Identifier
Values
['A',1] => ([],1) => ([],1) => 1
['A',2] => ([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => 2
['B',2] => ([(0,3),(1,3),(3,2)],4) => ([(0,3),(1,3),(2,3)],4) => 2
['G',2] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 3
['A',3] => ([(0,4),(1,3),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 3
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The tree-depth of a graph.
The tree-depth $\operatorname{td}(G)$ of a graph $G$ whose connected components are $G_1,\ldots,G_p$ is recursively defined as
$$\operatorname{td}(G)=\begin{cases} 1, & \text{if }|G|=1\\ 1 + \min_{v\in V} \operatorname{td}(G-v), & \text{if } p=1 \text{ and } |G| > 1\\ \max_{i=1}^p \operatorname{td}(G_i), & \text{otherwise} \end{cases}$$
Nešetřil and Ossona de Mendez [2] proved that the tree-depth of a connected graph is equal to its minimum elimination tree height and its centered chromatic number (fewest colors needed for a vertex coloring where every connected induced subgraph has a color that appears exactly once).
Tree-depth is strictly greater than pathwidth. A longest path in $G$ has at least $\operatorname{td}(G)$ vertices [3].
The tree-depth $\operatorname{td}(G)$ of a graph $G$ whose connected components are $G_1,\ldots,G_p$ is recursively defined as
$$\operatorname{td}(G)=\begin{cases} 1, & \text{if }|G|=1\\ 1 + \min_{v\in V} \operatorname{td}(G-v), & \text{if } p=1 \text{ and } |G| > 1\\ \max_{i=1}^p \operatorname{td}(G_i), & \text{otherwise} \end{cases}$$
Nešetřil and Ossona de Mendez [2] proved that the tree-depth of a connected graph is equal to its minimum elimination tree height and its centered chromatic number (fewest colors needed for a vertex coloring where every connected induced subgraph has a color that appears exactly once).
Tree-depth is strictly greater than pathwidth. A longest path in $G$ has at least $\operatorname{td}(G)$ vertices [3].
Map
to root poset
Description
The root poset of a finite Cartan type.
This is the poset on the set of positive roots of its root system where $\alpha \prec \beta$ if $\beta - \alpha$ is a simple root.
This is the poset on the set of positive roots of its root system where $\alpha \prec \beta$ if $\beta - \alpha$ is a simple root.
Map
to graph
Description
Returns the Hasse diagram of the poset as an undirected graph.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!