Identifier
-
Mp00159:
Permutations
—Demazure product with inverse⟶
Permutations
Mp00239: Permutations —Corteel⟶ Permutations
Mp00065: Permutations —permutation poset⟶ Posets
St001880: Posets ⟶ ℤ
Values
[1,2,3] => [1,2,3] => [1,2,3] => ([(0,2),(2,1)],3) => 3
[1,2,3,4] => [1,2,3,4] => [1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => 4
[1,3,2,4] => [1,3,2,4] => [1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4) => 4
[1,2,3,4,5] => [1,2,3,4,5] => [1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,2,4,3,5] => [1,2,4,3,5] => [1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 5
[1,3,2,4,5] => [1,3,2,4,5] => [1,3,2,4,5] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 5
[1,3,4,2,5] => [1,4,3,2,5] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => 4
[1,4,2,3,5] => [1,4,3,2,5] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => 4
[1,4,3,2,5] => [1,4,3,2,5] => [1,3,4,2,5] => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => 4
[1,2,3,4,5,6] => [1,2,3,4,5,6] => [1,2,3,4,5,6] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,2,3,5,4,6] => [1,2,3,5,4,6] => [1,2,3,5,4,6] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 6
[1,2,4,3,5,6] => [1,2,4,3,5,6] => [1,2,4,3,5,6] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 6
[1,2,4,5,3,6] => [1,2,5,4,3,6] => [1,2,4,5,3,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => 5
[1,2,5,3,4,6] => [1,2,5,4,3,6] => [1,2,4,5,3,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => 5
[1,2,5,4,3,6] => [1,2,5,4,3,6] => [1,2,4,5,3,6] => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => 5
[1,3,2,4,5,6] => [1,3,2,4,5,6] => [1,3,2,4,5,6] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 6
[1,3,4,2,5,6] => [1,4,3,2,5,6] => [1,3,4,2,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
[1,3,4,5,2,6] => [1,5,3,4,2,6] => [1,3,4,5,2,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => 4
[1,3,5,2,4,6] => [1,4,5,2,3,6] => [1,5,4,3,2,6] => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => 1
[1,3,5,4,2,6] => [1,5,4,3,2,6] => [1,4,5,2,3,6] => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => 4
[1,4,2,3,5,6] => [1,4,3,2,5,6] => [1,3,4,2,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
[1,4,2,5,3,6] => [1,5,3,4,2,6] => [1,3,4,5,2,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => 4
[1,4,3,2,5,6] => [1,4,3,2,5,6] => [1,3,4,2,5,6] => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => 5
[1,4,3,5,2,6] => [1,5,3,4,2,6] => [1,3,4,5,2,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => 4
[1,4,5,2,3,6] => [1,5,4,3,2,6] => [1,4,5,2,3,6] => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => 4
[1,4,5,3,2,6] => [1,5,4,3,2,6] => [1,4,5,2,3,6] => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => 4
[1,5,2,3,4,6] => [1,5,3,4,2,6] => [1,3,4,5,2,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => 4
[1,5,2,4,3,6] => [1,5,3,4,2,6] => [1,3,4,5,2,6] => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => 4
[1,5,3,2,4,6] => [1,5,4,3,2,6] => [1,4,5,2,3,6] => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => 4
[1,5,3,4,2,6] => [1,5,4,3,2,6] => [1,4,5,2,3,6] => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => 4
[1,5,4,2,3,6] => [1,5,4,3,2,6] => [1,4,5,2,3,6] => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => 4
[1,5,4,3,2,6] => [1,5,4,3,2,6] => [1,4,5,2,3,6] => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => 4
[1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => [1,2,3,4,5,6,7] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,2,3,4,6,5,7] => [1,2,3,4,6,5,7] => [1,2,3,4,6,5,7] => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => 7
[1,2,3,5,4,6,7] => [1,2,3,5,4,6,7] => [1,2,3,5,4,6,7] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 7
[1,2,3,5,6,4,7] => [1,2,3,6,5,4,7] => [1,2,3,5,6,4,7] => ([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7) => 6
[1,2,3,6,4,5,7] => [1,2,3,6,5,4,7] => [1,2,3,5,6,4,7] => ([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7) => 6
[1,2,3,6,5,4,7] => [1,2,3,6,5,4,7] => [1,2,3,5,6,4,7] => ([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7) => 6
[1,2,4,3,5,6,7] => [1,2,4,3,5,6,7] => [1,2,4,3,5,6,7] => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => 7
[1,2,4,5,3,6,7] => [1,2,5,4,3,6,7] => [1,2,4,5,3,6,7] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,2,4,5,6,3,7] => [1,2,6,4,5,3,7] => [1,2,4,5,6,3,7] => ([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7) => 5
[1,2,4,6,3,5,7] => [1,2,5,6,3,4,7] => [1,2,6,5,4,3,7] => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7) => 2
[1,2,4,6,5,3,7] => [1,2,6,5,4,3,7] => [1,2,5,6,3,4,7] => ([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7) => 5
[1,2,5,3,4,6,7] => [1,2,5,4,3,6,7] => [1,2,4,5,3,6,7] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,2,5,3,6,4,7] => [1,2,6,4,5,3,7] => [1,2,4,5,6,3,7] => ([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7) => 5
[1,2,5,4,3,6,7] => [1,2,5,4,3,6,7] => [1,2,4,5,3,6,7] => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => 6
[1,2,5,4,6,3,7] => [1,2,6,4,5,3,7] => [1,2,4,5,6,3,7] => ([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7) => 5
[1,2,5,6,3,4,7] => [1,2,6,5,4,3,7] => [1,2,5,6,3,4,7] => ([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7) => 5
[1,2,5,6,4,3,7] => [1,2,6,5,4,3,7] => [1,2,5,6,3,4,7] => ([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7) => 5
[1,2,6,3,4,5,7] => [1,2,6,4,5,3,7] => [1,2,4,5,6,3,7] => ([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7) => 5
[1,2,6,3,5,4,7] => [1,2,6,4,5,3,7] => [1,2,4,5,6,3,7] => ([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7) => 5
[1,2,6,4,3,5,7] => [1,2,6,5,4,3,7] => [1,2,5,6,3,4,7] => ([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7) => 5
[1,2,6,4,5,3,7] => [1,2,6,5,4,3,7] => [1,2,5,6,3,4,7] => ([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7) => 5
[1,2,6,5,3,4,7] => [1,2,6,5,4,3,7] => [1,2,5,6,3,4,7] => ([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7) => 5
[1,2,6,5,4,3,7] => [1,2,6,5,4,3,7] => [1,2,5,6,3,4,7] => ([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7) => 5
[1,3,2,4,5,6,7] => [1,3,2,4,5,6,7] => [1,3,2,4,5,6,7] => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => 7
[1,3,2,4,6,5,7] => [1,3,2,4,6,5,7] => [1,3,2,4,6,5,7] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 7
[1,3,4,2,5,6,7] => [1,4,3,2,5,6,7] => [1,3,4,2,5,6,7] => ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7) => 6
[1,3,4,5,2,6,7] => [1,5,3,4,2,6,7] => [1,3,4,5,2,6,7] => ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7) => 5
[1,3,4,5,6,2,7] => [1,6,3,4,5,2,7] => [1,3,4,5,6,2,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 4
[1,3,4,6,2,5,7] => [1,5,3,6,2,4,7] => [1,3,6,5,4,2,7] => ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7) => 2
[1,3,4,6,5,2,7] => [1,6,3,5,4,2,7] => [1,3,5,6,2,4,7] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7) => 6
[1,3,5,2,4,6,7] => [1,4,5,2,3,6,7] => [1,5,4,3,2,6,7] => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7) => 2
[1,3,5,2,6,4,7] => [1,4,6,2,5,3,7] => [1,5,4,3,6,2,7] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7) => 2
[1,3,5,4,2,6,7] => [1,5,4,3,2,6,7] => [1,4,5,2,3,6,7] => ([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7) => 5
[1,3,5,4,6,2,7] => [1,6,4,3,5,2,7] => [1,4,5,2,6,3,7] => ([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7) => 6
[1,3,5,6,2,4,7] => [1,5,6,4,2,3,7] => [1,5,4,6,3,2,7] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 1
[1,3,5,6,4,2,7] => [1,6,5,4,3,2,7] => [1,4,5,6,2,3,7] => ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7) => 4
[1,3,6,2,4,5,7] => [1,4,6,2,5,3,7] => [1,5,4,3,6,2,7] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7) => 2
[1,3,6,2,5,4,7] => [1,4,6,2,5,3,7] => [1,5,4,3,6,2,7] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7) => 2
[1,3,6,4,2,5,7] => [1,5,6,4,2,3,7] => [1,5,4,6,3,2,7] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 1
[1,3,6,4,5,2,7] => [1,6,5,4,3,2,7] => [1,4,5,6,2,3,7] => ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7) => 4
[1,3,6,5,2,4,7] => [1,5,6,4,2,3,7] => [1,5,4,6,3,2,7] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 1
[1,3,6,5,4,2,7] => [1,6,5,4,3,2,7] => [1,4,5,6,2,3,7] => ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7) => 4
[1,4,2,3,5,6,7] => [1,4,3,2,5,6,7] => [1,3,4,2,5,6,7] => ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7) => 6
[1,4,2,5,3,6,7] => [1,5,3,4,2,6,7] => [1,3,4,5,2,6,7] => ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7) => 5
[1,4,2,5,6,3,7] => [1,6,3,4,5,2,7] => [1,3,4,5,6,2,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 4
[1,4,2,6,3,5,7] => [1,5,3,6,2,4,7] => [1,3,6,5,4,2,7] => ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7) => 2
[1,4,2,6,5,3,7] => [1,6,3,5,4,2,7] => [1,3,5,6,2,4,7] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7) => 6
[1,4,3,2,5,6,7] => [1,4,3,2,5,6,7] => [1,3,4,2,5,6,7] => ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7) => 6
[1,4,3,5,2,6,7] => [1,5,3,4,2,6,7] => [1,3,4,5,2,6,7] => ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7) => 5
[1,4,3,5,6,2,7] => [1,6,3,4,5,2,7] => [1,3,4,5,6,2,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 4
[1,4,3,6,2,5,7] => [1,5,3,6,2,4,7] => [1,3,6,5,4,2,7] => ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7) => 2
[1,4,3,6,5,2,7] => [1,6,3,5,4,2,7] => [1,3,5,6,2,4,7] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7) => 6
[1,4,5,2,3,6,7] => [1,5,4,3,2,6,7] => [1,4,5,2,3,6,7] => ([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7) => 5
[1,4,5,2,6,3,7] => [1,6,4,3,5,2,7] => [1,4,5,2,6,3,7] => ([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7) => 6
[1,4,5,3,2,6,7] => [1,5,4,3,2,6,7] => [1,4,5,2,3,6,7] => ([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7) => 5
[1,4,5,3,6,2,7] => [1,6,4,3,5,2,7] => [1,4,5,2,6,3,7] => ([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7) => 6
[1,4,5,6,2,3,7] => [1,6,5,4,3,2,7] => [1,4,5,6,2,3,7] => ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7) => 4
[1,4,5,6,3,2,7] => [1,6,5,4,3,2,7] => [1,4,5,6,2,3,7] => ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7) => 4
[1,4,6,2,3,5,7] => [1,5,6,4,2,3,7] => [1,5,4,6,3,2,7] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 1
[1,4,6,2,5,3,7] => [1,6,5,4,3,2,7] => [1,4,5,6,2,3,7] => ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7) => 4
[1,4,6,3,2,5,7] => [1,5,6,4,2,3,7] => [1,5,4,6,3,2,7] => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => 1
[1,4,6,3,5,2,7] => [1,6,5,4,3,2,7] => [1,4,5,6,2,3,7] => ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7) => 4
[1,4,6,5,2,3,7] => [1,6,5,4,3,2,7] => [1,4,5,6,2,3,7] => ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7) => 4
[1,4,6,5,3,2,7] => [1,6,5,4,3,2,7] => [1,4,5,6,2,3,7] => ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7) => 4
[1,5,2,3,4,6,7] => [1,5,3,4,2,6,7] => [1,3,4,5,2,6,7] => ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7) => 5
[1,5,2,3,6,4,7] => [1,6,3,4,5,2,7] => [1,3,4,5,6,2,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 4
[1,5,2,4,3,6,7] => [1,5,3,4,2,6,7] => [1,3,4,5,2,6,7] => ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7) => 5
[1,5,2,4,6,3,7] => [1,6,3,4,5,2,7] => [1,3,4,5,6,2,7] => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => 4
[1,5,2,6,3,4,7] => [1,6,3,5,4,2,7] => [1,3,5,6,2,4,7] => ([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7) => 6
>>> Load all 144 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The number of 2-Gorenstein indecomposable injective modules in the incidence algebra of the lattice.
Map
Demazure product with inverse
Description
This map sends a permutation $\pi$ to $\pi^{-1} \star \pi$ where $\star$ denotes the Demazure product on permutations.
This map is a surjection onto the set of involutions, i.e., the set of permutations $\pi$ for which $\pi = \pi^{-1}$.
This map is a surjection onto the set of involutions, i.e., the set of permutations $\pi$ for which $\pi = \pi^{-1}$.
Map
Corteel
Description
Corteel's map interchanging the number of crossings and the number of nestings of a permutation.
This involution creates a labelled bicoloured Motzkin path, using the Foata-Zeilberger map. In the corresponding bump diagram, each label records the number of arcs nesting the given arc. Then each label is replaced by its complement, and the inverse of the Foata-Zeilberger map is applied.
This involution creates a labelled bicoloured Motzkin path, using the Foata-Zeilberger map. In the corresponding bump diagram, each label records the number of arcs nesting the given arc. Then each label is replaced by its complement, and the inverse of the Foata-Zeilberger map is applied.
Map
permutation poset
Description
Sends a permutation to its permutation poset.
For a permutation $\pi$ of length $n$, this poset has vertices
$$\{ (i,\pi(i))\ :\ 1 \leq i \leq n \}$$
and the cover relation is given by $(w, x) \leq (y, z)$ if $w \leq y$ and $x \leq z$.
For example, the permutation $[3,1,5,4,2]$ is mapped to the poset with cover relations
$$\{ (2, 1) \prec (5, 2),\ (2, 1) \prec (4, 4),\ (2, 1) \prec (3, 5),\ (1, 3) \prec (4, 4),\ (1, 3) \prec (3, 5) \}.$$
For a permutation $\pi$ of length $n$, this poset has vertices
$$\{ (i,\pi(i))\ :\ 1 \leq i \leq n \}$$
and the cover relation is given by $(w, x) \leq (y, z)$ if $w \leq y$ and $x \leq z$.
For example, the permutation $[3,1,5,4,2]$ is mapped to the poset with cover relations
$$\{ (2, 1) \prec (5, 2),\ (2, 1) \prec (4, 4),\ (2, 1) \prec (3, 5),\ (1, 3) \prec (4, 4),\ (1, 3) \prec (3, 5) \}.$$
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!