Identifier
-
Mp00074:
Posets
—to graph⟶
Graphs
Mp00251: Graphs —clique sizes⟶ Integer partitions
St001934: Integer partitions ⟶ ℤ
Values
([],1) => ([],1) => [1] => 1
([],2) => ([],2) => [1,1] => 1
([(0,1)],2) => ([(0,1)],2) => [2] => 1
([],3) => ([],3) => [1,1,1] => 1
([(1,2)],3) => ([(1,2)],3) => [2,1] => 1
([(0,1),(0,2)],3) => ([(0,2),(1,2)],3) => [2,2] => 1
([(0,2),(2,1)],3) => ([(0,2),(1,2)],3) => [2,2] => 1
([(0,2),(1,2)],3) => ([(0,2),(1,2)],3) => [2,2] => 1
([],4) => ([],4) => [1,1,1,1] => 1
([(2,3)],4) => ([(2,3)],4) => [2,1,1] => 1
([(1,2),(1,3)],4) => ([(1,3),(2,3)],4) => [2,2,1] => 1
([(0,1),(0,2),(0,3)],4) => ([(0,3),(1,3),(2,3)],4) => [2,2,2] => 1
([(0,2),(0,3),(3,1)],4) => ([(0,3),(1,2),(2,3)],4) => [2,2,2] => 1
([(1,2),(2,3)],4) => ([(1,3),(2,3)],4) => [2,2,1] => 1
([(0,3),(3,1),(3,2)],4) => ([(0,3),(1,3),(2,3)],4) => [2,2,2] => 1
([(1,3),(2,3)],4) => ([(1,3),(2,3)],4) => [2,2,1] => 1
([(0,3),(1,3),(3,2)],4) => ([(0,3),(1,3),(2,3)],4) => [2,2,2] => 1
([(0,3),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => [2,2,2] => 1
([(0,3),(1,2)],4) => ([(0,3),(1,2)],4) => [2,2] => 1
([(0,3),(1,2),(1,3)],4) => ([(0,3),(1,2),(2,3)],4) => [2,2,2] => 1
([(0,3),(2,1),(3,2)],4) => ([(0,3),(1,2),(2,3)],4) => [2,2,2] => 1
([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => [2,2,2] => 1
([],5) => ([],5) => [1,1,1,1,1] => 1
([(3,4)],5) => ([(3,4)],5) => [2,1,1,1] => 1
([(2,3),(2,4)],5) => ([(2,4),(3,4)],5) => [2,2,1,1] => 1
([(1,2),(1,3),(1,4)],5) => ([(1,4),(2,4),(3,4)],5) => [2,2,2,1] => 1
([(1,3),(1,4),(4,2)],5) => ([(1,4),(2,3),(3,4)],5) => [2,2,2,1] => 1
([(2,3),(3,4)],5) => ([(2,4),(3,4)],5) => [2,2,1,1] => 1
([(1,4),(4,2),(4,3)],5) => ([(1,4),(2,4),(3,4)],5) => [2,2,2,1] => 1
([(2,4),(3,4)],5) => ([(2,4),(3,4)],5) => [2,2,1,1] => 1
([(1,4),(2,4),(4,3)],5) => ([(1,4),(2,4),(3,4)],5) => [2,2,2,1] => 1
([(1,4),(2,4),(3,4)],5) => ([(1,4),(2,4),(3,4)],5) => [2,2,2,1] => 1
([(0,4),(1,4),(2,3)],5) => ([(0,1),(2,4),(3,4)],5) => [2,2,2] => 1
([(1,4),(2,3)],5) => ([(1,4),(2,3)],5) => [2,2,1] => 1
([(1,4),(2,3),(2,4)],5) => ([(1,4),(2,3),(3,4)],5) => [2,2,2,1] => 1
([(0,4),(1,2),(1,3)],5) => ([(0,1),(2,4),(3,4)],5) => [2,2,2] => 1
([(1,4),(3,2),(4,3)],5) => ([(1,4),(2,3),(3,4)],5) => [2,2,2,1] => 1
([(1,4),(2,3),(3,4)],5) => ([(1,4),(2,3),(3,4)],5) => [2,2,2,1] => 1
([(0,3),(1,4),(4,2)],5) => ([(0,1),(2,4),(3,4)],5) => [2,2,2] => 1
([],6) => ([],6) => [1,1,1,1,1,1] => 1
([(4,5)],6) => ([(4,5)],6) => [2,1,1,1,1] => 1
([(3,4),(3,5)],6) => ([(3,5),(4,5)],6) => [2,2,1,1,1] => 1
([(3,4),(4,5)],6) => ([(3,5),(4,5)],6) => [2,2,1,1,1] => 1
([(3,5),(4,5)],6) => ([(3,5),(4,5)],6) => [2,2,1,1,1] => 1
([(1,5),(2,5),(3,4)],6) => ([(1,2),(3,5),(4,5)],6) => [2,2,2,1] => 1
([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => [2,2,1,1] => 1
([(1,5),(2,3),(2,4)],6) => ([(1,2),(3,5),(4,5)],6) => [2,2,2,1] => 1
([(1,3),(2,4),(4,5)],6) => ([(1,2),(3,5),(4,5)],6) => [2,2,2,1] => 1
([(0,5),(1,4),(2,3)],6) => ([(0,5),(1,4),(2,3)],6) => [2,2,2] => 1
([],7) => ([],7) => [1,1,1,1,1,1,1] => 1
([(5,6)],7) => ([(5,6)],7) => [2,1,1,1,1,1] => 1
([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => [2,2,1,1,1] => 1
([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => [2,2,2,1] => 1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of monotone factorisations of genus zero of a permutation of given cycle type.
A monotone factorisation of genus zero of a permutation $\pi\in\mathfrak S_n$ with $\ell$ cycles, including fixed points, is a tuple of $r = n - \ell$ transpositions
$$ (a_1, b_1),\dots,(a_r, b_r) $$
with $b_1 \leq \dots \leq b_r$ and $a_i < b_i$ for all $i$, whose product, in this order, is $\pi$.
For example, the cycle $(2,3,1)$ has the two factorizations $(2,3)(1,3)$ and $(1,2)(2,3)$.
A monotone factorisation of genus zero of a permutation $\pi\in\mathfrak S_n$ with $\ell$ cycles, including fixed points, is a tuple of $r = n - \ell$ transpositions
$$ (a_1, b_1),\dots,(a_r, b_r) $$
with $b_1 \leq \dots \leq b_r$ and $a_i < b_i$ for all $i$, whose product, in this order, is $\pi$.
For example, the cycle $(2,3,1)$ has the two factorizations $(2,3)(1,3)$ and $(1,2)(2,3)$.
Map
clique sizes
Description
The integer partition of the sizes of the maximal cliques of a graph.
Map
to graph
Description
Returns the Hasse diagram of the poset as an undirected graph.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!