Identifier
-
Mp00095:
Integer partitions
—to binary word⟶
Binary words
Mp00269: Binary words —flag zeros to zeros⟶ Binary words
St001885: Binary words ⟶ ℤ
Values
[1] => 10 => 00 => 1
[2] => 100 => 010 => 1
[1,1] => 110 => 001 => 4
[3] => 1000 => 0110 => 3
[2,1] => 1010 => 0000 => 1
[1,1,1] => 1110 => 0011 => 6
[4] => 10000 => 01110 => 5
[3,1] => 10010 => 00010 => 5
[2,2] => 1100 => 0101 => 1
[2,1,1] => 10110 => 00100 => 1
[1,1,1,1] => 11110 => 00111 => 12
[5] => 100000 => 011110 => 11
[4,1] => 100010 => 000110 => 11
[3,2] => 10100 => 01000 => 5
[3,1,1] => 100110 => 001010 => 11
[2,2,1] => 11010 => 00001 => 12
[2,1,1,1] => 101110 => 001100 => 3
[1,1,1,1,1] => 111110 => 001111 => 20
[6] => 1000000 => 0111110 => 19
[5,1] => 1000010 => 0001110 => 19
[4,2] => 100100 => 010010 => 1
[4,1,1] => 1000110 => 0010110 => 19
[3,3] => 11000 => 01101 => 2
[3,2,1] => 101010 => 000000 => 1
[3,1,1,1] => 1001110 => 0011010 => 19
[2,2,2] => 11100 => 01011 => 12
[2,2,1,1] => 110110 => 001001 => 1
[2,1,1,1,1] => 1011110 => 0011100 => 6
[1,1,1,1,1,1] => 1111110 => 0011111 => 40
[7] => 10000000 => 01111110 => 41
[6,1] => 10000010 => 00011110 => 41
[5,2] => 1000100 => 0100110 => 19
[5,1,1] => 10000110 => 00101110 => 41
[4,3] => 101000 => 011000 => 11
[4,2,1] => 1001010 => 0000010 => 19
[4,1,1,1] => 10001110 => 00110110 => 41
[3,3,1] => 110010 => 000101 => 20
[3,2,2] => 101100 => 010100 => 11
[3,2,1,1] => 1010110 => 0010000 => 6
[3,1,1,1,1] => 10011110 => 00111010 => 41
[2,2,2,1] => 111010 => 000011 => 20
[2,2,1,1,1] => 1101110 => 0011001 => 2
[2,1,1,1,1,1] => 10111110 => 00111100 => 11
[1,1,1,1,1,1,1] => 11111110 => 00111111 => 74
[8] => 100000000 => 011111110 => 77
[7,1] => 100000010 => 000111110 => 77
[6,2] => 10000100 => 01001110 => 41
[6,1,1] => 100000110 => 001011110 => 77
[5,3] => 1001000 => 0110010 => 19
[5,2,1] => 10001010 => 00000110 => 41
[5,1,1,1] => 100001110 => 001101110 => 77
[4,4] => 110000 => 011101 => 3
[4,3,1] => 1010010 => 0001000 => 1
[4,2,2] => 1001100 => 0101010 => 1
[4,2,1,1] => 10010110 => 00100010 => 1
[4,1,1,1,1] => 100011110 => 001110110 => 77
[3,3,2] => 110100 => 010001 => 3
[3,3,1,1] => 1100110 => 0010101 => 40
[3,2,2,1] => 1011010 => 0000100 => 6
[3,2,1,1,1] => 10101110 => 00110000 => 11
[3,1,1,1,1,1] => 100111110 => 001111010 => 77
[2,2,2,2] => 111100 => 010111 => 20
[2,2,2,1,1] => 1110110 => 0010011 => 40
[2,2,1,1,1,1] => 11011110 => 00111001 => 4
[2,1,1,1,1,1,1] => 101111110 => 001111100 => 23
[1,1,1,1,1,1,1,1] => 111111110 => 001111111 => 148
[7,2] => 100000100 => 010011110 => 77
[6,3] => 10001000 => 01100110 => 1
[6,2,1] => 100001010 => 000001110 => 77
[5,4] => 1010000 => 0111000 => 19
[5,3,1] => 10010010 => 00010010 => 41
[5,2,2] => 10001100 => 01010110 => 41
[5,2,1,1] => 100010110 => 001000110 => 77
[4,4,1] => 1100010 => 0001101 => 40
[4,3,2] => 1010100 => 0100000 => 19
[4,3,1,1] => 10100110 => 00101000 => 11
[4,2,2,1] => 10011010 => 00001010 => 41
[4,2,1,1,1] => 100101110 => 001100010 => 77
[3,3,3] => 111000 => 011011 => 1
[3,3,2,1] => 1101010 => 0000001 => 40
[3,3,1,1,1] => 11001110 => 00110101 => 74
[3,2,2,2] => 1011100 => 0101100 => 19
[3,2,2,1,1] => 10110110 => 00100100 => 1
[3,2,1,1,1,1] => 101011110 => 001110000 => 23
[2,2,2,2,1] => 1111010 => 0000111 => 40
[2,2,2,1,1,1] => 11101110 => 00110011 => 1
[2,2,1,1,1,1,1] => 110111110 => 001111001 => 7
[7,3] => 100001000 => 011001110 => 77
[6,4] => 10010000 => 01110010 => 41
[6,3,1] => 100010010 => 000100110 => 77
[6,2,2] => 100001100 => 010101110 => 77
[5,5] => 1100000 => 0111101 => 8
[5,4,1] => 10100010 => 00011000 => 3
[5,3,2] => 10010100 => 01000010 => 4
[5,3,1,1] => 100100110 => 001010010 => 2
[5,2,2,1] => 100011010 => 000010110 => 77
[4,4,2] => 1100100 => 0100101 => 8
[4,4,1,1] => 11000110 => 00101101 => 74
[4,3,3] => 1011000 => 0110100 => 19
[4,3,2,1] => 10101010 => 00000000 => 1
[4,3,1,1,1] => 101001110 => 001101000 => 23
>>> Load all 250 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of binary words with the same proper border set.
The proper border set of a binary word $w$ is the set of proper prefixes which are also suffixes of $w$.
For example, $0010000010$, $0010100010$ and $0010110010$ are the words with proper border set $\{0, 0010\}$, whereas $0010010010$ has proper border set $\{0, 0010, 0010010\}$.
The proper border set of a binary word $w$ is the set of proper prefixes which are also suffixes of $w$.
For example, $0010000010$, $0010100010$ and $0010110010$ are the words with proper border set $\{0, 0010\}$, whereas $0010010010$ has proper border set $\{0, 0010, 0010010\}$.
Map
flag zeros to zeros
Description
Return a binary word of the same length, such that the number of zeros equals the number of occurrences of $10$ in the word obtained from the original word by prepending the reverse of the complement.
For example, the image of the word $w=1\dots 1$ is $1\dots 1$, because $0\dots 01\dots 1$ has no occurrences of $10$. The words $10\dots 10$ and $010\dots 10$ have image $0\dots 0$.
For example, the image of the word $w=1\dots 1$ is $1\dots 1$, because $0\dots 01\dots 1$ has no occurrences of $10$. The words $10\dots 10$ and $010\dots 10$ have image $0\dots 0$.
Map
to binary word
Description
Return the partition as binary word, by traversing its shape from the first row to the last row, down steps as 1 and left steps as 0.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!