,4,5,1] => ([(1,4),(3,2),(4,3)],5) => 0
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [3,2,4,5,1] => ([(1,4),(2,4),(4,3)],5) => 1
[1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [4,2,3,5,1] => ([(1,4),(2,3),(3,4)],5) => 0
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [5,2,3,4,1] => ([(2,3),(3,4)],5) => 0
[1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [5,3,2,4,1] => ([(2,4),(3,4)],5) => 0
[1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [5,4,3,2,1] => ([],5) => 0
[1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [2,3,4,5,6,1] => ([(1,5),(3,4),(4,2),(5,3)],6) => 0
[1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [3,2,4,5,6,1] => ([(1,5),(2,5),(3,4),(5,3)],6) => 1
[1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [4,2,3,5,6,1] => ([(1,5),(2,3),(3,5),(5,4)],6) => 1
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [5,2,3,4,6,1] => ([(1,5),(2,3),(3,4),(4,5)],6) => 0
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [6,2,3,4,5,1] => ([(2,3),(3,5),(5,4)],6) => 0
[1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [5,3,2,4,6,1] => ([(1,5),(2,4),(3,4),(4,5)],6) => 1
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [6,3,2,4,5,1] => ([(2,5),(3,5),(5,4)],6) => 1
[1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [5,3,4,2,6,1] => ([(1,5),(2,5),(3,4),(4,5)],6) => 1
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [6,3,4,2,5,1] => ([(2,5),(3,4),(4,5)],6) => 0
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [6,3,4,5,2,1] => ([(3,4),(4,5)],6) => 0
[1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [6,4,3,5,2,1] => ([(3,5),(4,5)],6) => 0
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,5,4,3,2,1] => ([],6) => 0
[] => [1,0] => [1] => ([],1) => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The interval resolution global dimension of a poset.
This is the cardinality of the longest chain of right minimal approximations by interval modules of an indecomposable module over the incidence algebra.
Map
to non-crossing permutation
Description
Sends a Dyck path $D$ with valley at positions $\{(i_1,j_1),\ldots,(i_k,j_k)\}$ to the unique non-crossing permutation $\pi$ having descents $\{i_1,\ldots,i_k\}$ and whose inverse has descents $\{j_1,\ldots,j_k\}$.
It sends the area St000012The area of a Dyck path. to the number of inversions St000018The number of inversions of a permutation. and the major index St000027The major index of a Dyck path. to $n(n-1)$ minus the sum of the major index St000004The major index of a permutation. and the inverse major index St000305The inverse major index of a permutation..
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
permutation poset
Description
Sends a permutation to its permutation poset.
For a permutation $\pi$ of length $n$, this poset has vertices
$$\{ (i,\pi(i))\ :\ 1 \leq i \leq n \}$$
and the cover relation is given by $(w, x) \leq (y, z)$ if $w \leq y$ and $x \leq z$.
For example, the permutation $[3,1,5,4,2]$ is mapped to the poset with cover relations
$$\{ (2, 1) \prec (5, 2),\ (2, 1) \prec (4, 4),\ (2, 1) \prec (3, 5),\ (1, 3) \prec (4, 4),\ (1, 3) \prec (3, 5) \}.$$